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Abstract

In this contribution, we propose a new method to automatically learn the Knowledge
Base of a Fuzzy Rule-Based System by finding an appropriate Data Base using a
Genetic Algorithm and considering a simple generation method to derive the Rule Base.
Our genetic process learns all the components of the Data Base (number of labels,
working ranges and membership function shapes for each linguistic variable) using a
non-linear scaling function to adapt the fuzzy partition contexts. © 2001 Elsevier
Science Inc. All rights reserved.
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1. Introduction

The generation of the Knowledge Base (KB) of a Fuzzy Rule-Based System
(FRBS) presents several difficulties since the KB depends on the concrete
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application. This makes the accuracy of the FRBS directly depend on its

composition.

Many approaches have been proposed to automatically learn the KB from
numerical information. Most of them have focused on the Rule Base (RB)
learning, using a predefined Data Base (DB) [2,7,13,20,25-27,37,39]. This op-
eration mode makes the DB have a significant influence on the FRBS per-
formance. In fact, some studies have showed that the system performance is
much more sensitive to the choice of the semantics in the DB than to the
composition of the RB [5,12,40].

The usual solution to improve the FRBS performance by dealing with the
DB components involves a tuning process of the preliminary DB definition
once the RB has been derived [4,5,8,22,30]. This process only adjusts the
membership function definitions and does not modify the number of linguistic
terms in each fuzzy partition since the RB remains unchanged. In opposite to
this a posteriori DB learning, there are some approaches that learn the different
DB components a priori [9,12,14,17,18,29,36,38].

In this paper, we propose a new process to automatically generate the KB of
a Mamdani FRBS based on a new learning approach [14,18] composed of two
methods with different goals:

e A genetic learning process for the DB that allows us to define:

o The number of labels for each linguistic variable.

o The variable domain (working range).

o The form of each fuzzy membership function in non-uniform fuzzy parti-
tions, using a non-linear scaling function that defines different areas in the
variable working range where the FRBS has a higher or a lower relative
sensibility, i.e., the fuzzy partition contexts.

e A quick ad hoc data-driven method [7] that derives the RB considering the
DB previously obtained. This method is run from each DB definition gener-
ated by the Genetic Algorithm (GA), thus allowing the proposed hybrid
learning process to finally obtain the whole definition of the KB (DB and
RB) by means of the cooperative action of both methods.

Besides, we present an extension of the proposed method that changes the

fitness function with the aim of obtaining FRBSs with a better generalization

capability and whose RB is comprised by a lesser number of rules.

In order to do that, this paper is organized as follows. Sections 2 and 3 show
some preliminaries about the KB learning in FRBSs and fuzzy context adap-
tation, respectively. In Section 4, our method is presented, describing the
context adaptation approach considered and the components of the genetic
process: coding of the solutions, initial population, evaluation function and
genetic operators. Section 5 shows some experimental results. Section 6 pre-
sents the extension of the proposed method. Finally, in Section 7, some con-
clusions are pointed out.



O. Cordon et al. | Information Sciences 136 (2001) 85-107 87

2. Automatic learning of the KB

Two problems arise when generating the KB of a FRBS:

e The DB learning, that comprises the specification of the universes of dis-
course and the number of labels for each linguistic variable, as well as the
fuzzy membership functions associated to each label.

e The RB derivation, involving the determination of the number of rules and
of the composition of each one of them (i.e., of the specific labels associated
to each linguistic variable).

As said, most of the approaches proposed to automatically learn the KB from

numerical information have focused on the RB learning, using a predefined

DB. The usual way to define this DB involves choosing a number of linguistic

terms for each linguistic variable (an odd number between 3 and 9, which is

normally the same for all the variables) and setting the values of the system
parameters by an uniform distribution of the linguistic terms into the variable
universe of discourse. The RB learning methods are based on different tech-
niques such as ad hoc data-driven algorithms [2,13,27,39], least square methods

[2], Simulated Annealing [7] and GAs [20,25,26,37]. Fig. 1(a) graphically shows

this type of KB learning.

This operation mode makes the DB have a significant influence on the
FRBS performance. In fact, studies such as the ones developed in [5,40] show,
for the case of Fuzzy PI Controllers, that the system performance is much more
sensitive to the choice of the semantics in the DB than to the composition of
the RB. Considering a previously defined RB, the performance of the Fuzzy
Controller is sensitive to four aspects in the following order: scaling factors,
peak values, width values and rules.

In [12], the influence of fuzzy partition granularity (number of linguistic
terms per variable) in the FRBS performance is studied, showing that using an
appropriate number of terms for each linguistic variable, the FRBS accuracy
can be improved with no need to use complex RB learning methods.

With the aim of making the FRBS perform better, some approaches try to
improve the preliminary DB definition once the RB has been derived. To do so,
a tuning process considering the whole KB obtained (the preliminary DB and
the derived RB) is used a posteriori to adjust the membership function pa-
rameters. Nevertheless, the tuning process only adjusts the shapes of the
membership functions and not the number of linguistic terms in each fuzzy
partition, which remains fixed from the beginning of the design process. A
graphical representation of this kind of learning is showed in Fig. 1(b). For
some examples of tuning methods based on Simulated Annealing and GAs,
refer to [4,5,8,22,30].

Other approaches try to learn the two components of the KB simulta-
neously. This kind of learning is depicted in Fig. 1(c). Working in this way,
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Fig. 1. Graphical representation of the different KB learning approaches.

they have the possibility of generating better definitions but they deal with a
larger search space that makes the learning process more difficult and slow. For
some examples, refer to [6,11,16,31-33].

Finally, there is another way to generate the whole KB that considers two
different processes to derive both components, DB and RB. A DB generation
process wraps a RB learning one working as follows: each time a DB has been
obtained by the DB definition process, the RB generation method is used to
derive the rules, and some type of error measure is used to validate the whole
KB obtained. We should note that this operation mode involves a partitioning
of the KB learning problem. Whilst the learning processes belonging to the
previous family (Fig. 1(c)) look for solutions in a complex global search space
(DB + RB), the processes belonging to the current group are composed of two
different (and independent) learning processes looking for solutions in two
simpler search spaces (DB and RB ones) to obtain complete solutions. This
type of KB learning is represented in Fig. 1(d). The following processes are
examples of this kind of KB learning:

e The method proposed in [12] uses Simulated Annealing to learn an appropri-
ate fuzzy partition granularity for each variable and various RB learning
methods to derive the rules.

e In the approach presented in [18], a genetic process that obtains a KB for
simplified TSK rules is proposed.

e The method presented in [29] deals with a GA to design a FRBS for pattern
classification problems.
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e The approach proposed in [17] uses a GA to learn the definition points of the
membership functions and the Wang and Mendel’s rule generation method
[39] to derive the RB.

¢ A method that simultaneously adjusts the number of labels per variable and
the membership functions parameters is presented in [14].

Our method will belong to this group. We use a genetic process to learn all
the components of the DB (number of labels, working ranges and member-
ship functions shapes) and a simple ad hoc data-driven algorithm to derive
the RB.

In opposite to the local tuning of the membership functions developed in
many approaches, the method presented in this paper implements a global
tuning of the membership functions (a change in the parameter values origins a
change in the whole fuzzy partition). Besides, the FRBSs obtained are more
readable because strong fuzzy partitions are considered. A fuzzy partition with
[ labels 4 = (4,,4,,...,4,) is called strong if:

Z,uA/,(x) =1, xeU.

i=1

In order to evaluate its performance, the FRBSs obtained from it will be
compared with others designed by the usual way, that is, learning of the RB
using a predefined DB, with and without a tuning process of the DB main-
taining fixed the RB previously obtained (Figs. 1(a) and (b) respectively), and
with the ones obtained from another method belonging to the same family [17]

(Fig. 1(d)).

3. Context adaptation in fuzzy processing

The use of contextual transformation functions to adjust membership
functions in Fuzzy Systems can be a good form to find the fuzzy sets that best
represent the linguistic terms they are associated with.

Considering concepts representable by fuzzy sets, the main effect of a con-
text can be related by some sort of filtering. That is, the same base concept can
be perceived in different situations, provided it is filtered to suit the context
particulars [21].

The scaling functions map the input and output variables onto the universe
of discourse of the fuzzy sets definitions. From a linguistic point of view, the
scaling function can be interpreted as a sort of context information. While the
membership functions describe the relative semantics (context-independent) of
the linguistic variables contained in the rules, the union of the scaling functions
and the membership functions generates the absolute semantics of the linguistic
variables (context-dependent through the scaling functions).
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Different results may be obtained when modifying the scaling function
working on a certain variable, obtaining two kinds of contexts, linear and non-
linear ones. In a non-linear context, the membership function shape can be
adjusted. This is not possible when using linear context adaptation.

As an example of context adaptation, the concept of flexible linguistic
variable is introduced in [3]. The linguistic terms of those variables are defined
by a flexible semantic KB. Considering the flexible linguistic variable named
AGE, a possible linguistic value for it is old. Usually, nobody tends to judge his
own age as old. So the meaning of the fuzzy set old is context dependent be-
cause it may change according to the speaker age. Hence, the semantic KB to
adapt the fuzzy set old could be a single rule:

Uye = (own_age + 5, own_age + 10, own_age + 15).

In [21], more details about fuzzy context adaptation can be found, such us a
formalization of the context adaptation procedure, the formal requirements for
the scaling function and some context adaptation approaches.

The next proposals are FRBS learning methods based on context adapta-
tion:

e The approach proposed in [35] adjusts the membership functions of the in-
put variables and the gain for the output variable in the framework of Fuzzy
Control.

e The method presented in [21] is a genetic learning method for the parameters
of a determinated non-linear scaling function, in order to find an adequate
fuzzy partition per variable. A similar study based on Neural Networks is
proposed in [36].

e The approach proposed in [32] uses a GA to adapt the whole KB definition
of a Fuzzy Controller. For the learning of the DB, the GA evolves the work-
ing ranges of the linguistic variables and the membership functions shapes,
by means a non-linear scaling function that produces high sensibility either
for the medium values or for the extreme values of the linguistic variables.
This approach is refined in [33] by adding a new parameter to the non-linear
scaling function that may produce high sensibility in only one of the working
range limits of the linguistic variables.

The learning method proposed in this paper uses a GA to define the parameters

of the non-linear scaling function proposed in [33], including the possibility of

an enlargement of the initial working ranges of the linguistic variables

(translating to the Fuzzy Modelling field the idea proposed in [32] for Fuzzy

Controllers).

The main contribution of our method is that it also evolves the number of
labels per linguistic variable, an information that has not been considered to be
relevant for the context adaptation methods mentioned before. The fuzzy
partition granularity of a linguistic variable can also be viewed as a sort of
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context information. Considered a specific label set for a variable, the scaling
functions can adapt the membership functions to a determinated real situation.
However, in other contexts, some labels can result irrelevant, that is, they can
contribute nothing and even can cause confusion. In other cases, it would be
necessary to add new labels to appropriately differentiate the values of the
variable.

4. Learning the DB of a FRBS using GAs

In this section, we propose a new process to automatically generate the KB
of a Mamdani FRBS based on a new learning approach composed of two
methods with different goals:

e A genetic learning process for the DB that allows us to define:

o The number of labels for each linguistic variable.

o The variable domain (working range).

o The form of each fuzzy membership function in non-uniform fuzzy parti-
tions, using a non-linear scaling function that defines different areas in the
variable working range where the FRBS has a higher or a lower relative
sensibility, i.e., the fuzzy partition contexts.

e A quick ad hoc data-driven method [7] that derives the RB considering the
DB previously obtained. This method is run from each DB definition gener-
ated by the GA, thus allowing the proposed hybrid learning process to fi-
nally obtain the whole definition of the KB (DB and RB) by means of the
cooperative action of both methods.

The granularity level per variable has a great influence in the final FRBS

performance, as stated in [12]. Our method also evolves the variable working

range, usually considered as a fixed part of the problem.

4.1. Context adaptation proposal

All the components of the DB will be adapted throughout a genetic
process. Since it is interesting to reduce the dimensionality of the search space
for that process, the use of non-linear scaling functions is conditioned by the
necessity of using parameterized functions with a reduced number of pa-
rameters. We consider the scaling function proposed in [32], that has a single
sensibility parameter called a (a € R). The function used is (f':[-1,1] —

[—1,1])
f(x) =sign(x) - |x|* with a > 0.

The final result is a value in [—1, 1] where the parameter a produces uni-
form sensibility (a = 1), higher sensibility for center values (a > 1), or higher
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sensibility for extreme values (a < 1). In this paper, triangular membership
functions are considered due to their simplicity. So, the non-linear scaling
function will only be applied on the three definition points of the membership
function (which is equal to transform the scaling function in a continuous
piecewise linear function), in order to make easier the structure of the gener-
ated DB and to simplify the defuzzification process. Fig. 2 shows a graphical
representation of these three possibilities.

We should note that the previous scaling function is recommended to be
used with symmetrical variables since it causes symmetrical effects around the
center point of the interval. For example, it cannot produce higher sensibility in
only one of the working range extents.

In [15], a genetic learning method for the DB using the previous scal-
ing function is proposed. In the method presented in this paper, we add a
new parameter (called S) to the non-linear scaling function as described in
[33]. S is a parameter in {0,1} to distinguish between non-linearities with
symmetric shape (lower sensibility for middle or for extreme values, Fig. 2)
and asymmetric shape (lower sensibility for the lowest or for the highest
values).

0.8
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0.6
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-1 -0.5 0 0.5 1

Fig. 2. Fuzzy partitions with a = 1 (top), a > 1 (down left), and a < 1 (down right).
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Therefore, the context adaptation process involves three or four steps to

build the fuzzy partition associated to each variable depending on the value of
the parameter S:

The first step builds a uniform fuzzy partition considering the number of la-

bels of the variable and its working range ([Umin, Umax))-

IfS=0o0ra=1:

o The second step uses the working range ([vmin, Umax]) to produce a linear
mapping of the fuzzy partition from [vmin, Umax] to [—1,1].

o The third step introduces the non-linearity through the scaling function
f(x) = sign(x) - |x|%, that maintains the extremes of the interval unchanged
([_15 1])

IfS=1anda#1:

o The second step uses the working range ([vmin, Umax]) to produce a linear
mapping of the fuzzy partition from [vyin, Umax] to [0, 1].

o The third step introduces the non-linearity through the scaling function:

3 o — B when @ <1,
f:10,1] — [0, 1], f(x){l_(1—|x|)l/” when a > 1,

which extends the previously defined one by permitting a symmetric effect in

the two interval extremes.

o In the four step, a second linear mapping transforming the resulting fuzzy
partition from [0, 1] to [—1, 1] is applied.

The overall result is a non-linear mapping from [vVmin,Uma] to [—1,1]. A
graphical representation of the fuzzy partitions when S = 1 is showed in Fig. 3

4.2. Genetic learning process

GAs [19,34] are search and optimization techniques based on a formaliza-

tion of natural genetics. The genetic process starts with a population of solu-
tions called chromosomes, that constitutes the first generation (G(0)), and

08 H

06

04

02

05 0 05 1 A 05 0 05 1

Fig. 3. Fuzzy partitions with § = 1 (left with a > 1 and right with a < I).
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undergoes evolution over it. While a certain termination condition is not met,
each chromosome is evaluated by means of an evaluation function (a fitness
value is assigned to the chromosome) and a new population is created
(G(t+ 1)), by applying a set of genetic operators to the individuals of gener-
ation G(¢). Different proposals that use GAs in order to design FRBSs are
contained in [9,23].

The important questions when using GAs are: how to code each solution,
how to evaluate these solutions and how to create new solutions from existing
ones. Moreover, it is relatively important the choice of the initial population,
because we can obtain good solutions more quickly if an appropriate initial
gene pool is chosen.

In our process, each chromosome represents a complete DB definition by
encoding the said parameters. To evaluate a chromosome, we use an ad hoc
data-driven method to learn the RB considering the DB contained in it, gen-
erating a complete KB, and then the accuracy of the FRBS obtained on a
training data set is measured.

The next four sections describe the main components of the genetic learning
process.

4.2.1. Encoding the DB
As said, the three main components of the DB are the number of linguistic

terms for variable, the membership functions that define their semantics and

the scaling factors. The latter component allows us to change the variable
working range.

As regards the membership functions, we initially consider triangular-
shaped functions, symmetrical and uniformly distributed across the variable
working range. Then, we apply the non-linear function described in the
previous section on the three definition points of each label. Thus, the
working ranges, the number of labels and the sensibility parameters for
each variable are the only information needed to define the whole fuzzy
partition.

Therefore, each chromosome will be composed of three parts:

e Number of labels (C)): For a system with N variables (including the input
and output ones), the number of labels per variable is encoded into an array
of length N. In this contribution, the possible values considered are the set
{3,...,9}.

o Sensibility parameters (C,): An array of length N x 2, where the sensibility
parameters (a, S) are stored for each variable. In our case, the range consid-
ered for the parameter « is the interval (0, 10).

e Working ranges (C3): An array of N x 2 real values stores the variable work-
ing range ([, 7*"?]). If the initial domain of the variable i is [p™", v™], and

i
d is the interval dimension (d = v}"* — v™"), the ranges considered for the
variable domain limits are:
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lower limit :  [o™" — (1/4 * d),v™"]

upper limit : [0, 0" 4 (1/4 * d)].
Hence, the structure of the chromosome is summarized next (considering that
Ry = {#inf, ;3P :

i R )

Ci=(L,...,1Iy),

C, = (ay,...,an,S1,...,Sy),
C; = (Ry,...,Ry),

C = C,G,C;.

4.2.2. Initial gene pool
The initial population is composed of three parts, the first two having

#val x 5 chromosomes, with #val being the cardinality of the term set (in our

case #val = 7, corresponding to the seven possibilities for the number of labels,

3,...,9). Therefore, the number of chromosomes (M) has to be at least greater

than #val x 10. The generation of the initial gene pool is described next:

e The first #val x 5 chromosomes will have the same number of labels and the
initial working range in all its variables. For each possible number of labels,
five individuals with the main possibilities for the sensibility parameters will
be created: one with ¢ = 1, two with a < 1 (one with § = 0 and another with
S =1) and the other two with a > 1 (one with S =0 and another with
S = 1). The latter four values of parameter a are generated at random.

e The second #wval x 5 chromosomes are equal to the first group, but ran-
domly changing the variable working range. Each chromosome will have
the same number of labels in all its variables. For each possible number of
labels, five individuals are created as in the first part of the population
(one with ¢ = 1, two with a < 1 and the other two with a > 1). For the third
part of the chromosomes, two random values in the variable working range
interval (lower and upper) are selected.

o In the rest of the initial population, the remaining M — (#val x 10) chromo-
somes, all the components are selected at random. In our case, this part is
comprised by 30 chromosomes, so, the total population length is 100.

4.2.3. Evaluating the chromosome
There are three steps that must be done to compute the fitness of each

chromosome:

e Generate the fuzzy partitions for all the linguistic variables using the infor-
mation contained in the chromosome as introduced in Section 4.1.

e Generate the RB by running a fuzzy rule learning method considering the
DB obtained.
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e Calculate the mean square error (MSE) over the training set using the KB
obtained (genetically derived DB + RB) by means of the expression:

1 . _
MSE = — Z(ey’ — S(ex'))?
2|E| e,k
with £ = {ey,...,e;,...,e,} being the example set (training or test), S(ex’)
being the output value obtained from the FRBS when the input variable
values are ex’ = (ex},...,ex!), and ey’ being the known desired value.

4.2.4. Genetic operators

A set of genetic operators is applied to the genetic code of the DBs con-
tained in G(¢), to obtain G(¢+ 1). Due to the special nature of the chromo-
somes involved in this DB definition process, the design of genetic operators
able to deal with it becomes a main task. Since there is a strong relationship
among the three chromosome parts, operators working cooperatively in Cj,
C, and C; are required in order to make best use of the representation
tackled.

Taking into account these aspects, the following operators are considered:

4.2.4.1. Selection. The reproduction operator is Baker’s stochastic universal
sampling [1], in which the number of any structure offspring is limited by the
floor and ceiling of the expected number of offspring, together with the elitist
selection.

4.2.4.2. Crossover. As regards the recombination process, two different cross-
over operators are considered depending on the two parents’ scope:

e Crossover when both parents have the same granularity level per variable: 1f
the two parents have the same values in C; (each variable has the same number
of labels in the two parents), the genetic search has located a promising space
zone that has to be adequately exploitated. This task is developed by applying
the max-min-arithmetical (MMA) crossover operator in the chromosome parts
based on real-coding scheme (parameters a;, second part of C,, and working
ranges, C3) and obviously by maintaining the parent C; values in the offspring.
If the parameter S; is equal in the two parents, this value is also maintained in
the offspring. If it is different, both combinations are tested and the best value is
selected. This crossover operator is proposed in [24] and works in the way
shown below.

If ¢! =(c1,...,¢k...,cy) and C', = (c},...,c,...,c}) are to be crossed,
the following four offsprings are generated (with d € [0, 1])
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C''=dC' + (1 -d)C.,
G =dC + (1 -d)C',
Ci™ with ¢! = min{c;, ¢} },
Ci™ with ¢! = max{c;, ¢, }.

If the values for the parameter S; are different in the two parents, eight offsprings
are generated, the previous four with S = 0 and the same four with S = 1.

This operator uses a parameter d which is either a constant, or a variable
whose value depends on the age of the population. The resulting descendents
are the two best of the four (or eight) aforesaid offsprings.

e Crossover when the parents encode different granularity levels: This second
case highly recommends the use of the information encoded by the parents to
explore the search space in order to discover new promising zones. Hence,
when C; is crossed at a certain point, the values in C, and C; corresponding to
the crossed variables are also crossed in the two parents. In this way, an
standard crossover operator is applied over the two parts of the chromosomes.
This operator performs as follows: a crossover point p is randomly generated in
C; and the two parents are crossed at the pth variable in C;. The crossover is
developed this way in the three chromosome parts, thereby producing two
meaningful descendents.

Let us look at an example in order to clarify the standard crossover appli-
cation. Consider:

Ct_ (lla"'7lpalp+17"'71Naa17'"7apaap+17"'aaN7

S17"'aSpaSp+la"'aSNlea"'7Rp7Rp+1a"'7RN)

4 ! ! ! ! ! /! / /
Cr= Ll s ay, . aan . ay,
!/ ! ! ! / !/ !/ /
Siyee s S St Sy Rl ROR L RY)

as the individuals to be crossed at point p, the two resulting offsprings are:

! ! !/ /
Co= (sl by D@, @,y dy,
/! ! /! /
Styee s Sy Shrsee s Sy Riye e Ry Ry RY)
4 ! ! / !
C = (ll,...,lp,l,,H,...,lN,al,...,ap,apﬂ,...,aN,
! 4 / /
Sl,...,SP,SPH,...,SN,RI,...,RP,RPH,...,RN)

Hence, the complete recombination process will allow the GA to follow an
adequate exploration—exploitation balance in the genetic search. The expected
behavior consists of an initial phase where a high number of standard cross-
overs and a very small of MMA ones (equal to zero in the great majority of the
cases) are developed. The genetic search will perform a wide exploration in this
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first stage, locating the promising zones and sampling the population indi-
viduals at them in several runs. At this moment, a new phase begin, charac-
terized by the increase of the exploitation of these zones and the decrease of the
space exploration. Therefore, the number of MMA crossovers rises a lot and
the application of the standard crossover decreases. This way to perform an
appropriate exploration—exploitation balance in the search was successfully
applied in [11,14].

4.2.4.3. Mutation. Three different operators are used, each one of them acting
on different chromosome parts. A brief description of them is given below:

e Mutation on C;: The mutation operator selected for C; is similar to the one
proposed by Thrift in [37]. When a mutation on a gene belonging to the first
part of the chromosome is going to be performed, a local modification is de-
veloped by changing the number of labels to the immediately upper or lower
value (the decision is made at random). When the value to be changed is the
lowest (3) or highest one (9), the only possible change is developed.

e Mutation on the first part of C, (parameters a;) and Cs: Since both parts are
based on a real-coding scheme, Michalewicz’s non-uniform mutation operator
is employed [34].

IfC) = (c1,...,¢,...,cn) is a chromosome and the gene ¢, was selected for
mutation (the domain of ¢; is [cy,ck]), the result is a vector C''l =
(cry .y Chyvoyen), withkel,... H, and

o — a+ At —c) if e=0,
kT Ck—A(l‘,Ck—Ckl) if@zl,

where ¢ is a random number that may have a value of zero or one, and the
function A(¢,y) returns a value in the range [0, ] such that the probability of
A(t,y) being close to 0 increases as ¢ increases:

b
A(ty) = p(1 =0T,

where r is a random number in the interval [0, 1], 7' is the maximum number of
generations and b is a parameter chosen by the user, which determines the
degree of dependency with the number of iterations. This property causes this
operator to make an uniform search in the initial space when ¢ is small, and a
very local one in later stages.

e Mutation on the second part of C, (parameters S;): As the possible values of
the parameter S are {0, 1}, a simple binary mutation is developed.

5. Experimental results

We have considered three different problems for the experiments developed:
e P1: An electrical network distribution problem in northern Spain [10]. The
system tries to estimate the length of the low voltage line installed in a deter-
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mined village. The problem has two input variables: the population of the vil-
lage and its radius, and one output variable: the length of the installed line. We
were provided with real data of 495 villages. The training set contains 396
elements and the test set contains 99 elements, randomly selected from the
whole sample.

e P2: A problem with estimations of minimum maintenance costs which are
based on a model of the optimal electrical network for spanish towns [10]. The
problem has four input variables: sum of the lengths of all streets in the town,
total area of the town, area that is occupied by buildings and energy supply to the
town and one output variable: maintenance costs of medium voltage line. These
values are somewhat lower than the real ones, but companies are interested in
an estimation of the minimum costs. Of course, real maintenance costs are
exactly accounted but a model that relates these costs to any characteristic of
simulated towns with the optimal installation is important for the electrical
companies. We were provided with data concerning the four characteristics of
the towns and their minimum maintenance costs in a sample of 1059 simulated
towns. The training set contains 847 elements and the test set contains 212
elements, randomly selected from the whole sample.

e P3: The modeling of a tridimensional function [§8] defined by:

X1 — X1X2

F(x1,x) =10 , x1,x €1[0,1], F(x1,x) €0, 10].

X1 — 2)C1)C2 “+ X3

Fig. 4 shows its graphical representation. The training set contains 674
uniformly generated elements, and the test set contains 67 randomly generated
elements.

The parameters values used in the experiments are presented in Table 1.
A quick and simple RB generation algorithm, the Wang and Mendel’s
rule generation method !, will be considered. We have chosen this method
due to its simplicity and good performance. Our genetic process is inde-
pendent of the RB generation method, so any of them can be used to derive
the RB.

For every benchmark, the best results obtained by our genetic learning
process and the other methods considered for comparison purposes are showed
in Tables 24, which contains the following columns:

e Method (M): Learning process used to obtain the KB:

o MI1: Wang and Mendel’s rule generation method [39]. This row shows the

results of the FRBS with best MSE over the training set (MSEy,,), consid-

ering the interval {3,...,9} as possible values for the number of labels,
with all the variables having the same granularity and uniform fuzzy
partitions.

! See Appendix A for a brief description of this method.
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mathematical function.

Table 1
Parameter values considered
Parameter Value
Population size 100
Crossover probability 0.6
Mutation probability 0.1
Parameter » (non-uniform mutation) 5
Parameter d (MMA crossover) 0.35
Number of generations 1000
Table 2
Best result for the low voltage line length problem (P1)
M DB components #R MSE,,. MSE, % tra % tst
Ml ar. 9 9 9 29 197,613 283,645 - -
M2 ar. 9 9 9 29 141,022 251,898 28.6 11.2
ar. 9 9 9 29 144,831 223,734 26.7 21.1
M3 gar. 9 9 9 34 133,763 423,639 323 —49.3
ar. 7 7 7 25 152,969 161,245 22.5 43.1
M4 gr. 9 9 9
a 25 09 1.1 37 146,957 180,384 25.6 36.4
S 1 1 1
ar. 7 8 9
a 1.1 1.1 0.8 19 163,249 147,062 17.3 48.1
N 0 0 0

o M2: Wang and Mendel’s rule generation

method + tuning. A genetic tun-

ing process [8] is applied to refine the previous FRBS DB.
o Ma3: Filipic and Juricic’s method [17] (mentioned in Section 2). As this
method imposes that the granularity of each variable must be an odd



Table 3
Best result for the optimal electrical network problem (P2)
M DB components #R MSE,.. MSE, % tra % tst
M1 ar. 9 9 9 9 9 130 32,337 33,504 - -
M2 ar. 9 9 9 9 9 130 13,442 17,585 58.4 47.5
M3 ar. 9 9 9 9 9 133 17,441 21,184 46.1 36.7
er. 9 9 9 9 9 139 18,654 19,112 423 42.9
M4 ar. 5 6 9 9 9
a 0.9 0. 0. 0. 1. 87 9841 10,466 69.5 68.7
S 0 0 0 0 0
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Table 4
Best result for the three-dimensional function modeling problem (P3)
M DB components #R MSE,.. MSE, % tra % tst
Ml gr. 9 9 9 81 0.11875 0.03402 - -
M2 gor. 9 9 9 81 0.03455 0.03156 70.9 7.2
M3 gr. 9 9 9 80 0.04427 0.06641 62.7 -95.2
gr. 9 9 9 80 0.04656 0.04979 60.7 —46.3
M4 or. 9 9 9
a 0.3 0.7 0.6 81 0.01539 0.01422 87.2 58.1
S 0 0 0

number, the possible values are {3,5,7,9}. All the variables will have the
same granularity.

o M4: The genetic learning process proposed in this paper.
Due to the non-deterministic nature of the latter three methods (M2, M3 and
M4), four runs have been developed for each of them with different seeds for the
pseudo-random number generator. This is the reason why two rows appear for
M2, M3 and M4 in the different tables presented. The first row corresponds to
the FRBS which obtains the best MSE,,, and the other to the FRBS which ob-
tains the best average between the MSE,;, and the MSE over the test set (MSE).
Of course, if these two FRBSs are the same, only one row is shown in the table.
e DB components: This column shows the main components of the DB. It has

three items:

o gr: Granularity of the linguistic variables,

o a: Parameter a,

o S: Parameter S.
Of course, the two latter components only appear in M4.
e #R: The number of rules of the FRBS RB.
e MSE,.: MSE over the training set.
e MSE:: MSE over the test set.
e % tra: Improvement percentage of the MSE,, obtained respect to the

MSE,,, obtained using the Wang and Mendel’s method (M1).
e % tst: Improvement percentage of the MSE obtained respect to the MSE

obtained using the Wang and Mendel’s method (M1).
As can be observed, in the majority of cases our method shows a high accuracy
improvement of the final FRBS compared with the usual way to design FRBSs,
using the same RB learning method. As regards the method that considers the
same KB learning approach (M3), it is also clearly overcome by our learning
process. Although some MSE,;, results of methods M2 and M3 are better than
the ones obtained with M4 in Table 2, the MSE, values associated are very
high, that is, the former FRBSs are over-fitted to the training data. Our method
has a better generalization capability.
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Moreover, the FRBSs obtained by our method normally generates RBs with
a lesser number of rules than anyone obtained by the other methods. This
result is of a significant importance since more accurate fuzzy models can be
obtained with a lesser number of rules on the RB (hence, more interpretable
FRBSs) by considering a learning approach different than the usual one.

6. An extension to the proposed method

In this section, we propose a new way to calculate the evaluation function of
each chromosome in order to avoid the possible overfitting, thus improving the
generalization capability of the final FRBS. To do that, we will lightly penalize
FRBSs with a high number of rules to obtain more compact linguistic models.
Therefore, once the RB has been generated and its MSE over the training set
has been calculated, the fitness function is based on the one proposed in [28]:

FC = OJIMSE + (DQ#R

We consider w; = 1 and w, is calculated taking two values as a base: the MSE
of the FRBS obtained with the RB generation method considering the DB with
the maximum number of labels per variable and uniform fuzzy partitions
(MSEnax _»), and the number of rules of that RB (#Ryax i)

MSEmax _Ib

Wy = o
#Rmax _Ib

with o being a weighting percentage.
Table 5 shows the best results obtained by the proposed method with this
new evaluation function when solving of the three problems considered in the

Table 5
Best results obtained considering the new evaluation function
B DB components H#R MSE,;, MSE, % tra % tst
P1  gr. 8 9
a 1.2 23 6 29 154,722 218,152 21.7 23.1
S 0 0
gr. 7
a 02 1.2 1 7 171,137 155,589 134 45.1
S 0

P2 gr. 3 6 9
a 01 01 20

w
(=]
N}
2
E~N

9238 8644 71.4 74.2

S 0 0 1
P3  gr. 9 9
a 0.7 03 5 81 0.01543 0.01421 87.1 58.2

SO0V OOV O~ NOO®
©
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previous section. The parameter values for the GA are the same that in the
previous experiments developed (Table 1) and o has been set to three possible
values ({0.05,0.1,0.2}). For every benchmark, there are two rows (the FRBS
with best MSE,;, and the FRBS with best average between the MSE,;, and the
MSE,). As in the previous tables of results (Tables 2-4), if these two FRBSs
are the same, only one row is showed. All the columns in the table stand for the
same aspects that in the tables collected in the previous section, but column
“method” (M), that is substituted by column “benchmark” (B). The percent-
ages showed in the last two columns are the improvement percentages of the
MSE,;, and MSE,; with respect to the corresponding values obtained using the
Wang and Mendel’s method (method M1 in Tables 2-4).

Notice that the values highlighted in boldface in Table 5 are those corre-
sponding to the cases when better results are obtained using the new fitness
function than in the case of the previous experimentation showed in Tables 2.
In view of these results, the consideration of the new fitness function leads to
obtain, in the most of the cases, a lesser number of rules in the RB and a lesser
MSE,, than those obtained with the original evaluation function. On the other
hand, as supposed, the values obtained for the MSE,,, considering this new
evaluation function are, generally, lightly higher than the previous ones. The
only exception to the latter is the FRBS designed for problem P2 which
overcomes both in MSE,, and MSE the best fuzzy models obtained with the
remaining techniques.

7. Concluding remarks

This paper has presented the usual ways to automatically obtain the KB of a
FRBS, and has analysed some proposals that try to adapt the fuzzy partition
contexts. A new genetic process has been proposed to automatically learn the
whole KB: the DB being evolved by a GA (adapting the granularity, the
contexts using a non-linear scaling function and a possible enlargement of
the variable domain), and the RB being generated by a simple rule generation
method. It has obtained good results in three different applications.

Our genetic process may be applied to any RB learning method, having in
mind its run time since the RB generation method must be run many times
within the DB learning process.

Appendix A. The Wang and Mendel learning method

The ad hoc data covering RB generation process proposed by Wang and
Mendel in [39] has been widely known because of its simplicity and good
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performance. The generation of the RB is put into effect by means of the

fol
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(2]

B3]

4
3]

(6]
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(8]

lowing steps:

Consider a fuzzy partition of the input variable spaces: It may be obtained
from the expert information (if it is available) or by a normalization process.
If the latter is the case, perform a fuzzy partition of the input variable spaces
dividing each universe of discourse into a number of equal or unequal par-
titions, select a kind of membership function and assign a fuzzy set to each
subspace.

. Generate a preliminary linguistic rule set: This set will be formed by the rule

best covering each example (input—output data pair) contained in the input—
output data set. The structure of these rules is obtained by taking a specific
example, i.e., an n + 1-dimensional real array (z input and 1 output values),
and setting each one of the variables to the linguistic label best covering ev-
ery array component.

. Give an importance degree to each rule: Let R, = IF x;is A; and ... and x, is

A, THEN y is B be the linguistic rule generated from the example
e; = (x|,...,x),»"). The importance degree associated to it will be obtained

as follows:
G(R)) = g, (x}) -+ -y, (1) - 15 (")

. Obtain a final RB from the preliminary fuzzy rule set: The rule with the high-

est importance degree is chosen for each combination of antecedents.
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