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tThe 
ooperative rules (COR) methodology [2℄ is based on a 
ombinatorialsear
h of 
ooperative rules performed over a set of previously generated 
an-didate rule 
onsequents. It obtains a

urate models preserving the highestinterpretability of the linguisti
 fuzzy rule-based systems.On
e the good behavior of the COR methodology has been proven inprevious works, this 
ontribution fo
uses on developing the pro
ess with anovel kind of metaheuristi
 algorithm: the ant 
olony system one. Thanks tothe 
apability of this algorithm to in
lude heuristi
 information, the learningpro
ess is a

elerated without model a

ura
y losses.Its behavior is su

essful 
ompared with other pro
esses based on geneti
algorithms and simulated annealing when solving two modeling appli
ations.Keywords: linguisti
 fuzzy modeling, learning, 
ooperative rules, ant 
olonysystem1 Introdu
tionIn [2℄, a learning methodology that obtains a

urate fuzzy models by indu
ing abetter 
ooperation among the fuzzy rules is proposed: the 
ooperative rules (COR)methodology. This approa
h arises as an e�ort to exploit the a

ura
y ability oflinguisti
 (Mamdani-type) fuzzy rule-based systems (FRBSs) by ex
lusively fo-
using on the rule set design. In this 
ase, the rest of 
omponents (membership�This resear
h was supported by CICYT, proje
t PB98-1319321
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tions, model stru
ture, et
.) remains invariable, thus resulting in the highestinterpretability.The COR methodology [2℄ is based on a 
ombinatorial sear
h of 
ooperativerules performed over a set of previously generated 
andidate rule 
onsequents to�nd those with the best 
ooperation. Instead of sele
ting the 
onsequent with thehighest performan
e in ea
h fuzzy input subspa
e as ad ho
 data-driven learningmethods (eg. [16℄) usually do, the COR methodology 
onsiders the possibility ofusing another 
onsequent, di�erent from the best one, that allows the FRBS toglobally a
hieve a best a

ura
y.The COR methodology was initially applied with a 
lassi
al metaheuristi
, sim-ulated annealing, and good a

ura
y results were obtained [2℄. Although the useof this te
hnique allows COR to perform a qui
k learning, the pro
ess 
ould bea

elerated with a more sophisti
ated metaheuristi
 that 
onsiders additional in-formation to guide the sear
h. Therefore, on
e a trade-o� between the a

ura
yand interpretability of the models obtained by COR have been proved in previousworks [2, 3℄, this 
ontribution fo
uses on proposing a novel algorithm to de
rease thetime required in the learning pro
ess, the ant 
olony system (ACS) algorithm [11℄.The time expended in this fuzzy rule learning may take a great importan
e to-gether with the a

ura
y and interpretability of the obtained fuzzy model. Indeed,a qui
k learning has some interesting advantages as the 
apability of being used asa previous me
hanism to understand the nature of the problem being solved [4℄,being used as a �rst learning stage to subsequently re�ne the obtained results witha more 
omplex postpro
essing [5, 13℄, being integrated within a meta-learningpro
ess [8, 9℄, et
.The paper is stru
tured as follows. Se
tion 2 presents the COR methodology.Se
tion 3 is devoted to introdu
e all the aspe
ts related to apply the ACS algorithmto the COR methodology. In Se
tion 4, the behavior of the proposed methodwhen solving two di�erent example appli
ations is analyzed and it is 
omparedto other well-known fuzzy rule generation pro
esses. Finally, in Se
tion 5, some
on
luding remarks and future work are pointed out. An introdu
tion to ant 
olonyoptimization (ACO) algorithms is des
ribed in Appendix A.2 COR: A Methodology to Improve the Cooper-ation Among RulesLet E be the input-output data set, el = (xl1; : : : ; xln; yl) one of its elements (exam-ple), and n be the number of input variables. Let Ai be the set of linguisti
 termsof the i-th input variable and B the set of linguisti
 terms of the output variable.Figure 1 shows the COR methodology stru
ture.For example, from the subspa
e Ss = (high; low) and the 
andidate 
onsequentset in su
h a subspa
e Bs = fsmall;medium; largeg, we will obtain the fuzzy rule:Rs = IF X1 is high and X2 is low THEN Y is Bs;with Bs 2 Bs being the 
onsequent label sele
ted by the 
ombinatorial sear
h torepresent to the subspa
e Ss asso
iated to the rule Rs.
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es, fSs j s 2 f1; : : : ; NSgg, with the an-te
edent 
ombinations 
ontaining at least a positive example, i.e., Ss =(As1; : : : ; Asi ; : : : ; Asn) 2 A1 � : : : � An su
h that E0s 6= ; (with Asi beinga label of the i-th input variable, E0s being the set of positive examples of thesubspa
e Ss, and NS the number of subspa
es with positive examples).In this 
ontribution, we will de�ne the set of positive examples for the subspa
eSs as follows:E0s = fel 2 E j 8i 2 f1; : : : ; ng;8Aij 2 Ai; �Asi (xli) � �Aij (xli)g ;with Aij being a label of the i-th input variable and �T the membershipfun
tion of the label T .2. For ea
h subspa
e Ss, obtain a set of 
andidate 
onsequents (i.e., linguisti
terms of the output variable) Bs to build the 
orresponding fuzzy rule.The set of 
andidate 
onsequents for the subspa
e Ss is de�ned as follows:Bs = fBk 2 B j 9els 2 E0s where 8Bl 2 B; �Bk (yls) � �Bl(yls)g ;with Bk being a label of the output variable.3. Perform a 
ombinatorial sear
h among these sets looking for the 
ombinationof 
onsequents (one for ea
h subspa
e) with the best global a

ura
y.Figure 1: COR methodologySin
e the sear
h spa
e ta
kled is usually large, it is ne
essary to use approximatesear
h te
hniques. In [2, 3℄, a

urate linguisti
 models have been obtained usingsimulated annealing. Nevertheless, these results 
ould be improved in
orporatingheuristi
 information to the learning pro
ess. This 
onsideration would guide thealgorithm in the sear
h, making it qui
ker on �nding good solutions. The ACSalgorithm [11℄ is a good support for su
h intention thanks to the inherent use ofheuristi
 information.3 Appli
ation of the Ant Colony System Algo-rithm to the COR MethodologyThe following �ve subse
tions des
ribe the way of performing the learning pro
esswith the ACS algorithm following the COR methodology. A brief introdu
tion toACO algorithms is presented in Appendix A.
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onvenient to see itas a 
ombinatorial optimization problem with the 
apability of being representedon a graph. In this way, we 
an fa
e the problem 
onsidering a �xed number of rulesand interpreting the learning pro
ess as the way of assigning 
onsequents | i.e.,labels of the output fuzzy partition | to these rules with respe
t to an optimality
riterion (i.e., following the COR methodology).Hen
e, we are in fa
t dealing with an assignment problem and the problem rep-resentation 
an be similar to the one used to solve the quadrati
 assignment problem(QAP) [1℄ | brie
y explained in Appendix A |, but with some pe
uliarities. Wemay draw an analogy between rules and lo
ations and between 
onsequents andfa
ilities. However, unlike the QAP, the set of possible 
onsequents for ea
h rulemay be di�erent and it is possible to assign a 
onsequent to more than one rule (tworules may have the same 
onsequent). We 
an dedu
e from these 
hara
teristi
sthat the order of sele
ting ea
h rule to be assigned a 
onsequent is not determinantsin
e one assignment does not restri
t the remaining ones, i.e., the assignment orderis irrelevant. The graph is 
onstru
ted taking the steps des
ribed in Figure 2.1. Determine the subspa
es | As shown in Figure 1, 
onsider the fuzzy inputsubspa
es where there is lo
ated at least one example.2. Link the subspa
es to 
onsequents | The subspa
e Ss will be linked to allthe 
onsequents that 
ontain at least a positive example, i.e., 8Bk 2 Bs.Figure 2: Graph 
onstru
tion pro
essFigure 3 shows an example of the learning pro
ess. In Figure 3(
), the possi-ble 
onsequents for ea
h ante
edent 
ombination are shown a

ording to the dataset and membership fun
tions 
onsidered (Figure 3(a)). To 
onstru
t a 
ompletesolution, an ant iteratively goes over ea
h rule and 
hooses a 
onsequent with aprobability that depends on the pheromone trail �sk and the heuristi
 information�sk, as usual (see Figure 3(d)). As said, the order of sele
ting the rules is irrelevant.In Figure 3(e), we may see the possible paths that an ant 
an take in this exampleand Figure 3(g) shows the rule set en
oded by a spe
i�
 solution.3.2 Heuristi
 InformationThe heuristi
 information on the potential preferen
e of sele
ting a spe
i�
 
on-sequent, Bk, in ea
h ante
edent 
ombination (rule) is determined as des
ribed inFigure 4.Sin
e the heuristi
 information is based on 
overing 
riteria, it will be zero fora spe
i�
 
onsequent when no examples lo
ated in the fuzzy input subspa
e are
overed by it. This means that for a rule, only those links to 
onsequents whoseheuristi
 information is greater than zero will be 
onsidered. In Figure 3(d) we
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Figure 3: Learning pro
ess for a simple problem with two input variables (n = 2) andthree labels in the output fuzzy partition (jBj=3): (a) Data set (E) and fuzzy partitionspreviously de�ned; (b) The six examples are lo
ated in four di�erent subspa
es thatdetermine the ante
edent 
ombinations and 
andidate 
onsequents of the rules; (
) Setof possible 
onsequents for the four (NS = 4) possible rules (only the rules where atleast one example is lo
ated in the 
orresponding subspa
e are 
onsidered); (d) Graph ofpaths where �sk 6= 0 ex
ept �13, �31, �41, and �42, whi
h are zero; (e) The sear
h spa
e is
omposed by twelve di�erent paths (
ombinations of 
onsequents); (f) Rule de
ision tablefor the third 
ombination; (g) rule set generated from the third 
ombination
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h subspa
e Ss do:1. Build the set E0s as shown in Figure 1.2. Make use of an initialization fun
tion based on 
overing 
riteria to give aheuristi
 preferen
e degree to ea
h 
hoi
e. Many di�erent possibilities may be
onsidered. In this paper, we will work with the following one:�sk = maxel2E0sMin ��As(xl); �Bk (yl)� :with �As(xl) =Min ��A1s(xl1); : : : ; �Ans(xln)� :Figure 4: Heuristi
 assignment pro
essmay observe that the 
onsequent B3 
an not be assigned to the subspa
e S1, the
onsequent B1 
an not be assigned to the subspa
e S3, and the 
onsequents B1and B2 
an not be assigned to the subspa
e S4 be
ause their heuristi
 informations(
overing degrees) are zero.3.3 Pheromone InitializationThe initial pheromone value of ea
h assignment is obtained as follows:�0 = NSXs=1 jBjmaxs=1 �isNS :In this way, the initial pheromone will be the mean value of the path 
onstru
tedtaking the best 
onsequent in ea
h rule a

ording to the heuristi
 information (agreedy assignment) as the fuzzy rule learning algorithm presented in [6℄.3.4 Fitness Fun
tionThe �tness fun
tion establishes the quality of a solution. The measure 
onsideredwill be the fun
tion 
alled mean square error (MSE), whi
h is de�ned asMSE(RBk) = 12 � jEj Xel2E(yl � Fk(xl0))2;with Fk(xl0) being the output obtained from the FRBS (inferred using the rule basegenerated by the ant k, RBk) when it re
eives the input xl0 (input 
omponent ofthe example el), and yl being the known desired output. The 
loser to zero themeasure, the better the solution.
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e the previous 
omponents have been de�ned, an ACO algorithm has to begiven to solve the problem. In this 
ontribution, the well-known ACS [11℄ is 
on-sidered. Their 
omponents adapted to our problem is introdu
ed in the followingsubse
tions. We must remark that no lo
al sear
h is used in our proposal.3.5.1 Solution Constru
tionThe algorithm introdu
es a transition rule that establishes a balan
e between biasedexploration and exploitation of the available information. The node k (i.e., the
onsequent Bk) is sele
ted for the subspa
e Ss as follows:k =8<: arg maxu2J(s) f(�su)� � (�su)�g; if q < q0T; otherwise ;with �sk being the pheromone of the trail (s; k); �sk being the heuristi
 information;� and � being parameters whi
h determine the relative in
uen
e of the pheromonestrength and the heuristi
 information; J(s) = fk s:t: �sk 6= 0g being the set ofnodes attainable from Ss, i.e., the set of 
onsequents that 
an be asso
iated to it; qbeing a random variable uniformly distributed over [0; 1℄; q0 2 [0; 1℄ being a thresh-old de�ning the probability of sele
ting the more hopeful 
oupling (exploitation);and with T being a random node sele
ted a

ording to the following transition rule(biased exploration):p(s; k) = 8>>><>>>: (�sk)� � (�sk)�Xu2J(s)(�su)� � (�su)� ; if k 2 J(s)0; otherwise ;We should note that, as in the QAP, the transition rule be
omes an assignmentrule but, 
ontrary to that problem, there is not a need for the ant to keep a tabulist with the previous assignments made, sin
e the same 
onsequent 
an be assignedto di�erent rules.3.5.2 Pheromone Trail Update RuleThe pheromone trail update rule is performed in two stages, global and lo
al:� Global pheromone trail update rule: Only an ant | the one who generatedthe best solution (Tbest) till now | releases pheromone on a 
oupling. Theformula is the following:�sk  (1� �) � �sk + � ���sk ;
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al�a, J. Casillas, O. Cord�on & F. Herrerawith � 2 [0; 1℄ being the pheromone evaporation parameter, m being thenumber of ants, Ta being the solution 
onstru
ted by the ant a, and with��sk = 8><>: 1MSE(RBbest) ; if (s; k) 2 Tbest0; otherwise :� Lo
al pheromone trail update rule: Ea
h time an ant 
overs a 
oupling, a lo
alpheromone update is done as follows:�sk  (1� �) � �sk + � ���sk :In this paper, we will 
onsider ��sk = �0 [11℄.4 Experimental StudyIn this se
tion, some examples of appli
ation will be shown. With the aim ofanalyzing the behavior of the proposed pro
ess, we will 
ompare it with some fuzzyrule learning methods: the method proposed by Wang and Mendel (WM) [16℄,the one proposed by Cord�on and Herrera (CH) [6℄, the one proposed by Nozaki,Ishibu
hi, and Tanaka (NIT) [14℄, and the geneti
 algorithm-based learning methodproposed by Thrift (T) [15℄. A
tually, the CH method is dire
tly based on theheuristi
 information used in the ACS algorithm by taking the 
onsequent withthe highest value for ea
h rule, i.e., it is a greedy algorithm. Another learningmethod based on the COR methodology using a simulated annealing algorithm(COR-SA) [2℄ will also be 
onsidered. Table 1 summarizes the 
ompared methods.Table 1: Methods 
onsidered in this experimental studyMethod Algorithm CommentsWM [16℄ AHDD Well-known learning methodCH [6℄ AHDD Heuristi
-information-based greedy algorithmNIT [14℄ AHDD Uses two weighted rules in ea
h subspa
eT [15℄ GA Capability of learning the number of rulesCOR-SA [2℄ SA Based on the COR methodologyCOR-ACS ACO ACS applied to the COR methodologyAHDD = ad ho
 data-driven, GA = geneti
 algorithm, SA = simulated annealingThe performan
e of these learning methods will be analyzed when solving twodi�erent appli
ations: the modeling of a three-dimensional surfa
e de�ned by thefun
tion F(x1; x2) = x21+x22 [5℄ and a low-voltage ele
tri
al estimation problem [7℄.The former one has a training data with 1,681 values and a test data with 168values. The latter one has two input variables and a data set of 495 examples,randomly divided into a training set of 396 values and a test set of 99 values.
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tion set 
onstituted by a primary fuzzy partitionfor ea
h variable will be 
onsidered in ea
h 
ase. Every partition is formed by 7(in the three-dimensional surfa
e problem) or 5 (in the ele
tri
al problem) labelswith triangular-shaped equally distributed fuzzy sets giving meaning to them, andthe appropriate s
aling fa
tors to translate the generi
 universe of dis
ourse intothe one asso
iated with ea
h problem variable. With respe
t to the FRBS reason-ing method used, we have sele
ted the minimum t-norm playing the role of theimpli
ation and 
onjun
tive operators, and the FITA (�rst infer, then aggregate)approa
h, with the 
enter of gravity weighted by the mat
hing strategy a
ting asthe defuzzi�
ation operator.The following subse
tions shows the obtained results and an analysis of them.The analysis is a

omplished from two di�erent angles: a

ura
y, i.e., approxima-tion (MSEtra) and generalization (MSEtst) degrees of the obtained models andeÆ
ien
y, i.e., time required by the learning methods to �nd their best solutions(determined by EBS).4.1 Obtained Results and Values of Parameters UsedTable 2 
olle
ts the results obtained by the analyzed methods solving the two
onsidered appli
ations. The best results are shown in boldfa
e. In that table, #Rstands for the number of rules, MSEtra and MSEtst for the values obtained overthe training and test data sets respe
tively, and EBS for the number of evaluationsneeded to obtain the best solution. The values of the parameters used by ea
hprobabilisti
 method in ea
h problem to obtain these results are 
olle
ted in Table 3.Table 2: Results obtained by the analyzed methodsThree-dimensional surfa
e Ele
tri
al appli
ation problemMethod #R MSEtra MSEtst EBS #R MSEtra MSEtst EBSWM 49 2.048137 2.255928 | 13 298,450 282,029 |CH 49 2.048137 2.255928 | 20 310,319 286,750 |NIT 98 2.465487 1.768125 | 40 229,115 206,648 |T 49 1.609890 1.193721 27,301 25 218,551 215,665 18,037COR-SA 49 1.609891 1.213388 6,924 20 220,850 247,733 191COR-ACS 49 1.610508 1.234023 2,437 20 221,003 196,341 152Table 3: Values of the parameters 
onsidered in the probabilisti
 methodsMethod Three-dimensional surfa
e Ele
tri
al appli
ation problemT PS: 61, #G: 1000, P
: 0.6, Pm: 0.2 PS: 61, #G: 1000, P
: 0.6, Pm: 0.4COR-SA T0: 40, #Neig.: 98, #A

ept.: 98 T0: 40, #Neig.: 40, #A

ept.: 40COR-ACS � = 0:4, � = 1, � = 1, q0 = 0:8 � = 0:6, � = 1, � = 2, q0 = 0:6
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al�a, J. Casillas, O. Cord�on & F. HerreraThe NIT method makes use of a linguisti
 modi�er to improve the a

ura
ybut it has not been 
onsidered (� = 1) sin
e this paper aims at analyzing thefuzzy rule generation pro
ess without modifying the membership fun
tion de�ni-tions. On the other hand, the parameters PS, #G, P
, and Pm of the T method,respe
tively stand for the population size, the number of generations, and theprobabilities of 
rossover and mutation. In the COR-SA method, T0 stands for theinitial temperature, #Neig. for the maximum number of neighbors generated atea
h temperature, and #A

ept. for the maximum number of a

eptan
es beforede
reasing the temperature.Con
erning the parameters used in the ACS method, the number of ants (m)will be the number of rules in ea
h 
ase, the number of iterations will be 50, andfor the rest of parameters (�, �, �, q0), the 
onsidered values are showed in ea
h
ase.4.2 A

ura
y AnalysisThe obtained results lead us to highlight the good behavior of the ACO-basedlearning method. It signi�
antly improves the a

ura
y of the models generatedby the WM, CH, and NIT methods, and it obtains similar a

ura
y degrees tothe remaining methods. Moreover, the best generalization degree in the ele
tri
alproblem is obtained by the ACS algorithm.We may graphi
ally analyze this behavior. Figure 5 
olle
ts the rule bases gen-erated by the CH, the COR-SA, and the COR-ACS methods in the ele
tri
al ap-pli
ation problem. In the two COR-based methods, the 
onsequents di�ering fromthe ones generated by the greedy assignment CH method (Figure 5(a)) are shownin boldfa
e and itali
s. The COR-SA method generates a rule base (Figure 5(b))with a great number of 
onsequents (10) di�erent from the ones obtained by theCH method (greedy approa
h). On the 
ontrary, the rule base generated by theCOR-ACS method (Figure 5(
)) di�ers only in three 
onsequents with respe
t tothe CH method, presenting a similar approximation degree to the COR-SA methodbut a better generalization one. This behavior is related to the 
onsideration ofheuristi
 information to dis
riminate among the di�erent 
andidate 
onsequents.In view of the linguisti
 fuzzy models generated in the ele
tri
al problem, wemay 
on
lude that the 
onsideration of heuristi
 information | as the proposedACO-based learning method does | involves generating models slightly di�erentto the obtained with the greedy approa
h but with a good a

ura
y degree andqui
ker than the other COR-based approa
h.4.3 EÆ
ien
y AnalysisThe ACS algorithm stands out in speed terms �nding good solutions qui
ker thanthe geneti
 algorithm (T method) and simulated annealing (COR-SA method)approa
hes. This fa
t is due to the use of heuristi
 information that guides theACS algorithm in the sear
h pro
ess.In Figure 6, the evolution 
hart (evaluations vs. �tness of the best solution)during the �rst seven thousand evaluations of the T, COR-SA, and COR-ACS
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methods is represented when solving the three-dimensional surfa
e problem. This
hart 
learly shows the di�erent 
onvergen
e speeds and number of evaluations(i.e., time) needed to �nd good solutions.As we 
an see, the three learning methods start from solutions with signi�-
antly di�erent qualities. The di�eren
es between the T method and the COR-based methods are 
learly related to the two di�erent sear
h spa
es ta
kled, signif-i
antly larger in the T method 
ase (1:78e44 and 2:84e19 solutions for the three-dimensional surfa
e and ele
tri
al problems, respe
tively). Fo
using on the COR-SA method and the COR-ACS method (both with the same sear
h spa
e), thelatter begins with better solutions thanks to the use of heuristi
 information. Dur-ing the �rst iterations, the COR-ACS method performs a qui
k 
onvergen
e. Theother two methods, the T method and the COR-SA method, will respe
tively needeleven and three times more evaluations to obtain a model 
lose to the one obtainedby the ACO-based method.
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Figure 6: Evolution 
hart of the T, COR-SA, and COR-ACS methods in the three-dimensional surfa
e problem5 Con
luding RemarksThis 
ontribution has presented a novel and interesting improvement of the CORmethodology by applying the ACS algorithm to it. Opposite to other learningmethods based on di�erent kinds of optimization te
hniques as simulated anneal-ing and geneti
 algorithms, the ACS algorithm qui
kly obtains good solutions per-forming an appropriate 
onvergen
e thanks to the use of heuristi
 information toguide the global sear
h.As further work, we propose to improve the behavior of the proposed ACSlearning method with two di�erent me
hanisms: �rstly, by adding a lo
al sear
hpro
ess (whi
h is a usual 
onsideration in ACO algorithms) and se
ondly, by al-lowing the COR methodology to have the 
apability of removing fuzzy rules withbad 
ooperation.A Ant Colony Optimization AlgorithmsA new family of bio-inspired algorithms has re
ently appeared, ACO algorithms[1, 10℄. Sin
e the �rst proposal, the Ant System algorithm [12℄ | applied to theTraveling Salesman Problem |, numerous models has been developed to solvea wide set of optimization problems (refer to [1, 10℄ for a review of models andappli
ations).ACO algorithms model the behavior of real ant 
olonies. Parti
ularly, theydraw inspiration from the so
ial behavior of these inse
ts to provide food to the
olony. In the food sear
h pro
ess, 
onsisting of the food �nd and the return to thenest, the ants deposit a substan
e 
alled pheromone. The ants have the ability ofsniÆng the pheromone and the 
olony is guided by it during the sear
h. When anant is lo
ated in an bran
h, it de
ides to take the path a

ording to the probabilityde�ned by the pheromone existing in ea
h trail.In this way, the depositions of pheromone terminate in 
onstru
ting a tra
k
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an be followed by new ants. The 
ontin-ued a
tion of the 
olony members involves the length of the tra
k is progressivelyredu
ed. The shortest paths are �nally the more frequently visited ones and, there-fore, the pheromone 
on
entration is higher. On the 
ontrary, the longest pathsare less visited and the asso
iated pheromone trail is evaporated.Therefore, ACO algorithms are based on the 
ooperative a
tion of multipleagents, ants, ea
h of them generating a possible solution to the problem at ea
hiteration of the algorithm. To do so, ea
h ant travels a graph that represents theproblem and it makes use of two kinds of information, shared by the 
olony, thatindi
ate the preferen
e among the di�erent edges between nodes:� Heuristi
 information: It depends on the problem and it is obtained beforerunning the algorithm, keeping inalterable during the pro
ess. The heuristi
value for the edge (s; k) is noted as �sk.� Pheromone trail information: It is modi�ed through the algorithm runningdepending on the paths taken by the ants and the goodness of the generatedsolutions. This information is represented by the pheromone trail. The valuefor the edge (s; k) is noted as �sk .The basi
 operation mode is as follows [12℄: at ea
h iteration, a population of aspe
i�
 number of ants progressively 
onstru
t di�erent tra
ks on the graph (i.e.,solutions to the problem) a

ording to a probabilisti
 transition rule that dependson the available information. After that, the pheromone trails are updated. Thisis done by �rst de
reasing them by some 
onstant fa
tor (
orresponding to theevaporation of the pheromone) and then reinfor
ing the solution attributes of the
onstru
ted solutions 
onsidering their quality. This task is developed by the globalpheromone trail update rule.Several extensions to this basi
 operation mode have been proposed. Theirimprovements mainly 
onsist of using di�erent transition and update rules, intro-du
ing new 
omponents, or adding a lo
al sear
h phase.ACO algorithms have been applied to numerous problems with the QAP beingone of the best known. It is an NP-hard optimization problem that involves assign-ing a set of fa
ilities to a set of lo
ations with given 
ows between the fa
ilities andgiven distan
es between the lo
ations. The goal is to asso
iate fa
ilities to lo
ationsin su
h a way that the sum of the produ
t between 
ows and distan
es is minimal.Our proposal to apply ACO algorithms to the fuzzy rule learning problem presents
ertain similarities to the QAP as mentioned in Se
tion 3.1.To apply ACO algorithms to a spe
i�
 problem, the �ve steps shown in Figure 7have to be performed. In this 
ontribution, these aspe
ts parti
ularized to the CORmethodology are des
ribed in Se
tion 3.
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al�a, J. Casillas, O. Cord�on & F. Herrera1. Problem representation: Interpret the problem to be solved as a graph or asimilar stru
ture easily traveled by ants.2. Heuristi
 information: De�ne the way of assigning a heuristi
 preferen
e toea
h 
hoi
e that the ant has to take in ea
h step to generate the solution.3. Pheromone initialization: Establish an appropriate way of initializing thepheromone.4. Fitness fun
tion: De�ne a �tness fun
tion to be optimized.5. ACO algorithm: Sele
t an ACO algorithm and apply it to the problem.Figure 7: Steps followed to apply ACO algorithms to a spe
i�
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