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1

In [2], a learning methodology that obtains accurate fuzzy models by inducing a
better cooperation among the fuzzy rules is proposed: the cooperative rules (COR)
methodology. This approach arises as an effort to exploit the accuracy ability of
linguistic (Mamdani-type) fuzzy rule-based systems (FRBSs) by exclusively fo-
cusing on the rule set design. In this case, the rest of components (membership
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functions, model structure, etc.) remains invariable, thus resulting in the highest
interpretability.

The COR methodology [2] is based on a combinatorial search of cooperative
rules performed over a set of previously generated candidate rule consequents to
find those with the best cooperation. Instead of selecting the consequent with the
highest performance in each fuzzy input subspace as ad hoc data-driven learning
methods (eg. [16]) usually do, the COR methodology considers the possibility of
using another consequent, different from the best one, that allows the FRBS to
globally achieve a best accuracy.

The COR methodology was initially applied with a classical metaheuristic, sim-
ulated annealing, and good accuracy results were obtained [2]. Although the use
of this technique allows COR to perform a quick learning, the process could be
accelerated with a more sophisticated metaheuristic that considers additional in-
formation to guide the search. Therefore, once a trade-off between the accuracy
and interpretability of the models obtained by COR have been proved in previous
works [2, 3], this contribution focuses on proposing a novel algorithm to decrease the
time required in the learning process, the ant colony system (ACS) algorithm [11].

The time expended in this fuzzy rule learning may take a great importance to-
gether with the accuracy and interpretability of the obtained fuzzy model. Indeed,
a quick learning has some interesting advantages as the capability of being used as
a previous mechanism to understand the nature of the problem being solved [4],
being used as a first learning stage to subsequently refine the obtained results with
a more complex postprocessing [5, 13], being integrated within a meta-learning
process [8, 9], etc.

The paper is structured as follows. Section 2 presents the COR methodology.
Section 3 is devoted to introduce all the aspects related to apply the ACS algorithm
to the COR methodology. In Section 4, the behavior of the proposed method
when solving two different example applications is analyzed and it is compared
to other well-known fuzzy rule generation processes. Finally, in Section 5, some
concluding remarks and future work are pointed out. An introduction to ant colony
optimization (ACO) algorithms is described in Appendix A.

2 COR: A Methodology to Improve the Cooper-
ation Among Rules

Let E be the input-output data set, e; = (2},...,2!,,y") one of its elements (exam-
ple), and n be the number of input variables. Let A; be the set of linguistic terms
of the i-th input variable and B the set of linguistic terms of the output variable.
Figure 1 shows the COR methodology structure.

For example, from the subspace S; = (high,low) and the candidate consequent
set in such a subspace B® = {small, medium, large}, we will obtain the fuzzy rule:

R; =IF X is high and X5 is low THEN Y is B;,

with Bs; € B® being the consequent label selected by the combinatorial search to
represent to the subspace S associated to the rule Rg.
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1. Define a set of fuzzy input subspaces, {Ss | s € {1,...,Ng}}, with the an-
tecedent combinations containing at least a positive example, ie., S; =
(Af,...,A%,... A) € Ay x ... x A, such that E] # ( (with A7 being
a label of the i-th input variable, E! being the set of positive examples of the
subspace Ss, and Ng the number of subspaces with positive examples).

In this contribution, we will define the set of positive examples for the subspace
S, as follows:

E,={e € E | VYie{l,...,n},VAj; € A;, pas(x}) > pa,;(z})},

with A;; being a label of the i-th input variable and pr the membership
function of the label T

2. For each subspace S;, obtain a set of candidate consequents (i.e., linguistic
terms of the output variable) B to build the corresponding fuzzy rule.

The set of candidate consequents for the subspace S is defined as follows:
B® = {B, € B | Je;- € E' where VB, € B, g, (y") > us,(y' )},

with By, being a label of the output variable.

3. Perform a combinatorial search among these sets looking for the combination
of consequents (one for each subspace) with the best global accuracy.

Figure 1: COR methodology

Since the search space tackled is usually large, it is necessary to use approximate
search techniques. In [2, 3], accurate linguistic models have been obtained using
simulated annealing. Nevertheless, these results could be improved incorporating
heuristic information to the learning process. This consideration would guide the
algorithm in the search, making it quicker on finding good solutions. The ACS
algorithm [11] is a good support for such intention thanks to the inherent use of
heuristic information.

3 Application of the Ant Colony System Algo-
rithm to the COR Methodology

The following five subsections describe the way of performing the learning process
with the ACS algorithm following the COR methodology. A brief introduction to
ACQO algorithms is presented in Appendix A.
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3.1 Problem Representation

For applying the ACS algorithm in the COR methodology, it is convenient to see it
as a combinatorial optimization problem with the capability of being represented
on a graph. In this way, we can face the problem considering a fixed number of rules
and interpreting the learning process as the way of assigning consequents — i.e.,
labels of the output fuzzy partition — to these rules with respect to an optimality
criterion (i.e., following the COR methodology).

Hence, we are in fact dealing with an assignment problem and the problem rep-
resentation can be similar to the one used to solve the quadratic assignment problem
(QAP) [1] — briefly explained in Appendix A —, but with some peculiarities. We
may draw an analogy between rules and locations and between consequents and
facilities. However, unlike the QAP, the set of possible consequents for each rule
may be different and it is possible to assign a consequent to more than one rule (two
rules may have the same consequent). We can deduce from these characteristics
that the order of selecting each rule to be assigned a consequent is not determinant
since one assignment does not restrict the remaining ones, i.e., the assignment order
is irrelevant. The graph is constructed taking the steps described in Figure 2.

1. Determine the subspaces — As shown in Figure 1, consider the fuzzy input
subspaces where there is located at least one example.

2. Link the subspaces to consequents — The subspace S will be linked to all
the consequents that contain at least a positive example, i.e., VB € BS.

Figure 2: Graph construction process

Figure 3 shows an example of the learning process. In Figure 3(c), the possi-
ble consequents for each antecedent combination are shown according to the data
set and membership functions considered (Figure 3(a)). To construct a complete
solution, an ant iteratively goes over each rule and chooses a consequent with a
probability that depends on the pheromone trail 745 and the heuristic information
Nsk, as usual (see Figure 3(d)). As said, the order of selecting the rules is irrelevant.
In Figure 3(e), we may see the possible paths that an ant can take in this example
and Figure 3(g) shows the rule set encoded by a specific solution.

3.2 Heuristic Information

The heuristic information on the potential preference of selecting a specific con-
sequent, By, in each antecedent combination (rule) is determined as described in
Figure 4.

Since the heuristic information is based on covering criteria, it will be zero for
a specific consequent when no examples located in the fuzzy input subspace are
covered by it. This means that for a rule, only those links to consequents whose
heuristic information is greater than zero will be considered. In Figure 3(d) we
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Figure 3: Learning process for a simple problem with two input variables (n = 2) and
three labels in the output fuzzy partition (|B|=3): (a) Data set (E) and fuzzy partitions
previously defined; (b) The six examples are located in four different subspaces that
determine the antecedent combinations and candidate consequents of the rules; (c) Set
of possible consequents for the four (Ns = 4) possible rules (only the rules where at
least one example is located in the corresponding subspace are considered); (d) Graph of
paths where 75, # 0 except 113, 731, 741, and n42, which are zero; (e) The search space is
composed by twelve different paths (combinations of consequents); (f) Rule decision table
for the third combination; (g) rule set generated from the third combination
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For each subspace S; do:

1. Build the set E. as shown in Figure 1.

2. Make use of an initialization function based on covering criteria to give a
heuristic preference degree to each choice. Many different possibilities may be
considered. In this paper, we will work with the following one:

Nsk = erlneaEX; Min (,UAS (xl)a:uBk (yl)) :

with jua, (') = Min (ua,, (), . i, (1)

Figure 4: Heuristic assignment process

may observe that the consequent Bz can not be assigned to the subspace Si, the
consequent Bj can not be assigned to the subspace S3, and the consequents B
and B> can not be assigned to the subspace S4 because their heuristic informations
(covering degrees) are zero.

3.3 Pheromone Initialization
The initial pheromone value of each assignment is obtained as follows:

Ns
18|
max n;s
s=1
To = s=1
Ns

In this way, the initial pheromone will be the mean value of the path constructed
taking the best consequent in each rule according to the heuristic information (a
greedy assignment) as the fuzzy rule learning algorithm presented in [6].

3.4 Fitness Function

The fitness function establishes the quality of a solution. The measure considered
will be the function called mean square error (MSE), which is defined as

1
MSE(RBy) = 3 1B)| Z (y' — Fr(x))?,
e €F

with F(2}) being the output obtained from the FRBS (inferred using the rule base
generated by the ant k, RB},) when it receives the input z} (input component of
the example ¢;), and y' being the known desired output. The closer to zero the
measure, the better the solution.
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3.5 Ant Colony System Algorithm

Once the previous components have been defined, an ACO algorithm has to be
given to solve the problem. In this contribution, the well-known ACS [11] is con-
sidered. Their components adapted to our problem is introduced in the following
subsections. We must remark that no local search is used in our proposal.

3.5.1 Solution Construction

The algorithm introduces a transition rule that establishes a balance between biased
exploration and exploitation of the available information. The node k (i-e., the
consequent By) is selected for the subspace S as follows:

arg max {(7su)" - (WSU)B}a if ¢ < qo
k= u€J(s)

T, otherwise

with 75 being the pheromone of the trail (s, k); 75 being the heuristic information;
a and 8 being parameters which determine the relative influence of the pheromone
strength and the heuristic information; J(s) = {k s.t. nsx # 0} being the set of
nodes attainable from Sj, i.e., the set of consequents that can be associated to it; ¢
being a random variable uniformly distributed over [0, 1]; go € [0, 1] being a thresh-
old defining the probability of selecting the more hopeful coupling (exploitation);
and with 7" being a random node selected according to the following transition rule
(biased exploration):

o 8
(7an)” - (st =, if k€ J(s)
Z (Tsu) : (nsu)
p(s, k) = w&7(s) ’
0, otherwise

We should note that, as in the QAP, the transition rule becomes an assignment
rule but, contrary to that problem, there is not a need for the ant to keep a tabu
list with the previous assignments made, since the same consequent can be assigned
to different rules.

3.5.2 Pheromone Trail Update Rule

The pheromone trail update rule is performed in two stages, global and local:

e Global pheromone trail update rule: Only an ant — the one who generated
the best solution (Tpes:) till now — releases pheromone on a coupling. The
formula is the following:

Tsk(_(]-_p)'Tsk'i'p'ATska
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with p € [0,1] being the pheromone evaporation parameter, m being the
number of ants, T, being the solution constructed by the ant a, and with

1 .
e A (5, k) € Thest
Ar, — | VSE(EBicq)

0, otherwise

e Local pheromone trail update rule: Each time an ant covers a coupling, a local
pheromone update is done as follows:

Tsk <= (1 —=p) - Tsp + p- ATgp .

In this paper, we will consider A7y, = 79 [11].

4 Experimental Study

In this section, some examples of application will be shown. With the aim of
analyzing the behavior of the proposed process, we will compare it with some fuzzy
rule learning methods: the method proposed by Wang and Mendel (WM) [16],
the one proposed by Cordén and Herrera (CH) [6], the one proposed by Nozaki,
Ishibuchi, and Tanaka (NIT) [14], and the genetic algorithm-based learning method
proposed by Thrift (T) [15]. Actually, the CH method is directly based on the
heuristic information used in the ACS algorithm by taking the consequent with
the highest value for each rule, i.e., it is a greedy algorithm. Another learning
method based on the COR methodology using a simulated annealing algorithm
(COR-SA) [2] will also be considered. Table 1 summarizes the compared methods.

Table 1: Methods considered in this experimental study

Method Algorithm Comments
WM [16] AHDD Well-known learning method
CH 6] AHDD Heuristic-information-based greedy algorithm
NIT [14] AHDD Uses two weighted rules in each subspace
T [15] GA Capability of learning the number of rules
COR-SA [2] SA Based on the COR methodology
COR-ACS | ACO ACS applied to the COR methodology

AHDD = ad hoc data-driven, GA = genetic algorithm, SA = simulated annealing

The performance of these learning methods will be analyzed when solving two
different applications: the modeling of a three-dimensional surface defined by the
function F(x1,72) = 2} + 3 [5] and a low-voltage electrical estimation problem [7].
The former one has a training data with 1,681 values and a test data with 168
values. The latter one has two input variables and a data set of 495 examples,
randomly divided into a training set of 396 values and a test set of 99 values.
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An initial membership function set constituted by a primary fuzzy partition
for each variable will be considered in each case. Every partition is formed by 7
(in the three-dimensional surface problem) or 5 (in the electrical problem) labels
with triangular-shaped equally distributed fuzzy sets giving meaning to them, and
the appropriate scaling factors to translate the generic universe of discourse into
the one associated with each problem variable. With respect to the FRBS reason-
ing method used, we have selected the minimum t-norm playing the role of the
implication and conjunctive operators, and the FITA (first infer, then aggregate)
approach, with the center of gravity weighted by the matching strategy acting as
the defuzzification operator.

The following subsections shows the obtained results and an analysis of them.
The analysis is accomplished from two different angles: accuracy, i.e., approxima-
tion (MSEy.,) and generalization (MSE;s;) degrees of the obtained models and
efficiency, i.e., time required by the learning methods to find their best solutions
(determined by EBS).

4.1 Obtained Results and Values of Parameters Used

Table 2 collects the results obtained by the analyzed methods solving the two
considered applications. The best results are shown in boldface. In that table, #R
stands for the number of rules, MSE;,., and MSE;,; for the values obtained over
the training and test data sets respectively, and EBS for the number of evaluations
needed to obtain the best solution. The values of the parameters used by each
probabilistic method in each problem to obtain these results are collected in Table 3.

Table 2: Results obtained by the analyzed methods

Three-dimensional surface Electrical application problem
Method |#R MSE;,, MSE,; EBS |#R MSE;,, MSE,; EBS
WM 49 2.048137 2.255928 —| 13 298,450 282,029 —
CH 49 2.048137 2.255928 —| 20 310,319 286,750 —
NIT 98 2.465487 1.768125 —| 40 229,115 206,648 —
T 49 1.609890 1.193721 27,301| 25 218,551 215,665 18,037
COR-SA | 49 1.609891 1.213388 6,924 20 220,850 247,733 191

[COR-ACS] 49 1.610508 1234023 2,437] 20 221,003 196,341 152|

Table 3: Values of the parameters considered in the probabilistic methods

Method Three-dimensional surface Electrical application problem
T PS: 61, #G: 1000, P.: 0.6, P,,: 0.2 | PS: 61, #G: 1000, P.: 0.6, P,,: 0.4
COR-SA | Ty: 40, #Neig.: 98, #Accept.: 98 | To: 40, #Neig.: 40, #Accept.: 40

|[COR-ACS[p=04,a=1,8=1,¢ =08 |p=06,a=1,8=2 49 =06 |
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The NIT method makes use of a linguistic modifier to improve the accuracy
but it has not been considered (o = 1) since this paper aims at analyzing the
fuzzy rule generation process without modifying the membership function defini-
tions. On the other hand, the parameters PS, #G, P., and P,, of the T method,
respectively stand for the population size, the number of generations, and the
probabilities of crossover and mutation. In the COR-SA method, T stands for the
initial temperature, #Neig. for the maximum number of neighbors generated at
each temperature, and #Accept. for the maximum number of acceptances before
decreasing the temperature.

Concerning the parameters used in the ACS method, the number of ants (m)
will be the number of rules in each case, the number of iterations will be 50, and
for the rest of parameters (p, «, 3, qo), the considered values are showed in each
case.

4.2 Accuracy Analysis

The obtained results lead us to highlight the good behavior of the ACO-based
learning method. It significantly improves the accuracy of the models generated
by the WM, CH, and NIT methods, and it obtains similar accuracy degrees to
the remaining methods. Moreover, the best generalization degree in the electrical
problem is obtained by the ACS algorithm.

We may graphically analyze this behavior. Figure 5 collects the rule bases gen-
erated by the CH, the COR-SA, and the COR-ACS methods in the electrical ap-
plication problem. In the two COR-based methods, the consequents differing from
the ones generated by the greedy assignment CH method (Figure 5(a)) are shown
in boldface and italics. The COR-SA method generates a rule base (Figure 5(b))
with a great number of consequents (10) different from the ones obtained by the
CH method (greedy approach). On the contrary, the rule base generated by the
COR-ACS method (Figure 5(c)) differs only in three consequents with respect to
the CH method, presenting a similar approximation degree to the COR-SA method
but a better generalization one. This behavior is related to the consideration of
heuristic information to discriminate among the different candidate consequents.

In view of the linguistic fuzzy models generated in the electrical problem, we
may conclude that the consideration of heuristic information — as the proposed
ACO-based learning method does — involves generating models slightly different
to the obtained with the greedy approach but with a good accuracy degree and
quicker than the other COR-based approach.

4.3 Efficiency Analysis

The ACS algorithm stands out in speed terms finding good solutions quicker than
the genetic algorithm (T method) and simulated annealing (COR-SA method)
approaches. This fact is due to the use of heuristic information that guides the
ACS algorithm in the search process.

In Figure 6, the evolution chart (evaluations vs. fitness of the best solution)
during the first seven thousand evaluations of the T, COR-SA, and COR-ACS
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Figure 5: Some RBs generated in the electrical application problem

methods is represented when solving the three-dimensional surface problem. This
chart clearly shows the different convergence speeds and number of evaluations
(i.e., time) needed to find good solutions.

As we can see, the three learning methods start from solutions with signifi-
cantly different qualities. The differences between the T method and the COR-
based methods are clearly related to the two different search spaces tackled, signif-
icantly larger in the T method case (1.78¢44 and 2.84e19 solutions for the three-
dimensional surface and electrical problems, respectively). Focusing on the COR-
SA method and the COR-ACS method (both with the same search space), the
latter begins with better solutions thanks to the use of heuristic information. Dur-
ing the first iterations, the COR-ACS method performs a quick convergence. The
other two methods, the T method and the COR-SA method, will respectively need
eleven and three times more evaluations to obtain a model close to the one obtained
by the ACO-based method.
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Figure 6: Evolution chart of the T, COR-SA, and COR-ACS methods in the three-
dimensional surface problem

5 Concluding Remarks

This contribution has presented a novel and interesting improvement of the COR
methodology by applying the ACS algorithm to it. Opposite to other learning
methods based on different kinds of optimization techniques as simulated anneal-
ing and genetic algorithms, the ACS algorithm quickly obtains good solutions per-
forming an appropriate convergence thanks to the use of heuristic information to
guide the global search.

As further work, we propose to improve the behavior of the proposed ACS
learning method with two different mechanisms: firstly, by adding a local search
process (which is a usual consideration in ACO algorithms) and secondly, by al-
lowing the COR methodology to have the capability of removing fuzzy rules with
bad cooperation.

A Ant Colony Optimization Algorithms

A new family of bio-inspired algorithms has recently appeared, ACO algorithms
[1, 10]. Since the first proposal, the Ant System algorithm [12] — applied to the

Traveling Salesman Problem —, numerous models has been developed to solve
a wide set of optimization problems (refer to [1, 10] for a review of models and
applications).

ACO algorithms model the behavior of real ant colonies. Particularly, they
draw inspiration from the social behavior of these insects to provide food to the
colony. In the food search process, consisting of the food find and the return to the
nest, the ants deposit a substance called pheromone. The ants have the ability of
sniffing the pheromone and the colony is guided by it during the search. When an
ant is located in an branch, it decides to take the path according to the probability
defined by the pheromone existing in each trail.

In this way, the depositions of pheromone terminate in constructing a track
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between the nest and the food that can be followed by new ants. The contin-
ued action of the colony members involves the length of the track is progressively
reduced. The shortest paths are finally the more frequently visited ones and, there-
fore, the pheromone concentration is higher. On the contrary, the longest paths
are less visited and the associated pheromone trail is evaporated.

Therefore, ACO algorithms are based on the cooperative action of multiple
agents, ants, each of them generating a possible solution to the problem at each
iteration of the algorithm. To do so, each ant travels a graph that represents the
problem and it makes use of two kinds of information, shared by the colony, that
indicate the preference among the different edges between nodes:

e Heuristic information: It depends on the problem and it is obtained before
running the algorithm, keeping inalterable during the process. The heuristic
value for the edge (s, k) is noted as 7.

e Pheromone trail information: It is modified through the algorithm running
depending on the paths taken by the ants and the goodness of the generated
solutions. This information is represented by the pheromone trail. The value
for the edge (s, k) is noted as 7.

The basic operation mode is as follows [12]: at each iteration, a population of a
specific number of ants progressively construct different tracks on the graph (i.e.,
solutions to the problem) according to a probabilistic transition rule that depends
on the available information. After that, the pheromone trails are updated. This
is done by first decreasing them by some constant factor (corresponding to the
evaporation of the pheromone) and then reinforcing the solution attributes of the
constructed solutions considering their quality. This task is developed by the global
pheromone trail update rule.

Several extensions to this basic operation mode have been proposed. Their
improvements mainly consist of using different transition and update rules, intro-
ducing new components, or adding a local search phase.

ACO algorithms have been applied to numerous problems with the QAP being
one of the best known. It is an NP-hard optimization problem that involves assign-
ing a set of facilities to a set of locations with given flows between the facilities and
given distances between the locations. The goal is to associate facilities to locations
in such a way that the sum of the product between flows and distances is minimal.
Our proposal to apply ACO algorithms to the fuzzy rule learning problem presents
certain similarities to the QAP as mentioned in Section 3.1.

To apply ACO algorithms to a specific problem, the five steps shown in Figure 7
have to be performed. In this contribution, these aspects particularized to the COR
methodology are described in Section 3.
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. Problem representation: Interpret the problem to be solved as a graph or a

. Heuristic information: Define the way of assigning a heuristic preference to

. Pheromone initialization: Establish an appropriate way of initializing the

. Fitness function: Define a fitness function to be optimized.

. ACO algorithm: Select an ACO algorithm and apply it to the problem.

similar structure easily traveled by ants.

each choice that the ant has to take in each step to generate the solution.

pheromone.

Figure 7: Steps followed to apply ACO algorithms to a specific problem

References

[1]

2]

3]

[7]

[8]

E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm intelligence. From natural
to artificial systems. Oxford University Press, Oxford, UK, 1999.

J. Casillas, O. Cordén, and F. Herrera. COR: A methodology to improve
ad hoc data-driven linguistic rule learning methods by inducing cooperation
among rules. IEEE Transactions on Systems, Man, and Cybernetics—Part B:
Cybernetics. To appear.

J. Casillas, O. Cordén, and F. Herrera. Improving the Wang and Mendel’s
fuzzy rule learning method by inducing cooperation among rules. In Pro-
ceedings of the 8th Information Processing and Management of Uncertainty in
Knowledge-Based Systems Conference, pages 16821688, Madrid, Spain, 2000.

J.L. Castro, M. Delgado, and C.J. Mantas. A hybrid system for approximate
reasoning. Internal report. Submmited to IEFEE Transactions on Systems,
Man, and Cybernetics—Part A: Systems and Humans.

O. Cordén and F. Herrera. A three-stage evolutionary process for learning
descriptive and approximate fuzzy logic controller knowledge bases from ex-
amples. International Journal of Approzimate Reasoning, 17(4):369-407, 1997.

O. Cordén and F. Herrera. A proposal for improving the accuracy of linguistic
modeling. IEEE Transactions on Fuzzy Systems, 8(3):335-344, 2000.

O. Cordén, F. Herrera, and L. Sdnchez. Solving electrical distribution prob-
lems using hybrid evolutionary data analysis techniques. Applied Intelligence,
10(1):5-24, 1999.

O. Cordén, F. Herrera, and P. Villar. Analysis and guidelines to obtain a
good fuzzy partition granularity for fuzzy rule-based systems using simulated



Improvement to the Cooperative Rules Methodology by Using the Ant.. 335

[9]

[10]

[11]

[12]

annealing. International Journal of Approximate Reasoning, 25(3):187-215,
2000.

O. Cordén, F. Herrera, and P. Villar. Generating the knowledge base of a fuzzy
rule-based system by the genetic learning of the data base. IEEE Transactions
on Fuzzy Systems, 9(4):667—-674, 2001.

M. Dorigo and G. Di Caro. The ant colony optimization meta-heuristic. In
D. Corne, M. Dorigo, and F. Glover, editors, New ideas in optimization, pages
11-32. McGraw-Hill, New York, NY, USA, 1999.

M. Dorigo and L.M. Gambardella. Ant colony system: a cooperative learning
approach to the traveling salesman problem. IEEE Transactions on Evolu-
tionary Computation, 1(1):53-66, 1997.

M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: optimization by
a colony of cooperating agents. IEEE Transactions on Systems, Man, and
Cybernetics—Part B: Cybernetics, 26(1):29-41, 1996.

A. Gonzélez and R. Pérez. A fuzzy theory refinement algorithm. International
Journal of Approzimate Reasoning, 19(3-4):193-220, 1998.

K. Nozaki, H. Ishibuchi, and H. Tanaka. A simple but powerful heuristic
method for generating fuzzy rules from numerical data. Fuzzy Sets and Sys-
tems, 86(3):251-270, 1997.

P. Thrift. Fuzzy logic synthesis with genetic algorithms. In R.K. Belew and
L.B. Booker, editors, Proceedings of the Jth International Conference on Ge-
netic Algorithms, pages 509-513, San Mateo, CA, USA, 1991. Morgan Kauf-
mann Publishers.

L.-X. Wang and J.M. Mendel. Generating fuzzy rules by learning from exam-
ples. IEEE Transactions on Systems, Man, and Cybernetics, 22(6):1414-1427,
1992.



