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Improvement to the Cooperative RulesMethodology by Using the Ant Colony SystemAlgorithm�R. Alal�a1, J. Casillas2, O. Cord�on2 and F. Herrera21Department of Computer Siene.University of Ja�en, E-23071 Ja�en, Spaine-mail: alala�ujaen.es2Department of Computer Siene and Arti�ial IntelligeneUniversity of Granada, E-18071 Granada, Spaine-mail: fasillas,oordon,herrerag�desai.ugr.esAbstratThe ooperative rules (COR) methodology [2℄ is based on a ombinatorialsearh of ooperative rules performed over a set of previously generated an-didate rule onsequents. It obtains aurate models preserving the highestinterpretability of the linguisti fuzzy rule-based systems.One the good behavior of the COR methodology has been proven inprevious works, this ontribution fouses on developing the proess with anovel kind of metaheuristi algorithm: the ant olony system one. Thanks tothe apability of this algorithm to inlude heuristi information, the learningproess is aelerated without model auray losses.Its behavior is suessful ompared with other proesses based on genetialgorithms and simulated annealing when solving two modeling appliations.Keywords: linguisti fuzzy modeling, learning, ooperative rules, ant olonysystem1 IntrodutionIn [2℄, a learning methodology that obtains aurate fuzzy models by induing abetter ooperation among the fuzzy rules is proposed: the ooperative rules (COR)methodology. This approah arises as an e�ort to exploit the auray ability oflinguisti (Mamdani-type) fuzzy rule-based systems (FRBSs) by exlusively fo-using on the rule set design. In this ase, the rest of omponents (membership�This researh was supported by CICYT, projet PB98-1319321



322 R. Alal�a, J. Casillas, O. Cord�on & F. Herrerafuntions, model struture, et.) remains invariable, thus resulting in the highestinterpretability.The COR methodology [2℄ is based on a ombinatorial searh of ooperativerules performed over a set of previously generated andidate rule onsequents to�nd those with the best ooperation. Instead of seleting the onsequent with thehighest performane in eah fuzzy input subspae as ad ho data-driven learningmethods (eg. [16℄) usually do, the COR methodology onsiders the possibility ofusing another onsequent, di�erent from the best one, that allows the FRBS toglobally ahieve a best auray.The COR methodology was initially applied with a lassial metaheuristi, sim-ulated annealing, and good auray results were obtained [2℄. Although the useof this tehnique allows COR to perform a quik learning, the proess ould beaelerated with a more sophistiated metaheuristi that onsiders additional in-formation to guide the searh. Therefore, one a trade-o� between the aurayand interpretability of the models obtained by COR have been proved in previousworks [2, 3℄, this ontribution fouses on proposing a novel algorithm to derease thetime required in the learning proess, the ant olony system (ACS) algorithm [11℄.The time expended in this fuzzy rule learning may take a great importane to-gether with the auray and interpretability of the obtained fuzzy model. Indeed,a quik learning has some interesting advantages as the apability of being used asa previous mehanism to understand the nature of the problem being solved [4℄,being used as a �rst learning stage to subsequently re�ne the obtained results witha more omplex postproessing [5, 13℄, being integrated within a meta-learningproess [8, 9℄, et.The paper is strutured as follows. Setion 2 presents the COR methodology.Setion 3 is devoted to introdue all the aspets related to apply the ACS algorithmto the COR methodology. In Setion 4, the behavior of the proposed methodwhen solving two di�erent example appliations is analyzed and it is omparedto other well-known fuzzy rule generation proesses. Finally, in Setion 5, someonluding remarks and future work are pointed out. An introdution to ant olonyoptimization (ACO) algorithms is desribed in Appendix A.2 COR: A Methodology to Improve the Cooper-ation Among RulesLet E be the input-output data set, el = (xl1; : : : ; xln; yl) one of its elements (exam-ple), and n be the number of input variables. Let Ai be the set of linguisti termsof the i-th input variable and B the set of linguisti terms of the output variable.Figure 1 shows the COR methodology struture.For example, from the subspae Ss = (high; low) and the andidate onsequentset in suh a subspae Bs = fsmall;medium; largeg, we will obtain the fuzzy rule:Rs = IF X1 is high and X2 is low THEN Y is Bs;with Bs 2 Bs being the onsequent label seleted by the ombinatorial searh torepresent to the subspae Ss assoiated to the rule Rs.



Improvement to the Cooperative Rules Methodology by Using the Ant.. 3231. De�ne a set of fuzzy input subspaes, fSs j s 2 f1; : : : ; NSgg, with the an-teedent ombinations ontaining at least a positive example, i.e., Ss =(As1; : : : ; Asi ; : : : ; Asn) 2 A1 � : : : � An suh that E0s 6= ; (with Asi beinga label of the i-th input variable, E0s being the set of positive examples of thesubspae Ss, and NS the number of subspaes with positive examples).In this ontribution, we will de�ne the set of positive examples for the subspaeSs as follows:E0s = fel 2 E j 8i 2 f1; : : : ; ng;8Aij 2 Ai; �Asi (xli) � �Aij (xli)g ;with Aij being a label of the i-th input variable and �T the membershipfuntion of the label T .2. For eah subspae Ss, obtain a set of andidate onsequents (i.e., linguistiterms of the output variable) Bs to build the orresponding fuzzy rule.The set of andidate onsequents for the subspae Ss is de�ned as follows:Bs = fBk 2 B j 9els 2 E0s where 8Bl 2 B; �Bk (yls) � �Bl(yls)g ;with Bk being a label of the output variable.3. Perform a ombinatorial searh among these sets looking for the ombinationof onsequents (one for eah subspae) with the best global auray.Figure 1: COR methodologySine the searh spae takled is usually large, it is neessary to use approximatesearh tehniques. In [2, 3℄, aurate linguisti models have been obtained usingsimulated annealing. Nevertheless, these results ould be improved inorporatingheuristi information to the learning proess. This onsideration would guide thealgorithm in the searh, making it quiker on �nding good solutions. The ACSalgorithm [11℄ is a good support for suh intention thanks to the inherent use ofheuristi information.3 Appliation of the Ant Colony System Algo-rithm to the COR MethodologyThe following �ve subsetions desribe the way of performing the learning proesswith the ACS algorithm following the COR methodology. A brief introdution toACO algorithms is presented in Appendix A.



324 R. Alal�a, J. Casillas, O. Cord�on & F. Herrera3.1 Problem RepresentationFor applying the ACS algorithm in the COR methodology, it is onvenient to see itas a ombinatorial optimization problem with the apability of being representedon a graph. In this way, we an fae the problem onsidering a �xed number of rulesand interpreting the learning proess as the way of assigning onsequents | i.e.,labels of the output fuzzy partition | to these rules with respet to an optimalityriterion (i.e., following the COR methodology).Hene, we are in fat dealing with an assignment problem and the problem rep-resentation an be similar to the one used to solve the quadrati assignment problem(QAP) [1℄ | briey explained in Appendix A |, but with some peuliarities. Wemay draw an analogy between rules and loations and between onsequents andfailities. However, unlike the QAP, the set of possible onsequents for eah rulemay be di�erent and it is possible to assign a onsequent to more than one rule (tworules may have the same onsequent). We an dedue from these haraterististhat the order of seleting eah rule to be assigned a onsequent is not determinantsine one assignment does not restrit the remaining ones, i.e., the assignment orderis irrelevant. The graph is onstruted taking the steps desribed in Figure 2.1. Determine the subspaes | As shown in Figure 1, onsider the fuzzy inputsubspaes where there is loated at least one example.2. Link the subspaes to onsequents | The subspae Ss will be linked to allthe onsequents that ontain at least a positive example, i.e., 8Bk 2 Bs.Figure 2: Graph onstrution proessFigure 3 shows an example of the learning proess. In Figure 3(), the possi-ble onsequents for eah anteedent ombination are shown aording to the dataset and membership funtions onsidered (Figure 3(a)). To onstrut a ompletesolution, an ant iteratively goes over eah rule and hooses a onsequent with aprobability that depends on the pheromone trail �sk and the heuristi information�sk, as usual (see Figure 3(d)). As said, the order of seleting the rules is irrelevant.In Figure 3(e), we may see the possible paths that an ant an take in this exampleand Figure 3(g) shows the rule set enoded by a spei� solution.3.2 Heuristi InformationThe heuristi information on the potential preferene of seleting a spei� on-sequent, Bk, in eah anteedent ombination (rule) is determined as desribed inFigure 4.Sine the heuristi information is based on overing riteria, it will be zero fora spei� onsequent when no examples loated in the fuzzy input subspae areovered by it. This means that for a rule, only those links to onsequents whoseheuristi information is greater than zero will be onsidered. In Figure 3(d) we
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Figure 3: Learning proess for a simple problem with two input variables (n = 2) andthree labels in the output fuzzy partition (jBj=3): (a) Data set (E) and fuzzy partitionspreviously de�ned; (b) The six examples are loated in four di�erent subspaes thatdetermine the anteedent ombinations and andidate onsequents of the rules; () Setof possible onsequents for the four (NS = 4) possible rules (only the rules where atleast one example is loated in the orresponding subspae are onsidered); (d) Graph ofpaths where �sk 6= 0 exept �13, �31, �41, and �42, whih are zero; (e) The searh spae isomposed by twelve di�erent paths (ombinations of onsequents); (f) Rule deision tablefor the third ombination; (g) rule set generated from the third ombination



326 R. Alal�a, J. Casillas, O. Cord�on & F. HerreraFor eah subspae Ss do:1. Build the set E0s as shown in Figure 1.2. Make use of an initialization funtion based on overing riteria to give aheuristi preferene degree to eah hoie. Many di�erent possibilities may beonsidered. In this paper, we will work with the following one:�sk = maxel2E0sMin ��As(xl); �Bk (yl)� :with �As(xl) =Min ��A1s(xl1); : : : ; �Ans(xln)� :Figure 4: Heuristi assignment proessmay observe that the onsequent B3 an not be assigned to the subspae S1, theonsequent B1 an not be assigned to the subspae S3, and the onsequents B1and B2 an not be assigned to the subspae S4 beause their heuristi informations(overing degrees) are zero.3.3 Pheromone InitializationThe initial pheromone value of eah assignment is obtained as follows:�0 = NSXs=1 jBjmaxs=1 �isNS :In this way, the initial pheromone will be the mean value of the path onstrutedtaking the best onsequent in eah rule aording to the heuristi information (agreedy assignment) as the fuzzy rule learning algorithm presented in [6℄.3.4 Fitness FuntionThe �tness funtion establishes the quality of a solution. The measure onsideredwill be the funtion alled mean square error (MSE), whih is de�ned asMSE(RBk) = 12 � jEj Xel2E(yl � Fk(xl0))2;with Fk(xl0) being the output obtained from the FRBS (inferred using the rule basegenerated by the ant k, RBk) when it reeives the input xl0 (input omponent ofthe example el), and yl being the known desired output. The loser to zero themeasure, the better the solution.



Improvement to the Cooperative Rules Methodology by Using the Ant.. 3273.5 Ant Colony System AlgorithmOne the previous omponents have been de�ned, an ACO algorithm has to begiven to solve the problem. In this ontribution, the well-known ACS [11℄ is on-sidered. Their omponents adapted to our problem is introdued in the followingsubsetions. We must remark that no loal searh is used in our proposal.3.5.1 Solution ConstrutionThe algorithm introdues a transition rule that establishes a balane between biasedexploration and exploitation of the available information. The node k (i.e., theonsequent Bk) is seleted for the subspae Ss as follows:k =8<: arg maxu2J(s) f(�su)� � (�su)�g; if q < q0T; otherwise ;with �sk being the pheromone of the trail (s; k); �sk being the heuristi information;� and � being parameters whih determine the relative inuene of the pheromonestrength and the heuristi information; J(s) = fk s:t: �sk 6= 0g being the set ofnodes attainable from Ss, i.e., the set of onsequents that an be assoiated to it; qbeing a random variable uniformly distributed over [0; 1℄; q0 2 [0; 1℄ being a thresh-old de�ning the probability of seleting the more hopeful oupling (exploitation);and with T being a random node seleted aording to the following transition rule(biased exploration):p(s; k) = 8>>><>>>: (�sk)� � (�sk)�Xu2J(s)(�su)� � (�su)� ; if k 2 J(s)0; otherwise ;We should note that, as in the QAP, the transition rule beomes an assignmentrule but, ontrary to that problem, there is not a need for the ant to keep a tabulist with the previous assignments made, sine the same onsequent an be assignedto di�erent rules.3.5.2 Pheromone Trail Update RuleThe pheromone trail update rule is performed in two stages, global and loal:� Global pheromone trail update rule: Only an ant | the one who generatedthe best solution (Tbest) till now | releases pheromone on a oupling. Theformula is the following:�sk  (1� �) � �sk + � ���sk ;



328 R. Alal�a, J. Casillas, O. Cord�on & F. Herrerawith � 2 [0; 1℄ being the pheromone evaporation parameter, m being thenumber of ants, Ta being the solution onstruted by the ant a, and with��sk = 8><>: 1MSE(RBbest) ; if (s; k) 2 Tbest0; otherwise :� Loal pheromone trail update rule: Eah time an ant overs a oupling, a loalpheromone update is done as follows:�sk  (1� �) � �sk + � ���sk :In this paper, we will onsider ��sk = �0 [11℄.4 Experimental StudyIn this setion, some examples of appliation will be shown. With the aim ofanalyzing the behavior of the proposed proess, we will ompare it with some fuzzyrule learning methods: the method proposed by Wang and Mendel (WM) [16℄,the one proposed by Cord�on and Herrera (CH) [6℄, the one proposed by Nozaki,Ishibuhi, and Tanaka (NIT) [14℄, and the geneti algorithm-based learning methodproposed by Thrift (T) [15℄. Atually, the CH method is diretly based on theheuristi information used in the ACS algorithm by taking the onsequent withthe highest value for eah rule, i.e., it is a greedy algorithm. Another learningmethod based on the COR methodology using a simulated annealing algorithm(COR-SA) [2℄ will also be onsidered. Table 1 summarizes the ompared methods.Table 1: Methods onsidered in this experimental studyMethod Algorithm CommentsWM [16℄ AHDD Well-known learning methodCH [6℄ AHDD Heuristi-information-based greedy algorithmNIT [14℄ AHDD Uses two weighted rules in eah subspaeT [15℄ GA Capability of learning the number of rulesCOR-SA [2℄ SA Based on the COR methodologyCOR-ACS ACO ACS applied to the COR methodologyAHDD = ad ho data-driven, GA = geneti algorithm, SA = simulated annealingThe performane of these learning methods will be analyzed when solving twodi�erent appliations: the modeling of a three-dimensional surfae de�ned by thefuntion F(x1; x2) = x21+x22 [5℄ and a low-voltage eletrial estimation problem [7℄.The former one has a training data with 1,681 values and a test data with 168values. The latter one has two input variables and a data set of 495 examples,randomly divided into a training set of 396 values and a test set of 99 values.



Improvement to the Cooperative Rules Methodology by Using the Ant.. 329An initial membership funtion set onstituted by a primary fuzzy partitionfor eah variable will be onsidered in eah ase. Every partition is formed by 7(in the three-dimensional surfae problem) or 5 (in the eletrial problem) labelswith triangular-shaped equally distributed fuzzy sets giving meaning to them, andthe appropriate saling fators to translate the generi universe of disourse intothe one assoiated with eah problem variable. With respet to the FRBS reason-ing method used, we have seleted the minimum t-norm playing the role of theimpliation and onjuntive operators, and the FITA (�rst infer, then aggregate)approah, with the enter of gravity weighted by the mathing strategy ating asthe defuzzi�ation operator.The following subsetions shows the obtained results and an analysis of them.The analysis is aomplished from two di�erent angles: auray, i.e., approxima-tion (MSEtra) and generalization (MSEtst) degrees of the obtained models andeÆieny, i.e., time required by the learning methods to �nd their best solutions(determined by EBS).4.1 Obtained Results and Values of Parameters UsedTable 2 ollets the results obtained by the analyzed methods solving the twoonsidered appliations. The best results are shown in boldfae. In that table, #Rstands for the number of rules, MSEtra and MSEtst for the values obtained overthe training and test data sets respetively, and EBS for the number of evaluationsneeded to obtain the best solution. The values of the parameters used by eahprobabilisti method in eah problem to obtain these results are olleted in Table 3.Table 2: Results obtained by the analyzed methodsThree-dimensional surfae Eletrial appliation problemMethod #R MSEtra MSEtst EBS #R MSEtra MSEtst EBSWM 49 2.048137 2.255928 | 13 298,450 282,029 |CH 49 2.048137 2.255928 | 20 310,319 286,750 |NIT 98 2.465487 1.768125 | 40 229,115 206,648 |T 49 1.609890 1.193721 27,301 25 218,551 215,665 18,037COR-SA 49 1.609891 1.213388 6,924 20 220,850 247,733 191COR-ACS 49 1.610508 1.234023 2,437 20 221,003 196,341 152Table 3: Values of the parameters onsidered in the probabilisti methodsMethod Three-dimensional surfae Eletrial appliation problemT PS: 61, #G: 1000, P: 0.6, Pm: 0.2 PS: 61, #G: 1000, P: 0.6, Pm: 0.4COR-SA T0: 40, #Neig.: 98, #Aept.: 98 T0: 40, #Neig.: 40, #Aept.: 40COR-ACS � = 0:4, � = 1, � = 1, q0 = 0:8 � = 0:6, � = 1, � = 2, q0 = 0:6



330 R. Alal�a, J. Casillas, O. Cord�on & F. HerreraThe NIT method makes use of a linguisti modi�er to improve the auraybut it has not been onsidered (� = 1) sine this paper aims at analyzing thefuzzy rule generation proess without modifying the membership funtion de�ni-tions. On the other hand, the parameters PS, #G, P, and Pm of the T method,respetively stand for the population size, the number of generations, and theprobabilities of rossover and mutation. In the COR-SA method, T0 stands for theinitial temperature, #Neig. for the maximum number of neighbors generated ateah temperature, and #Aept. for the maximum number of aeptanes beforedereasing the temperature.Conerning the parameters used in the ACS method, the number of ants (m)will be the number of rules in eah ase, the number of iterations will be 50, andfor the rest of parameters (�, �, �, q0), the onsidered values are showed in eahase.4.2 Auray AnalysisThe obtained results lead us to highlight the good behavior of the ACO-basedlearning method. It signi�antly improves the auray of the models generatedby the WM, CH, and NIT methods, and it obtains similar auray degrees tothe remaining methods. Moreover, the best generalization degree in the eletrialproblem is obtained by the ACS algorithm.We may graphially analyze this behavior. Figure 5 ollets the rule bases gen-erated by the CH, the COR-SA, and the COR-ACS methods in the eletrial ap-pliation problem. In the two COR-based methods, the onsequents di�ering fromthe ones generated by the greedy assignment CH method (Figure 5(a)) are shownin boldfae and italis. The COR-SA method generates a rule base (Figure 5(b))with a great number of onsequents (10) di�erent from the ones obtained by theCH method (greedy approah). On the ontrary, the rule base generated by theCOR-ACS method (Figure 5()) di�ers only in three onsequents with respet tothe CH method, presenting a similar approximation degree to the COR-SA methodbut a better generalization one. This behavior is related to the onsideration ofheuristi information to disriminate among the di�erent andidate onsequents.In view of the linguisti fuzzy models generated in the eletrial problem, wemay onlude that the onsideration of heuristi information | as the proposedACO-based learning method does | involves generating models slightly di�erentto the obtained with the greedy approah but with a good auray degree andquiker than the other COR-based approah.4.3 EÆieny AnalysisThe ACS algorithm stands out in speed terms �nding good solutions quiker thanthe geneti algorithm (T method) and simulated annealing (COR-SA method)approahes. This fat is due to the use of heuristi information that guides theACS algorithm in the searh proess.In Figure 6, the evolution hart (evaluations vs. �tness of the best solution)during the �rst seven thousand evaluations of the T, COR-SA, and COR-ACS
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methods is represented when solving the three-dimensional surfae problem. Thishart learly shows the di�erent onvergene speeds and number of evaluations(i.e., time) needed to �nd good solutions.As we an see, the three learning methods start from solutions with signi�-antly di�erent qualities. The di�erenes between the T method and the COR-based methods are learly related to the two di�erent searh spaes takled, signif-iantly larger in the T method ase (1:78e44 and 2:84e19 solutions for the three-dimensional surfae and eletrial problems, respetively). Fousing on the COR-SA method and the COR-ACS method (both with the same searh spae), thelatter begins with better solutions thanks to the use of heuristi information. Dur-ing the �rst iterations, the COR-ACS method performs a quik onvergene. Theother two methods, the T method and the COR-SA method, will respetively needeleven and three times more evaluations to obtain a model lose to the one obtainedby the ACO-based method.
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Figure 6: Evolution hart of the T, COR-SA, and COR-ACS methods in the three-dimensional surfae problem5 Conluding RemarksThis ontribution has presented a novel and interesting improvement of the CORmethodology by applying the ACS algorithm to it. Opposite to other learningmethods based on di�erent kinds of optimization tehniques as simulated anneal-ing and geneti algorithms, the ACS algorithm quikly obtains good solutions per-forming an appropriate onvergene thanks to the use of heuristi information toguide the global searh.As further work, we propose to improve the behavior of the proposed ACSlearning method with two di�erent mehanisms: �rstly, by adding a loal searhproess (whih is a usual onsideration in ACO algorithms) and seondly, by al-lowing the COR methodology to have the apability of removing fuzzy rules withbad ooperation.A Ant Colony Optimization AlgorithmsA new family of bio-inspired algorithms has reently appeared, ACO algorithms[1, 10℄. Sine the �rst proposal, the Ant System algorithm [12℄ | applied to theTraveling Salesman Problem |, numerous models has been developed to solvea wide set of optimization problems (refer to [1, 10℄ for a review of models andappliations).ACO algorithms model the behavior of real ant olonies. Partiularly, theydraw inspiration from the soial behavior of these insets to provide food to theolony. In the food searh proess, onsisting of the food �nd and the return to thenest, the ants deposit a substane alled pheromone. The ants have the ability ofsniÆng the pheromone and the olony is guided by it during the searh. When anant is loated in an branh, it deides to take the path aording to the probabilityde�ned by the pheromone existing in eah trail.In this way, the depositions of pheromone terminate in onstruting a trak



Improvement to the Cooperative Rules Methodology by Using the Ant.. 333between the nest and the food that an be followed by new ants. The ontin-ued ation of the olony members involves the length of the trak is progressivelyredued. The shortest paths are �nally the more frequently visited ones and, there-fore, the pheromone onentration is higher. On the ontrary, the longest pathsare less visited and the assoiated pheromone trail is evaporated.Therefore, ACO algorithms are based on the ooperative ation of multipleagents, ants, eah of them generating a possible solution to the problem at eahiteration of the algorithm. To do so, eah ant travels a graph that represents theproblem and it makes use of two kinds of information, shared by the olony, thatindiate the preferene among the di�erent edges between nodes:� Heuristi information: It depends on the problem and it is obtained beforerunning the algorithm, keeping inalterable during the proess. The heuristivalue for the edge (s; k) is noted as �sk.� Pheromone trail information: It is modi�ed through the algorithm runningdepending on the paths taken by the ants and the goodness of the generatedsolutions. This information is represented by the pheromone trail. The valuefor the edge (s; k) is noted as �sk .The basi operation mode is as follows [12℄: at eah iteration, a population of aspei� number of ants progressively onstrut di�erent traks on the graph (i.e.,solutions to the problem) aording to a probabilisti transition rule that dependson the available information. After that, the pheromone trails are updated. Thisis done by �rst dereasing them by some onstant fator (orresponding to theevaporation of the pheromone) and then reinforing the solution attributes of theonstruted solutions onsidering their quality. This task is developed by the globalpheromone trail update rule.Several extensions to this basi operation mode have been proposed. Theirimprovements mainly onsist of using di�erent transition and update rules, intro-duing new omponents, or adding a loal searh phase.ACO algorithms have been applied to numerous problems with the QAP beingone of the best known. It is an NP-hard optimization problem that involves assign-ing a set of failities to a set of loations with given ows between the failities andgiven distanes between the loations. The goal is to assoiate failities to loationsin suh a way that the sum of the produt between ows and distanes is minimal.Our proposal to apply ACO algorithms to the fuzzy rule learning problem presentsertain similarities to the QAP as mentioned in Setion 3.1.To apply ACO algorithms to a spei� problem, the �ve steps shown in Figure 7have to be performed. In this ontribution, these aspets partiularized to the CORmethodology are desribed in Setion 3.
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