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ABSTRACT: Recent advances in the accessibility of databases containing repre-
sentations of complex objects—exemplified by repositories of time-series data,
information about biological macromolecules, or knowledge about metabolic
pathways—have not been matched by availability of tools that facilitate the
retrieval of objects of particular interest and aid understanding their structure
and relations. In applications, such as the analysis of DNA sequences, on the
other hand, requirements to retrieve objects on the basis of qualitative charac-
teristics are poorly met by descriptions that emphasize precision and detail
rather than structural features. This paper presents a method for identifica-
tion of interesting qualitative features in biological sequences. Our approach
relies on a generalized clustering methodology in which the features being
sought correspond to the solutions of a multivariable, multiobjective optimiza-
tion problem with features generally corresponding to fuzzy subsets of the
object being represented. Foremost among the optimization objectives being
considered are measures of the degree by which features resemble prototypical
structures deemed to be interesting by database users. Other objectives
include feature size and, in some cases, performance criteria related to
domain-specific constraints. Genetic-algorithm methods are employed to solve
the multiobjective optimization problem. These optimization algorithms dis-
cover candidate features as subsets of the object being described and that lie in
the set of all Pareto-optimal solutions—of that problem. These candidate fea-
tures are then summarized, employing again evolutionary-computation meth-
ods, and interrelated by employing domain-specific relations of interest to the
end users. We present results of the application of this two-step method to the
recognition and summarization of interesting features in DNA sequences of
Tripanosoma cruzi.
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INTRODUCTION

This paper presents an application of methods for the discovery of qualitative fea-
tures and relations in complex objects, such as time series or large biological mole-
cules. The motivation for the development of this methodology is provided by
requirements for searching and interpreting databases containing representations of
this type of object in terms that are close to the needs and experience of the users of
those data-based descriptions.

In most applications of data and knowledge storage technology, however, the user
must cope with representation methods, developed typically in the context of a dif-
ferent class of applications that hinder, rather than aid, in understanding either indi-
vidual objects or the systems represented by the whole collection. As was pointed
out by Zadeh,! most of the existing analytic techniques emphasize the processing of
detailed system measurements rather than that of qualitative features of direct mean-
ing to users (called perceptions by Zadeh).

This paper presents an application of generalized clustering techniques3 to the
discovery of qualitative features in complex biological sequences. These qualitative
features include both interesting substructures and interesting relations between
those structures. The notion of “interestingness” is provided by domain experts by
means of abstract qualitative models of both features and relations.

We present a two-level methodology for the elicitation and summarization of
qualitative features in DNA sequences of Tripanosoma cruzi.* This work is part of a
general program of research that seeks, in addition to discovery and summarization
techniques, the development of techniques for the annotation of complex objects and
of data mining techniques that exploit the elicited qualitative representations.

We present first, generalized clustering ideas providing the basic framework for
our techniques. We then deal with a description of the biological object description
problem and discuss our two-level methodology, discussing first the multiobjective
genetic-based clustering method for biological sequence recognition (MGCM-
BSR), a generalized clustering method>? for identification of interesting features.
The features identified by this method—Iying in the Pareto-optimal frontier of
an optimization-based approach to the clustering problem—are then summarized
by employing the genetic-based method for biological sequence summarization
(GM-BSS), which relies on a hierarchy of evolution programs.” Genetic-based met-
rics are used to evaluate the performance of the methods. The final section presents
results of the application of this method to the DNA sequence description problem.

GENERALIZED CLUSTERING

The methods presented in this paper belong to a family of techniques for the dis-
covery of interesting structures in data sets by classification of its points into a finite
number of fuzzy subsets, or fuzzy clustering. Fuzzy clustering methods were intro-
duced by Ruspini® to provide a richer representation scheme, based on a flexible
notion of partition, for the summarization of data set structure and to take advantage
of the ability of continuous-analysis techniques to express and treat classification
problems in a formal manner.
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In Ruspini’s original formulation, the clustering problem was presented as a con-
tinuous variable optimization problem over the space of fuzzy partitions of the data
set. This original formulation of the clustering problem as an optimization problem
has been largely retained in various extensions of the approach that differ primarily
in the nature of the functionals being optimized and in the constraints that the parti-
tion must satisfy.’

The original approach proposed by Ruspini focused on the determination of the
clustering as a whole; that is, a family of fuzzy subsets of the data set providing a
disjoint, exhaustive partition of the set into interesting structures. Recent develop-
ments have emphasized the determination of individual clusters as fuzzy subsets
having certain optimal properties. From this perspective, a fuzzy clustering is a col-
lection of optimal fuzzy clusters—that is, each cluster is optimal in some sense and
the partition satisfies certain conditions—rather than an optimal partition—that is,
the partition, as a whole, is optimal in the sense that it minimizes some predefined
functional defining classification quality. Redirecting the focus of the clustering pro-
cess to the isolation of individual subsets having certain desirable properties also
provides a better foundation for the direct characterization of interesting structures
frees the clustering process from the requirement that clusters be disjoint and that
partitions be exhaustive.

In the context of image-processing applications, for example, features may cor-
respond to certain interesting prototypical shapes. In these applications, not every
image element may belong to an interesting feature while some points might belong
to more than one cluster (e.g., the intersection of two linear structures). It was,
indeed, in the context of image-processing applications that Krishnapuram and
Keller® reformulated the fuzzy clustering problem so as to permit the sequential iso-
lation of clusters. This methodology, called possibilistic clustering, does not rely,
like previous approaches, on prior knowledge about the number of clusters and per-
mits it to take full advantage of clustering methods based on the idea of prototype.

Prototype-based classification methods’ are based on the idea that a data set can
be represented, in a compact manner, by a number of prototypical points. The well-
known fuzzy c-means method of Bezdek—the earliest fuzzy-clustering approach
exploiting this idea—seeks to describe a data set by a number of prototypical points
lying in the same domain as the members of that data set. Extensions of this basic
idea, based on generalizing the notion of prototypical structure in a variety of ways
(e.g., as line or curve segments in some Euclidean space) are the basis for methods
that seek to represent data sets in terms of structures that have been predefined as
being of particular interest to those seeking to understand the underlying physical
systems being studied. Generally speaking, however, these methods require that pro-
totypical structures belong to certain restricted families of objects, so as to exploit
their structural properties (e.g., the linear structure of line segments or hyperplane
patches).

The generalized clustering methodology presented in this paper belongs to this
type of approach, extending it by considering arbitrary definitions of interesting
structures provided by users by means of a family of parameterized models M = [M ]
and a set of relations between them.>? In addition to a variety of geometric struc-
tures, these models may also be described by means of structures (e.g., neural net-
works) learned from significant examples of the features being defined or in terms
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of very general constraints that features might satisfy to some degree (soft or fuzzy
constraints). As is the case with possibilistic clustering methods, our approach is
based on the formulation of the qualitative—feature identification problem in terms
of the optimization of a continuous functional Q(F,M) that measures the degree of
matching between a fuzzy subset F' of the data set and some instantiation M, of the
family of interesting models.2

Our approach recognizes, however, that simple reliance on optimization of a sin-
gle performance index Q would typically result in the generation of a large number
of features with small extent and poor generalization, since it is usually easier to
match smaller subsets of the data set than significant portions of it. For this reason,
it is necessary to consider, in addition to measures Q of representation quality, addi-
tional criteria S gauging the size of the structure being represented. Furthermore, it
may also be necessary to consider application-specific criteria introduced to assure
that the resulting features are valid and meaningful (e.g., constraints preventing
selective picking of sample points so that they lie, for example, close to a line in sam-
ple space).

This multiobjective problem might be treated by aggregation of the multiple
measures of feature desirability into a global measure of cluster quality.” A problem
with this type of approach, which is close in spirit to minimum description length
methods, ¥ is the requirement to provide a priori relative weights to each of the
objectives being aggregated. It should be clear that assignment of larger weight to
measures Q of quality representation would lead to small features with higher
degrees of matching to models in the prototype families. Conversely, assigning high-
er weights to measures S of cluster extent would tend to produce larger clusters, albe-
it with poor modeling ability. Ideally, a family of optimization problems, each
similar in character to the others but with different weights assigned to each of the
aggregated objectives, should be solved so as to produce a full spectrum of candidate
clusters.

Rather than following such a path—involving the solution of multiple prob-
lems—our approach relies, instead, on a reformulation of the generalized clustering
problem as a multiobjective optimization problem involving several measures of
cluster desirability.2 In this formulation, subsets of the data set of potential interest
are locally optimal in the Pareto sense; that is, they are locally nondominated solu-
tions of the optimization problem. (The notions of proximity and neighborhood
in feature space are application dependent). Locally nondominated solutions of a
multiobjective optimization problem are those points in feature space such that
their neighbors do not have better objective values for all objectives while being
strictly superior in at least one of them. (i.e., a better value, for a neighbor, of some
objective implies a lower value of another). The set of these solutions is called the
local Pareto-optimal or local effective frontier.

We employ a multiobjective genetic algorithm (MGA)? based on an extension of
methods originally proposed by Horn, Napfliotis, and Goldberg“’12 to solve
this problem. These methods are particularly attractive tools to solve such complex
optimization problems because of their generality and their ability, stemming from
application of niched optimization procedures, to isolate local optima. The set of
solutions produced by the MGA is then analyzed by a hierarchy of evolution
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programs that produce a compact representation of the features and of the interesting
relations between them.

PROBLEM

Biological sequences, such as DNA or protein sequences, are good examples of
the type of complex objects that maybe described in terms of meaningful structural
patterns. Availability of tools to discover these structures and to annotate the
sequences on the basis of those discoveries would greatly improve the usefulness of
these repositories that currently rely on methods developed on the basis of compu-
tational efficiency and representation accuracy, rather than on terms of structural and
functional properties deemed to be important by molecular biologists.

An important example of biological sequences are DNA sequences of gene
upstreams that contain significant promoters or regulatory elements viewed as dyad
spaces (D).'3 Members of this space correspond to short words (w,w,) with a vari-
able nucleotide content (ny) such as: D = w.ngw,.

Another important problem involving DNA sequences, those involving repetitive
elements, is similar in character to the questions considered in this paper. These
sequences include nucleotide subsequences, currently lacking adequate knowledge
of their function, that appear repeatedly in the genome of species, such as Tripano-
soma cruzi, and that are characterized by a higher mutation rate than other nucleotide
sequences.

One of such kind of repeated sequence is that called short interspersed repetitive
element (SIRE).4 SIRE, which is distributed in all chromosomes and has between
1,500 and 3,000 copies per genome, and is delimited by two vague subsequences
that, in some cases, can only be specified in an imprecise or partial way. Usually, a
sequence such as TTTTTTNTTTTTNTT appears before SIRE, whereas a sequence
like TTATT may appear at the end. (The letter N indicates that any nucleotide is con-
sidered a good match for the position.)

A number of approaches, based primarily on computational-efficiency consider-
ations. have been developed to recognize this type of patterns by alignment of
sequence and pattern strings. Heuristic methods, such as FASTA, BLAST, or proce-
dures based on dynamic programming, produce sequence descriptions on the basis
of global, semiglobal, or local criteria that either incorporate various weights and
parameter values, or that make assumptions about undesirable measurements or
domain knowledge.

Biologists, however, are usually interested in obtaining all possible descriptions
of the sequences in terms of interesting patterns without being burdened, for exam-
ple, with the chore of making assumptions about the possible location of the pattern
in the sequence (see FIGURE 1 A and B), or with the problems associated with impre-
cise or incomplete knowledge about the pattern being sought (see FiG. 1C and D,
respectively).

This paper focuses on methods to treat problems similar to those briefly sketched
in the previous paragraphs. These methods seek to describe DNA sequences in terms
of interesting elastic or fuzzy patterns that are meaningful to experts, but that require
the application of methods capable of dealing with vague and imprecise information
and knowledge.
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Pattern: TTTTTATT

--------- TITITATT g TIT----TTATT-----

TTTAAAATTATTTTATT TTTAAAATTATTTTATT
-===TT---TTT--A--TT- [ --------- TATT
ACGTTTCGGTTTCCACCTTG TGGCTAAATTAT-

FIGURE 1. A and B. Different pattern locations. C Imprecise or fuzzy patterns. D.
Incomplete patterns.

BIOLOGICAL SEQUENCE DESCRIPTION METHODS

In this paper we describe results of the application of the ideas discussed in GEN-
ERALIZED CLUSTERING to the discovery of interesting qualitative features in DNA
sequences. The notion of interesting feature is formally defined by means of a family
of parameterized models M = {M,} specified by domain experts” who are interested
in finding patterns, such as epoch descriptors of individual or multiple DNA
sequences. These idealized versions of prototypical models are the basis for a char-
acterization of clusters as cohesive sets that is more general than their customary
interpretation as “subsets of close points.” Our approach to the treatment of this
problem is based on a two-level methodology consisting of a model recognition or
pattern matching step followed by a description summarization process.

* The multiobjective genetic-based clustering method for biological sequence
recognition (MGCM-BSR) was designed to recognize instances of interesting
features (or model recognition) by solution of an optimization problem
defined over the space of potential features (usually corresponding to the
some subset of the set of all fuzzy subsets of the data set). Our approach is
noteworthy in that, recognizing that there are multiple measures of cluster
quality and desirability, poses the clustering problem as a multiobjective opti-
mization problem rather than relying on weighted linear combinations of per-
formance and penalty functions that are sensitive to small changes in the
weighting factors. Our method, based on evolutionary computation tech-
niques, seeks to find interesting features that are not locally dominated; that
is, that are locally optimal in the sense that there are not neighboring solutions
that are at least equal in all objectives and strictly superior in at least one of
them. The set of these solutions is called the local Pareto-optimal, or local
effective, frontier.

* The genetic-based method for biological sequence summarization (GM-BSS)
is employed, after application of MGCM-BSR, to summarize the local effec-
tive frontier and to produce a compact description of the set of interesting
features. The major reason for this summarization step is the usually large
(even infinite) cardinality of the local effective frontier! !4 thus limiting its
usefulness. The identified set may also contain suboptimal or spurious solu-
tions—an inherent difficulty of algorithms for the solution of multiobjective
optimization problems!>—that must be repaired or eliminated. Furthermore,
certain solutions are so close in character and interpretation that they may be
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summarized, once again, by prototypical examples. The summarization
method, GM-BSS, is based on a family of hierarchical GAs;5 that is, a collec-
tion of several nested summarization algorithms that work in sequential order
over solutions and domains. These methods produce compact representations
of the Pareto-optimal frontier by extraction of its significant characteristics,
summarization of such salient aspects, and descriptions of interesting rela-
tions between them.

The remainder of this paper is devoted to the application of these methods to the
description of DNA sequences.

Model

Our methodology seeks to extract substrings of a DNA sequence satisfying the
constrains imposed by experts through a family M, of models of interesting features.
These models are typically formulated by experts who may already know, for exam-
ple, that some substrings (or classes of substrings) codify proteins or regulate a par-
ticular form of gene expression.

In our application to-DNA sequence identification, flexible or elastic models
are provided in the form of a string of DNA nucleotides in linear order (e.g.
A T,T3C4G5Gg). These patterns are elastic in the sense that they might fit a partic-
ular DNA subsequence to various degrees, measured on a [0,1]-scale. Domain
experts might define patterns, for example, employing vague characterizations, such
as: a partial or imprecise match with TTTTTATT, followed by a sequence of arbi-
trary length, and ending, exactly, in TTATT.

The elasticity of these patterns lies primarily in the fact that the sequence being
sought might not match a string of n successive characters in the nucleotide chain
but, rather, it may approximately match various substrings while still maintaining
the linear order specified in the pattern. Mismatches, lengthy strings between match-
es, or matches characterized by partial matches with very small model substrings
result in penalties that decrease the value of the functional that defines quality of
matching. In FIGURE 2 are shown different types of elastic matching between a DNA
sequence s and a model M defined by means of the pattern TTTTTATT.

A pattern perfectly matches a sequence if, as shown in FIGURE 2A, it exactly
matches, without gaps, a sequence substring. The quality of matching decreases
as spaces or mismatches are introduced to match sequence and pattern, as shown in
FIGURE 2C. From a biological viewpoint, identification of mismatches and matching
gaps (spaces) is important since they are known to be related to phylogenetic muta-
tions and gaps.

Models such as those considered in FIGURE 2 may be formally defined as follows.
The degree of matching M between a pattern P and a sequence s = by, ..., b, is
given by the value

MQ(P, s) = maxI[F(P),s],
F

where I[F(P),s] is a measure of the degree of matching of sequence F(P)=ay, ..., a,,
obtained from P by addition of spaces and of the transformation F itself.

The degree of matching [ is typically defined as a function of the nucleotide to
nucleotide correspondence between the same positions in F(P) and s

MQ(F(P), s) = (a;=b)) A(ay=by) A ... A(a,=b,),
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P = ————— TTTTTATT A
8 = TTTGGGTTTTTATT

P = TIT--—--- TTATT B
8 = TTTGGGTTTTTATT

P = TITTT----— ATT C
8 = TTTGGGTTTTTATT

FIGURE 2. Model matching: (A) perfect matching, (B and C) imprecise and vague
matching.

where = stands for the fuzzy predicate approximately matches. The ground predi-
cate == is modeled, using standard conventions, by means of a fuzzy relation. This
formula permits computation, by application of fuzzy-logic combination operators,
of the degree by of matching between s and a sequence constructed from P via the
transformation F.

In our application to DNA-sequence modeling, the ground predicate == is calcu-
lated by means of several fuzzy relations on the components of the DNA alphabet.
FIGURE 3 shows several such relations.!” (In affine gaps, _; corresponds to an initial
gap and _, to the extension of a previous adjacent gap.) Finally, the conjunction
operators employed to compute the degree of approximation include compensatory
functionals such as product, arithmetic mean, or “anding” aggregation parameter-
ized operators.

Biological Sequence Recognition

Among various possible MGA approaches to the treatment of multiobjective
problems’ we have chosen to base our methodology on the well known method of
Horn, Napfliotis, and Goldberg,“’lz'18 which does not have certain weaknesses that
characterizes alternative algorithms. A significant feature of this method is its reli-
ance on restricted competition (“niches”) between chromosomes to determine all
non-dominated solutions of the multiobjective optimization problem. This niched-
based approach easily permits the introduction of various changes in order to better

FIGURE 3. Relations between model components: (A) transition/transduction, (B)
affine gaps.
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handle the identification of local optima by performing nested or simultaneous shar-
ing in objective and/or decision variable spaces. Furthermore, the method relies on
Pareto domination tournaments—determining the dominance status of competitors
by comparing each of the selected competitors to a sample and selecting a winner—
to introduce locality. Finally, our approach introduces various GA features like
elitism!419 and mating restrictions by speciation.lil&19 We specifically evaluate the
integration of these features in the treatment of the localized problem, basing our
considerations on the most general performance indexes considered in MGA. 1415

Two objectives were considered, corresponding to the quality O and extent S of a
particular description, respectively. Clearly, these objectives are conflicting in the
sense that it is easier to generate more accurate explanations of smaller rather than
larger subsets of the data set. The multiobjective optimization problem is that of
maximizing Q and S in the local Pareto sense.

We describe our algorithm, first introducing the notation.

e ¥ is the nucleotide alphabet, X = {A,C,G,T}, and X* is the set of all finite
sequences of X.

* A is the extended alphabet, A = Xu{-} = {A,C,G,T,—}, and A* is the set of
all finite sequences of A.

* s, p, tand s’, p’ are sequences in £* and in A*, respectively.

* |s| is the length of s.

* g, is the number of gaps or spaces introduced in ¢ to obtain 7".
Q and S are the quality and extent objectives, respectively.

Our MGA includes the following computational steps:
1. Initialize the population P with rq, .. p0p’ selected randomly; that is, select the
number of gaps 8p that will be 1ncluded inp” (Ip’| = Ip| + 8p)s define their places in
the sequence p and, based on these selections, add the necessary number of gaps g,
in s in valid positions, so as to obtain a global alignment. Note that g = |s| — |p| + g,
(see FIGURE 4).
2. Evaluate each individual in P in both objectives, O (quality) and S (extent):

* S is measured as the size of the pattern present on the objective sequence.
Note that gaps may be inserted in both objective and pattern sequence.

-—-=TTTTTATT----
AAAATTTTTATTAAAA
Size: 0
o TTATT
~—~AAAATTTTTATTAAAA---
Size: 0.76
TTT---------~- TTATT----
-—-AAAATTTTTATT---AAAA
Size: 0.47

FIGURE 4. Chromosome description.
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* Q is calculated considering only the subsequence defined by the extension of
the pattern since we are trying to measure the similarity between the pattern
and the objective sequence and we are not interested in what occurs before
or after it. The evaluation of Q is based on the model described in previous
section, which relies on fuzzy relations based on matches, mismatches, and
gaps. These relations are used in a less restrictive way than BLAST or FASTA
algorithms. !> Initial and final gaps are not taken into account either in the
quality or in the extent functions.

3. Select P individuals with reposition (tournament). This selection is made by
comparing two individuals r; and r; against a comparison set C (of size com). If r; is
not locally dominated by any element of C and rjis, then r; is the tournament win-
ner. If r; is not locally dominated by any element of C and r; is, then r; is winner. If
both individuals are locally dominated or if neither r; nor r; are locally dominated,
employ a sharing process in variable (global Hamming distance??), objective, or
simultaneous spaces (see FIGURE 5).

4. If elitism, replace some solutions from the elite set with the best solutions found
in the population and replace the worst solutions from the population with the best
solutions from the elite set.!*

5. Apply crossover operators with probability p.,,. If speciation, use mating
restrictions. For this particular implementation, two crossover operators were
applied employing the approach suggested by Horng.2! These operators differ from
classic GAs operators in that they are applied to crossover blocks rather than to the
whole chromosome. Thus, select two chromosomes randomly, create two crossover
blocks for each, apply the following operators to each block separately and join the
resulting blocks:

* One-point-combine selects a point in the crossover block and takes the exis-
tent gaps from that point to the left from its father, and the existing gaps to the
right of that point from its mother, to generate a new child.

* Good-pos-combine extracts all the gaps that are common to both, father and
mother, and copies them to the child adding the necessary extra gaps (taken
from the father or mother) to perform a global alignment. (Our procedure to
process unfeasible solutions always maintains a valid population, changing
those individuals that do not satisfy required constraints to the nearest valid
solution.)

6. Apply mutation operators with probability p,,,, using the following operators:

Algorithm Sharing
input: candidatel, candidate2
for i + 1 to Newpop do
#niche(candidatel) and #niche(candidate2)
if #niche(candidatel) > #niche(candidate2) then
returncandidate2
else return candidatel

FIGURE 5. Sharing pseudocode.
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* Add-gap, adds a new gap in any position of the chromosome. Note that both
the pattern and the objective sequence may be changed.

* Delete-gap, deletes an existent gap from a chromosome.

» Shift-gap, deletes an existent gap and introduces a new adjacent gap on left or
right hand of the original one.

7. Return to Step 2, if the number of generations completed is less than gen.
8. Return the elements r; of the final population P.

Qualitative Feature Summarization

Summarization procedures seek to produce compact representations of the Pareto-
optimal frontier by producing compact descriptions of its significant characteristics
and identifying important relations between their features. In the DNA-sequence
applications being discussed, these processes include exclusion of solutions of the
multiobjective optimization problem that are dominated by similar solutions (fuzzy
domination), grouping similar solutions (clustering) by prototypes having close val-
ues to the objective functional Q and corresponding to the same variable space,
extraction of irrelevant or repeated solutions, and finally, the organization of an effec-
tive frontier on the basis of the notion of approximate inclusion as interval hierarchies
(trees). Three different criteria were defined to guide the performance of the summa-
rization processes:

* Fuzzy domination. Certain solutions—although lying in the effective frontier
and being thus non-dominated—are in fact dominated by other, similar, more
relevant solutions. To take care of this problem, we employ the following fea-
ture summarization criteria.

at b, and if
If 0(a)2 Q(b), and if then delete a,
—(S(a) < S(b)),

where E is the fuzzy relation approximately included, % is the fuzzy relation
approximately larger, < is the fuzzy relation approximately very smaller, and
S and Q are the extent and quality objectives, respectively.

* Exclusion of irrelevant solutions. Introduction of new fuzzy relations based on
expert biological criteria, called affine-gaps relations (see TABLE 3 below)'®
allows modification of the feature-quality measure to benefit models with adja-
cent gaps. This modification permits the elimination of features with an exces-
sive number of gaps that may have little biological relevance.

* Hierarchical organization of remaining features by inclusion. The final step of
the summarization process is the hierarchical organization of relations by inter-
features relations defined as being interesting by the user. In our DNA-
sequence application only one such relation (set inclusion) was considered.

Summarization procedures based on these criteria are implemented by a hierar-

chy of evolution programs> where, if E P; < EP, |, then the evolution program EP;
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is a weaker method than EP;,;; that is, dom(EP; ) € dom(EP,). Procedures
enforcing related constraints are implemented as multimodal EP (EP and EP,) that
rely solely on a shift-gap mutation operator, elitism, and niching in the variable
space based on global Himming distance.?? The fitness function employed in these
GA relies on a quality measure Q modified to account for consideration of the affine
gap relation. Selection was implemented by a tournament procedure.

EXPERIMENTAL ALGORITHM EVALUATION

The methodology described in the previous section was applied to the discovery
of SIRE patterns, described in the section PROBLEM, in the DNA sequence of Tripa-
nosoma cruzi.

The model considered in our experiments, (TTTTTATT), was the result of a con-
sensus between domain experts.4 Partial matches, incorporating gap, were sought in
the artificial sequence (TTTAAAATTATTTTATT).

Our experimental objectives include—in addition to the discovery of meaningful
biological sequence descriptions—the evaluation of various alternative architectural
variations of the MGCM-BSR algorithm so as to determine the most effective imple-
mentation for the identification of multiple, localized, interesting epochs. In our
analysis we evaluated, among many possible combinations of evolutionary architec-
tures, corresponding to selective implementation of various processes. That is,

* niching in variable (V), objective (O), and variable and objective (V+0)
spaces,

e elitism strategies (O+E, V+E), and
» speciation (V+O+S, V+O+S+E).

We first make a brief presentation of MGA performance metrics, examining later,
from their perspective, the results produced by the algorithm MGCM-BSR. Finally,
we present and analyze results of application of our two-step methodology (MGCM-
BSR+GM-BSS).

Performance Metrics

To compare the quality of the various features of the MGCM-BSR algorithm, we
extend metrics of performance proposed by Zitzler, Thiele, and Deb' so as to be
able to deal with localized solutions.

Distance to the Pareto-Optimal Set (M)

f1. distance in objective space

1 . - =
[1X) = — ¥ min{lp-pl:pe Y},
X1, €%
where X is the set of solutions in the last generation, Y is the set of optimal Pareto
solutions, and ||| denotes the Euclidean norm.
f 1’ , distance between nondominated solutions in variable space

178 %2 1

S min{fa’-al,:ae X1,

a'eX
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where X’ is the set of the nondominated solutions in the previous generation, X is the
set of optimal Pareto solutions, and |-, is a global Hamming distance.!?
f 1”, distance in objective space (similar to f;, but with nondominated solutions)

” , ] . , _ _ =
X)) == Y min{lp’-pll:pe ¥}
x|~
peX

Distribution of the Front (M;)
, 1 P 1X']
£ = ==l o' e xy)- LEL,
2 IS, EES(X,) S(X’)?
where S(X’) is the set of different solutions in last generation of the nondominant set X”.
Extent of the Front (M3)

f3, dispersion of last generation nondominated solutions in variable space

m
’ 4 —_ ’ ’ . ’ ’ ’
fiX) = /\/2 max{|a; - b pyia,b'e X'},
i=1
where m is the dimension of the vectors representing individuals.
f4,idem f3 but in the objective space.

Relative Quality of Solutions Produced by Alternative Algorithms'?
‘{a2 € X,;da, € X ¢ alslaz}‘
[X2]
where < means “is dominated by or equal to”. A value of C(X|,X,) = 1 means that
all solutions in X, are dominated by (or equal to) solutions in X, and C(X{,X,) =0

means that there does not exist a solution in X, covered by X;. It is important to note
that C(X;,X,) and C(X,,X;) should both be calculated because

C(X}, X5) %1 - C(X,, X ).

C(X,, X,) =

s

Experiments

The parameters employed in all experiments for the identification of SIRE
patterns are listed in TABLE 1. The values of various performance metrics for differ-
ent runs of the algorithm MGCM-BSR, under various conditions, are shown in

TABLE 1. Parameters of the MGCM-BSR algorithm

Parameter Value
Number of generations 150
Population sizes 3,000
Crossover probability 0.6
Mutation probability 0.3
Comparison set 2,500

Niche size (G) 4
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TABLE 2. Performance metrics My, M,, and M3

Vv o O+E V+0O V+S V+0O+S V+O+S+E
M, fi 2.14 1.18 0.95 1.63 2.09 0.74 0.62
it 0.11 0.02 0 0 0.20 0.97 0
f{ 0.06 0.01 0 0 0.14 0.08 0
M, f 1.82 32.21 578.52 16.86 0.94  321.68 240.98
Ms;  f3 17.00 16.00 17.00 18.00 19.00 17.00 20.00

f3 29.52 33.10 35.77 35.77 29.15 35.77 35.77

TABLES 2 and 3. (The true Pareto optimal front for this problem is unknown.

1112 1

our experiments, this frontier has been approximated employing the optimal solu-

tions

of various algorithmic runs.)

Several variants of the generic algorithm were evaluated to provide knowledge to
help understand the relations between parametric and architectural choices and algo-
rithmic performance:

M. TABLE 2 shows that, if the distance is greater than zero then, some non-
dominated solutions are not present in the set of solutions produced by the
algorithm. Some solutions were not found for variants including either O or V
options (see f{ and f| in TABLE 2). This problem is caused because the shar-
ing process ignored genotypic composition of the individuals. A similar prob-
lem occurs in the case of V and V+S, although here the objective functions are
ignored by the sharing process. Variants that include O+V present the best
trade-off behavior.

M,. Low values of this index agree with well know results. As shown in
TABLE 2, the options including V resulted in the lowest performance metric
values. These low values are caused by the focused attention (by the sharing
process), when only the V option is employed, on providing good niches with
equal size without concern for their quality. Elitism also influenced the values
of this performance measure, since the corresponding process stores a fixed
number (not proportional) of elitist solutions (not necessarily different) per
pattern size.

TABLE 3. Results obtains with variants of MGCM-BSR

Vv V+0O o O+E V+S V+0O+S V+O+S+E
\%4 — 0.26 0.17 0.40 0.14 0.38 0.38
V+O 0.14 — 0.20 0.59 0.12 0.64 0.45
o 0.10 0.21 — 0.36 0.10 0.24 0.25
O+E 0.12 0.29 0.14 — 0.10 0.57 0.46
V+S 0.15 0.21 0.21 0.28 — 0.25 0.26
V+O+S 0.06 0.23 0.03 0.56 0.05 — 0.55

V+O+S+E  0.07 0.20 0.03 0.56 0.06 0.58 —
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* Mj5. These performance measures evaluate how distant are the extreme indi-
viduals in the nondominated frontier. A higher value of these measures indi-
cates that the variant is more effective in the identification of extreme
solutions. The experimental results indicate that the performance of various
alternatives is similar when seen from the perspective of variable-space mea-
sures (see f 3’). Although the difference is more marked when objective-space
measures are concerned (see f 3"), the values indicate that all variants are sen-
sitive to extremes of the frontier. Moreover, solutions are correctly preserved
during the evolutionary process (see V+O+S+E option).

e Comparison between algorithms. TABLE 3 shows the proportion of equal or
dominated solutions between pairs of algorithmic variants employing various
options. A value of 1 (the highest possible) indicates that all solutions pro-
duced by an algorithm are either dominated or equal to those of the compari-
son algorithm, whereas a value of 0 (the lowest possible) indicates that no
solution is dominated by that of the comparison algorithm. The variants
V+0O+S and V+O+S+E have high values, showing that the solutions pro-
duced by the corresponding algorithms are dominated by alternative variants.
Detailed analysis of the results shows, however, that the solutions produced
by the V+O+S and V+O+S+E variants—although being dominated by solu-
tions produced by alternative options—do not differ significantly from them,
that is, they correspond approximately to same epochs or spatial intervals. We
conclude, therefore, that this index cannot be relied upon to provide an effec-
tive measure of algorithmic performance.

In view of the results shown in TABLES 2 and 3, it is our conclusion that
V+O+S+E is a good architectural choice providing a reliable, robust, algorithm.
The results presented in the rest of this section are those produced by application of
this algorithmic choice.

FIGURE 6 shows local and global results (A and C, respectively) of application of
MGCM-BSR to the problem of identifying SIRE patterns. Other “interesting”
descriptions, such as the improved global, intermediate and semiglobal solutions
shown in FIGURES 7A, 6B, and 7B, respectively, were also identified by this
algorithm.

Although there were other interesting descriptions in the Pareto-optimal frontier
(see FIGURES 8 and 9) covered by the MGA, we only show only a small sample
because of space limitations.!?

It is important to note also that our MGA produced all global Pareto-optimal
solutions for patterns of size 0.23 and 0.29. Other interesting solutions were identi-
fied by the MGCM-BSR localized selection policy and by nested/simultaneous

————————— TTTTTATT TTT----TTATT-----  TTT---------TTATT
TTTAAAATTATTTTATT  TTTAAAATTATTTTATT  TTTAAAATTATTTTATT
Score: 0.94 Score: 0.88 Score: 0.73
Size: 0.00 Size: 0.23 Size: 0.52
A B C

FIGURE 6. (A) local, (B) intermediate, and (C) global descriptions of SIRE.
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———————— T-TTTTATT  TT-----------T-TTATT
TTTAAAATTATTTTATT  TTTAAAATTATTTTATT---
Score: 0.97 Score: 0.45
Size: 0.06 Size: 0.71
A B

FIGURE 7. (A) Improved and (B) semiglobal descriptions of SIRE.

——————— TT--TTTATT TTT----TTA--TT---
TTTAAAATTATTTTATT  TTTAAAATTATTTTATT
Score: 0.94 Score: 0.82
Size: 0.11 Size: 0.35

A B

FIGURE 8. Other relevant descriptions of SIRE.

T TTATT TIT----TT----- ATT
TTTAAAATTATTTTATT  TTTAAAATTATTTTATT
Score: 0.73 Score: 0.73
Size: 0.53 Size: 0.53
A B

FIGURE 9. Ditferent epochs, similar objective-value solutions.

TTT-——~TIATT~~~—~ TTT----TTAT-T----  TTT----TTA-TT----
TTTAAAATTATTTTATT  TTTAAAATTATTTTATT  TTTAAAATTATTTTATT
Score: 0.88 Score: 0.85 Score: 0.85
Size: 0.23 Size: 0.29 Size: 0.29
A B C

FIGURE 10. Redundant nondominated solutions.

T-T-====m= TT-TAT-T  TT----- T---T-TAT-T  TTTTT------ A---T--T
TTTAAAATTATTTTATT-  TTTAAAATTATTTTATT-  T-T-TAAAATTATTTTATT
Score: 0.64 Score: 0.64 Score: 0.54
Size: 0.59 Size: 0.59 Size: 0.65
A B C

FIGURE 11. Nondominated solutions with low significance.

TLom e T-TTATT
TTTT PR~ oo e eom T
e TTTAAAATTATTTTATT TTIAAAATTATTITAYI T~
TITTIA---TT | TET-===TTALT TTw e TP o TATT || FAT wmmm e me P TATT
TTTAAAATTATTTTATT TTTAAAMATTATITTATT TTITAAAATTATTTTATT

==TTTAAAATTATITTIATT |

T-TTTTATT
TTTAARATTATITTATT

FIGURE 12. Summarized effective frontier.
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sharing processes. FIGURE 9 (e.g., the solution having extent 0.73 and quality 0.53)
shows several examples of this class of solutions.

We remarked previously, that the solution set may have a very large cardinality,
or even contain an infinite number of solutions.!!:!4 This inconvenient fact is illus-
trated in FIGURE 10, which shows nondominated solutions in variable space.

To simplify the results produced by the MGA optimization algorithm, we
employed a sequence of evolutionary methods EP;, implemented as part of the
GM-BSS algorithm to summarize the output of MGCM-BSR. The method EP; was
applied to nondominated solutions produced by the V+O+S+E of MGCM-BSR
(EPg).

For example, redundant solutions, such as those presented in FIGURE 10 were
reduced to the prototype shown in FIGURE 10 A. Subsequent application of the algo-
rithm EP, with affine gaps relation, resulted (see FIGURE 11) in replacement of solu-
tions of low biological significance with better examples.

The summarized effective frontier is shown in FIGURE 12, which graphically rep-
resents relations of inclusion between DNA intervals.

In closing this section it is important to remark that our generalized-clustering
approach found all solutions identified by alternative methodologies, such as FASTA,
BLAST, and dynamic programming (with local, global, and semiglobal options, and
various parameter settings).

Furthermore, additional sequences of potential biological significance, were also
determined to be interesting on the basis of tradeoff considerations between feature
quality and extent.20

CONCLUDING REMARKS

Generalized-clustering algorithms—solving multivariable, multiobjective, opti-
mization problems—provide effective tools to identify interesting features that help
to understand complex objects, such as DNA sequences. Summarization algorithms
implementing a hierarchy of evolutionary programs further aid in interpreting the
results of these optimization methods, producing compact descriptions of interesting
structures and of significant relations between them.

Our research currently seeks to extend our MGA-based methodology focusing
particularly on parallel evolutionary implementations that might be applied to
problems arising from the description of DNA sequences such as that of Tripanoso-
ma cruzi.?!
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