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COR: A Methodology to Imprové&d Hoc
Data-Driven Linguistic Rule Learning Methods by
Inducing Cooperation Among Rules

Jorge Casillas, Oscar Cordon, and Francisco Herrera

Abstract—This paper introduces a new learning methodology to - develop automatic techniques to perform this task. In this sense,
quickly generate accurate and simple linguistic fuzzy models, the a Jarge amount of methods has been proposed to automatically
cooperative rules (COR) methodology. It acts on the consequents generate fuzzy rules from numerical data. Usually, they use

of the fuzzy rules to find those best cooperating. | | ti hani h | network
Instead of selecting the consequent with the highest performance COMPIEX TUIE generation mecnanisms SUch as Neural NEWOrks

in each fuzzy input subspace aad hocdata-driven methods usually ~ [5], [6] or genetic algorithms [7]. Opposite to them, a family of
do, the COR methodology considers the possibility of using another efficient and simple methods guided by covering criteria of the

consequent, different from the best one, when it allows the fuzzy data in the example set, callad hoc data-driven methogkas
model to be more accurate thanks to having a rule set with best oo proposed in the literature [8]-[11].

cooperation. L . .
Our proposal has shown good results solving three different ap- These methods come with interesting advantages:
plications when compared to other methods. 1) they are easily understandable and implementable thanks
Index Terms—Accuracy improvement, cooperative rules, to their simplicity;
linguistic fuzzy rule-based modeling, simulated annealing. 2) they perform the learning process very quickly;
3) thanksto the two said advantages, they are very suitable to
I. INTRODUCTION be usgd asa first stage of the modeling process to obtain
o ) ) a preliminary fuzzy model, which can be subsequently
T PRESENT, system modeling is one of the main appli-  refined by other techniques [12] or be integrated within a

cations of fuzzy rule-based systems (FRBSs) [1], [2]. It meta-learning process [13].
may be considered as an approach to model a system makmﬁlthough the high performance o&d hoc data-driven

use of a descriptive language based on fuzzy logic with fuzgyeinods has been clearly demonstrated, they have a problem
predicates [3]. In this framework, one of the most interesting,ied to the way of selecting the ruléisese methods usually
areas iginguistic modelingwhere the interpretability of the ob- |0 for the rules with the best individual performand@ue
tained model_is the_main requirement. This task is develop&gthi& KBs with bad cooperation among the rules composing
by means of linguistic FRBSs, which use fuzzy rules composgghy, are sometimes obtained. This causes the results not to be

of linguistic variables [4] that take values in & term set with g5 accyrate as desired because of the interpolative reasoning
real-world meaning. Thus, the linguistic model consists of a S&Eveloped by FRBSs.

of linguistic descriptions regarding the behavior of the system
being modeled [3].

Several tasks have to be performed in order to design
FRBS (linguistic model) for a concrete application. One of th
most important and difficult ones is to derive an appropria
knowledge base (KB) about the problem being solved. The

In order to face this problem, we propose a nad hoc
data-driven methodology to improve the rule cooperation and
us the accuracy of the obtained models, the cooperative rules
OR) methodology. Once the rule antecedents (defining the
zzy subspaces) have been obtained, the operation mode will
composed of two stages: generation of a candidate conse-

stores the available knowledge in the form of fuzzy IinguiStiauent set for each subspace; and search of the consequents with
IF-THEN rules. It is composed of the rule base (RB), constllﬁe best global performance,

tuted by the collection of rules in their symbolic forms, and the The paper is organized as follows. Section Il introduaés

data base (DB), which contains the linguistic term sets and tﬂe : i
\ . L . . ocdata-driven methods and analyzes the two existing genera-
membership functions defining their meanings.

The difficulty presented by human experts to express th tu?n gpproaches, Section Il pre§ent3 the proposed methodology,
. ection IV analyzes the behavior of our proposal and odlder
knowledge in the form of fuzzy rules has made researchers . . . L )
ocdata-driven methods in three different applications, and fi-

nally, Section V outlines some concluding remarks.
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Rule generation process followed by the methods guided by examples.

Fig. 1. Graphical representation of a fuzzy partition, standirigr small A7 1. Consider a fuzzy partition of the variable spaces.
for medium L for large, V' for very, and with[l, r] being the corresponding . .
variable domain. 2. Generate a candidate linguistic rule set—This set will
be formed by the rule best covering each example con-
Il. AD Hoc DATA-DRIVEN LINGUISTIC RULE tained in the input-output data set. ‘
LEARNING METHODS The structure of each rule, CR’, is obtained by tak-
. L i . ing a specific example, e;, and setting each of the
Ad hocdata-driven linguistic rule learning methods [8]-[11|  ryle variables to the linguistic label associated with
are characterized by four main features. the fuzzy set best covering every example component,
1) They are based on working with an input-outpu| (A4%,... AL, BY), with A} € A; and B! € B.
data setE = {cyp....c....en} With ¢ = 3. Give an importance degree to each rule—Let CR! =

(z4,....2, 4i,....4L,), N being the data set size,
being the number of input variables, and being the
number of output variablesrepresenting the behavior
of the problem being solveth this paper, we will work

IF X, is A} and ... and X,, is A, THEN Y is B' be
the linguistic rule generated from the example ¢;.

The importance degree associated with it will be
obtained by computing the covering value of the rule

with multiple-input single-output (MISO) systems, i.e. over the corresponding example as follows:
m=1,¢ = (a:i,...,a:il, yl).
2) They consider a previous definition of the DB compose CVu(CR,e)) = py (@)oo pa (2h) - pp ().

of the input and output primary fuzzy partitioismay ] ] ) o
be obtained from expert information (if it is available)| 4. Obtain a final RB from the candidate linguistic rule
or by a normalization process. We will consider symme | set—Group the candidate linguistic rules according to
rical fuzzy partitions of triangular membership function:| ~ their antecedents and select the rule with the highest
crossing at height 0.5 (as shown in Fig. 1). importance degree in each group.

The set of linguistic terms of thieth input variable will
be denoted byd;—with i € {1,...,n}—and the set of iy 3 Wm-method.
linguistic terms of the output variable will be denoted by

B, with | A;| (|B]) being the number of linguistic terms of stage a selection process is performed to derive the final RB.
the i-th input (output) variable. Fig. 2 graphically illustrates this rule generation process.

3) The generation of the linguistic rules is guided by cov- Onpe of the most well known and widely used example-based
ering criteria of the data in the example s@tence the methods is the Wang and Mendel's methatiM-method)

namedata-drive). [11]. This method puts into effect the RB generation by means
4) The learning mechanism is not based on any well-knov the steps shown in Fig. 3.

optimization or search technique but it is specifically de-
veloped for this purposghence the namad hog. B. Ad Hoc Data-Driven Linguistic Rule Learning Methods
We can distinguish between two different approaches to oBuided by Fuzzy Grid
tain the linguistic rules witlad hocdata-driven methods: guided  Another possibility to generate the linguistic rules is to

by examplesind guided byuzzy grid Both families of methods pracket the examples according to a fuzzy grid, and then to
will be analyzed, showing a specific method for each, in Seghtain a rule for each group (subspace) taking into account all
tions II-A and B. Then, some relations between them andgfithem. The fuzzy grid is obtained by the Cartesian product of
generic scheme afd hocdata-driven methods will be respec+he linguistic terms existing in the input primary fuzzy partition
tively presented in Sections II-C and D. This preliminary analpr each input variabled; x --- x A,.

ysis will help us to introduce our COR methodology in Sec- Fig. 4 graphically shows this rule generation process, where
tion 1. Sy = (A3,... A, ... A5 )—with s € {1,...,N,}, N, =
T, |-A;| being the number of multidimensional fuzzy input
subspaces, and; € .4,—denotes a particular fuzzy input sub-
space andz® is the corresponding linguistic rule.

The linguistic rule generation process guided by examplesAn example of this second approach can be found in [8],
obtains each rule from a specific example in the data set. In tivbere Cordén and Herrera adapt the fuzzy-grid-based learning
way, the ruleR?! is obtained from the examptg. Actually, these method of Ishibuchét al.[9] for simplified Takagi-Sugeno-type
rules belong to a candidate rule set, since after this generatiates [14] (also known as singleton rules, i.e., rules with a single

A. Ad Hoc Data-Driven Linguistic Rule Learning Methods
Guided by Examples
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Fig. 4. Rule generation process followed by the methods guided by fuzzy grid. |

1. Consider a fuzzy partition of the variable spaces.

2. For each n-dimensional fuzzy input subspace, S;, do:
2.1. Build the set E! composed of the input-output data
pairs that are located in this subspace, i.e., E
{e;s = (zlf,...,z'ﬁ:,yls) € E such that uAi(xlf) .
'MA;(iEi:) # 0}.
2.2. If |EL| # 0, i.e., if there is any data in this space
zone, then:

22.1. Let B? {B, € B, k € {1,...,|B[}
such that Je;. € E. with up, (y"') # 0} be the
set of linguistic labels in the output variable term
set which contain examples belonging to Ef, and
let ¢, = |B*| be the cardinality of B*.

2.2.2. For each linguistic label B, € B*—
with k% € {1,...,cs}—compute the covering
value, CVp, of the linguistic rule built using
this term as a value in the consequent, K, =
IF X, is Af and ... and X, is AZ THENY is B§,,
over each example e;: € E as follows:

C’VT(RZS,els) =
T(,UA‘;(:Z%[ );' "7/JfAfl(m{n)v.uB,‘za (yl ))*

with T being a t-norm. In this paper, we will work
with the Minimum.

2.2.3. Add the rule R, that presents the highest
value in the rule valuation function, RV F(-), to the
RB.

Otherwise, let B° = () and do not generate any rule in
that multidimensional fuzzy input subspace.

Fig. 5. CH-method.
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2) Mean covering over the example séhe mean covering
degree ofR;. over all the examples i&”, is calculated:

A
E CVT (st,els)
RVF, (R;.) = Y=

124
3) Combination of both criteria, best and mean covering

RVFs (R:.) =RVF; (R:.) - RVF, (R5.)

E
= llnej% {CVr (Ri., )}

|E]

C. Relation Between Example-Based and Fuzzy-Grid-Based
Methods

While in an example-based method each example generates
a single rule, the generation process performed by a fuzzy-grid-
based method involves that an example may contribute to the
generation of several rules. Indeed, we may draw an analogy
between both approaches considering the use of different kinds
of grids (Fig. 6 graphically shows this fact).

1) Example-based methedSince the antecedent of the rule
generated from each example is obtained by taking the
linguistic labels best covering the input values of this ex-
ample, it can be seen that an example-based method par-
titions the example set according taw@sp grid bounded
by the cross points between labels. Thus, an example may
only belong to one subspace.

Fuzzy-grid-based methedHowever, with the fuzzy grid
used by this latter approach, an example may belong to
more than one subspace. In Fig. 6(b), the examples lying
in white zones have an influence on the generation of one
rule, those lying in light grey zones influence two rules,
and the ones lying in dark grey zones influence four rules.

Itis not possible to determine what approach is the best. No-
tice that the example approach always obtains an equal number
or fewer rules than the fuzzy grid one, as in the fuzzy grid ap-
proach the examples have an influence on a wider region, thus
generating more rules. However, this fact may make the model
obtained by an example-based method not to be as accurate as
desired sometimes.

2)

D. Generic Scheme of Ad Hoc Data-Driven Linguistic Rule

point instead a fuzzy set in the consequent) to allow it to gehearning Methods
erate linguistic rules¢H-method). The method is described in According to the relations between example-based and fuzzy-

Fig. 5.
Many different choices may be considered for the rule valil;

rid-based methods found in Section II-C, it is possible to es-
blish a generic scheme afl hocdata-driven linguistic rule

ation function RVF(-), used in the algorithm. In this paper, Welearning methods as seen in Fig. 7

will work with the three following ones.

From this new point of view, it is intuitive to think about pos-

1) Covering of the example best covergtie absolute cov- sijple combinations between both methods using the candidate

ering degree of?;. over the best covered exampleAtj
is calculated:

E/
RVF, (R.) = Il'ngj%{ch (Riv,ci)} .

rule generation process (step 2) of one of them and the rule se-
lection (step 3) of the other. For example, it would be possible
to use the rule valuation functionRVF(.), considered by the
CH-method to give an importance degree to each rule in each of
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Fig. 6. (a) Example-based methods (crisp grid)—an example only contributes to the generation of one rule and (b) fuzzy-grid-based methodse-raayexampl
contribute to the generation of several rules.

1. Consider a fuzzy partition of the variable spaces. 1. Consider a fuzzy partition of the variable spaces.
2. Generate candidate rules in each fuzzy input subspace 2. Generate candidate rules in each subspace.
according to the generation approach followed (example

or fuzzy grid) 3. Select the most cooperative rule in each subspace. This
Y 8rics- stage is performed in two steps:

After this stage, a set of linguistic fabels, 3.1. Obtain the set of possible consequents for each sub-

s _ [(ns 8 s space containing examples.
=Bl Biey s Be ), To do that, let C = {r; € {1,...,N,}
as well as rules with the different possible consequents, such that B # @} — with Nc = |C| being the
number of subspaces which contain examples and j €
R, = IF X, is A} and ... and X, is A} {1,...,Ng} — be the set of identifications of those
THENY is B;,, candidate consequent term sets which contain at least

. " . one element.
will be available in each subspace 5. 3.2. Run the SA-based algonthm to look for the combi-
3. Select the rule with the best consequent in each fuzzy nation { By, , . Bk': ) ",Nc } with the best ac-
input subspace with respect to some covering criterion. curacy.
The initial solution is obtained by generating a possible
Fig. 7. Generic scheme afd hocdata-driven methods. combination at random.

The neighbor generation mechanism randomly selects
a specific 7; € C such that ¢,; > 2, and changes B;’,,.

the groups obtained by the WM-method, and to select the rule by B;i;, with k™' randomly generated in {1,...,¢c,;}

with the best value. Another alternative would be to use the im- such that k™' # k™. )

portance degree considered in the WM-method to select the best To evaluate the quality of each solution, an index mea-

rule in each subspace defined by the CH-method. ,ssu ::fsg':,:: ofnertahti?zag:ﬂii Zf,;::t::;a:i:: ;uglfof,:
Actually, some of these combinations are implicitly de- error function called mean square ervor (MSE), which

fined since RVF:(-) coincides with the criterion used in is defined as

the WM-method to select the rule. Nevertheless, two new 1 X

algorithms arise from the use @fVF.(-) and RVF3(-) to MSE= =3 (V' -¢),

determine the best rule in each of the groups obtained by the =

WM-method, in the following calledVM + RVF;-method with Y being the output obtained from the FRBS when

andWM + RVF;-method, respectively. the example €' is used, and 3 being the known desired

output. The closer to zero the measure, the greater
the global performance and, thus, the better the rule
cooperation.

Ill. COR: A METHODOLOGY TOIMPROVE THEACCURACY BY
OBTAINING COOPERATIVERULES Fig. 8. Learning method based on SA following the COR methodology.

A. Cooperative Rules Methodology action of several linguistic rules that have been fired because

One of the most interesting features of an FRBS is the inteéhey match the system input to any degree.
polative reasoning it develops. This characteristic plays a keyHowever, the global interaction among the rules of the KB
role in the high performance of FRBSs and is a consequencéafot considered iad hocdata-driven methods (since they se-
the cooperation among the linguistic rules composing the Kiect the rule with the best performance in each subspace). This
Itis a well-known fact that the output obtained from an FRBS isauses the final RB obtained, in spite of presenting a good local
not usually due to a single linguistic rule but to the cooperatil@ehavior, not to cooperate suitably. Moreover, the fact of locally
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Fig. 9. Rule generation process followed by the COR methodology.

processing these rules makes these methods more sensitive to  Another approach to perform the COR methodology
noise. with the ant colony system algorithm is introduced in
With the aim of addressing these drawbacks, we propose a [16].

new methodology to improve the accuracy of linguistic models The proposed COR methodology only impinges on the third
obtaining best cooperation among the rules: the COR methaghge of the saicd hocdata-driven method generic scheme
ology. It is based on @ombinatorial search of cooperative(Fig. 7). Fig. 8 presents a COR-based algorithm using the SA
rules performed on the set of candidate rules to find the beglchnique. The specific aspects of the SA-based algorithm used
cooperating rule set. Instead of selecting the consequent Wiifhis paper are shown in Appendix A. Following this method-
the highest performance in each subspace as usual, the C§i§gy, two new algorithms arise combining COR with the two
methodology considers the possibility of using another CONsghalyzed methods: the COR-based WM-meth6®R-WM-

quent, different from the best one, when it allows the FRBS {fethod) and COR-based CH-metho@QR-CH-method).
be more accurate thanks to having a KB with best cooperation.

For this purpose, COR performs a combinatorial search amagg

the candidate rules looking for the set of consequents which

globally achieves the best accuracy. Fig. 9 graphically shows the rule generation process based
In order to perform this combinatorial search gaplicit enu- on the COR methodology using the COR-WM-method or the

merationor anapproximate search techniquan be considered. COR-CH-method to generate the candidate consequents for
1) The former accomplishes a full search through the sg#Ch subspace (second step in the algorithm). In this way,
of possible combinations. Although with this techniqudhilst the COR-WM-method considers the light grey zones,

we ensure that the optimal solution is obtained, it maf¢ COR-CH-method also takes into account the dark grey

take a long time, or simply be unapproachable in terms @nes. This fact will have repercussions in the number of rules
run time, when there is a great number of combinationgénerated (as commented on in Section 1I-C) and in the sets of

Therefore, this technique is only recommended in cof@ndidate consequents.

fined spaces. Since in the CH-method the examples contribute to generate
2) On the other hand, when the use of an explicit enumeeveral rules, usually more diversity of candidate consequents

ation is not possible, an approximate search techniq\ﬂ@' be generated in each subspace and, therefore, the search

is needed. Any search technique can be used. HoweRR#ace tackled by the combinatorial search will be larger. This

since one of the main advantagesaof hocdata-driven fact has pros and cons.

methods is their ability to find good fuzzy models quickly, 1) on the one hand, the algorithm handles more possible

the search technigue should be both effective and quick.  combinations, thus being able to find better results,

In that contribution we propose to use the simulated an- 2) on the other hand, the larger the search space, the more

nealing (SA) technique [15] for this purpose. SA is a nu- difficult to find good solutions.

merical optimization technigue based on the analogy with The suitability of one approach or the other will depend on

the physical annealing process of solids. The SA-bastte problem nature, represented by the example set (number of

algorithm begins with an initial solution and generates examples and their distribution), which will determine the diver-

neighbor of this solution by means of a suitable meclsity of the candidate consequent set in each subspace depending

anism. If the latter is better than the former, the curremn the approach.

solution is replaced by the generated neighbor; other-Finally, we should note that COR-based methods are

wise, this replacement is accomplished with a specififtalfway between the simplicity and speed of the classic

probability that will be decreased during the algorithnmoc data-driven methods, and the complexity and slowness of

progress. This process is iterated a large number of timéise remaining rule generation mechanisms, being closer to the

Analysis of the Cooperative Rules Methodology
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TABLE |

METHODS CONSIDERED IN THIS
EXPERIMENTAL STUDY

TABLE 1l
RESULTS OBTAINED IN THE MODELING OF F'

531

Method #R  MSE,,, MSE;,:
Method Approach WM-method 49  2.048137  2.287129
WM-method Guided by examples WM+ RV Fy-method | 49 2.740901  2.505504
WM+ RV Fy-method | Guided by examples WM+ RV F3-method | 49 2.048137  2.287129
WM+ RV F3-method | Guided by examples CH-method (RVF;) | 49 2.048137  2.287129
CH-method (RVF;) | Guided by fuzzy grid CH-method (RVF;) | 49  3.755082  3.393716
CH-method (RV F:) | Guided by fuzzy grid CH-method (RVF3) | 49 2.740901  2.505504
CH-method (RVF3) | Guided by fuzzy grid COR-WM-method 49 1.605482 1.175941
COR-WM-method Guided by examples COR-CH-method 49  1.609891  1.302117
COR-CH-method Guided by fuzzy grid NIT-method 98 2.465487  1.751173
NIT-method Guided by fuzzy grid with
two rules per subspace
TABLE 11l
WM-METHOD vs. COR-WM-METHOD MODELING F'
X1
X9 ES v$s S M L VL EL
ES {L,VL,EL) {M,L,VL} {S,M,L} {S,M} {S,M,L} {M,L,VL} {L,VL,EL}
2 9 vs|{mr,vL} | (SML} |{VSs,5.M} | {vS,S} [{VS,S,M} {s,M,L} |{M,L,VL}
““‘\ F(xth) =T + T3 s | ¢smL} 1{vs,s M} |{ES,VS,S}|{ES,vS}| {ES,VS} |[{VS,S\M}]| {S,M,L}
§§‘\x“ M| {sm} | {vss} | (es,vs) | {Es) |(es.vsy| {vs:s} | {s.M}
: %‘%\{{‘\‘.“o 2 z1,22 € [-5,5], L | tsmuy [ivssmy| (ms.vsy l(es.vsy| (Es.vsy [avs s | (smry
‘\‘\\3::2&2;;49",” F(:L‘l , xz) € [0’ 50] vio| (ML, viy | smM,L) 1 {vs,s,M} | {vs,s} |{VS,S,M}] {SM,L} |{M,L,VL}

BL [{L,VL,EL} | {M,L,vL}| {s,M,1.} | {5,M} | {S,M.L} [{M,L,VL}{{L,VL,EL}

(a) Candidate consequent sets in each subspace following the exam-

ple approach

Fig. 10. Graphical representation, mathematical expression, and varial X1 X1

domains of the three-dimensional surface X, ESVS § M L VL EL X ESVS S M L VL EL

BSlEL|LIMIM|M| L [EL ES|IEL{ L | L ([M|M |VL|EL
VSIL[M|[S|[VS[S[M|L VS{L | M|VS|{VS|S | S |L
former ones. Its performance will depend to a great extent ¢ g [m[s [vs|es|vs| s |m s|z|vs|vs|es|Es| s [m
the combinatorial search technique considered and the sea m M |vs{es|es|Bs|vs|M M [mlvs|Es|Es[Es{vsIM
space tackled. L |[M]|s |vs[es|vs|s |M L [M]|s |ES|ES|VS|VS| L
vi|L[M[sivs|sIm|L] vi|rL]|s|s|vsivsiM|L
ELIEL|L | M|M|M}| L |EL EL|EL{VE|M|M| L | L |EL

IV. EXPERIMENTAL STUDY
(b) WM-method’s RB

(cg COR-WM-method’s RB
(MSE¢rq /e = 2.0481/2.2871) (M

This experimental study will be devoted to analyze the perfo E¢ra/tet = 1.6055/1.1760)

mance of our two COR-based processes. With this aim, we have

chosgn three different applicationshe quelmg ofa threg-d|- ,681 values uniformly distributed in the three-dimensional def-
mensional surface [12], the problem of rice taste evaluation [9]... . .
inition space has been obtained experimentally [12].

[10], and an electrical distribution network real-world problem Another data set has been generated for its use as test set to

[17]. . .evaluate the performance of the learning method, avoiding any
In the three cases, we will analyze the accuracy of the lin- '

guistic models generated from the processes introduced in Sposslble bias related to the data in the training set. These data

. 0 _ . .
tions Il and Il as well as by the fuzzy grid-based method prc@l 0 examples, 20% of the total number of examples—training

posed by Nozaket al. (NIT-method) in [10] (its description and test sets together) are obtained generating the input variable

can be consulted in Appendix B). Table | shows the 9 metho\éalues atrandomin the concrete universes ofdlscpurse for each
of them, and computing the associated output variable value.
and the approach followed by each of them. . T . .
. . i . Seven labels are used in each linguistic variable fuzzy parti-
Primary fuzzy partitions with triangular-shaped equall}/ion for this experiment
distributed fuzzy sets will be considered for each problem (as P '

- . . 2) Obtained Results and Analysighe results obtained b
shown in Fig. 1). With respect to the FRBS reasoning meth(t)ﬁle)nine methods analyzed are cgllected in Table II. WHaR y
used, we have selected th@nimumz¢-norm playing the role '

of the implication and conjunctive operators, and theater stands for the number of rules, Eqzs andMSEy, for the

of gravity weighted by the matchingrategy acting as the error obtained over the tralnilng and test data sets, respectively.
e The best results are shown in boldface.
defuzzification operator [18].

Analyzing these results, we may note that the COR-based
methods significantly improve (from a 22% better in the least
favorable case to a 113% in the most) the accuracy of the models

1) Problem Description: The aim in this first problem will compared with non cooperative methods like the WM and CH
be to model the surface of the two-dimensional mathematiGi{jes. |n Table 11l we show how, from the candidate consequent
function £ shown in Fig. 10. To do so, a training data set witket generated in each subspace following the example approach

1The training and test data partitions used for the three problems are availa{al—_@ble ll(@)], the V\_/M'methOd performs the selection consid-
at http://decsai.ugr.es/~casillas/FMLib/ ering the best rule in each subspace [Table Ili(b)], whereas the

A. Modeling of the Three-Dimensional Surfakce
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(logarithmic scale)

cooperative rule in each subspace seems to be more suitable than

1.00E+36 .
1.00E+32 taking the two best local rules.
(]
% 1:835:?2 B. The Rice Taste Evaluation Problem
§ 1.00E+20 1) Problem Description:Subjective qualification of food
©  1.00E+16 7 taste is a very important but difficult problem. In the case of
£ 1.00E+12 7 the rice taste qualification, it is usually put into effect using
¢ 1-00E+08 7 a subjective evaluation called tisensory testin this test, a
1.00E+04 1 _ ; group of experts, usually composed of 24 persons, evaluate
1.00E+00 T - S p WM COR-CH the rice according to a set of characteristics associated with
BF 1,82E+20 1,05E+33 it. These factors arflavor, appearancetaste stickinessand
B Rice 3,44E+401 4,30E+09 toughnesg9], [10]. _ _
@ Electrical 5.18E+04 1 27E+17 Because of the large quantity of relevant variables, the

problem of rice taste analysis becomes very complex, thus
Fig. 11. Search space tackled by the two COR-based algorithms for e4&6lUiring the design of a model representing the existing
problem. nonlinear relationships. Moreover, the problem-solving goal is
not only to obtain an accurate model, but to obtain a user-in-

% terpretable model as well, capable of putting some light on the
30wy cOReH-method reasoning process performed by the expert for evaluating a kind
25 § of rice in a specific way. Due to all these reasons, in this section
20 i“““““‘““ww%‘wx we try to obtain a linguistic model to solve the said problem.
7 5 gmm‘\ To do so, we use the data set presented in [10]. This set is
COR-Whtmethed M composed of 105 data arrays collecting subjective evaluations of
e \“‘“‘g the six variables in question (the five mentioned and the overall
5 NW&W\ \\“M\\ evaluation of the rice kind), made up by experts on the number of
0 - - kinds of rice grown in Japan (for example, Sasanishiki, Akita-

1 1,000 2,000 3,000 4,000 5,000 6,000 7,000

Komachi, etc.). The six variables are normalized, thus taking
Evaluation

values in the real intervd0, 1].
Fig. 12. Evolution chart of the COR-WM-method and COR-CH-method in Because of the small number of examples used, there is a high
the F problem. risk of biasing the learning process. With the aim of making
a fair comparison of the 9 fuzzy rule learning algorithms ana-

COR-WM-method makes use of a cooperative criterion thized, we have randomly obtained several partitions of the men-
takes into account the global behavior of the rules [Table lli(c)ioned set (71% for training and 29% for test). In this way, 10
Hence, the latter method selects a different consequent frpartitions of training and test sets with 75 and 30 pieces, re-
the locally best one in the cells shown in boldface and italicspectively, are considered, thus generating 10 different linguistic
making the accuracy of the obtained model notably better (22%0dels in each experiment. This is the same experimental pro-
and 49% for training and test, respectively). cedure developed by the authors in the paper where the example

The COR-WM-method obtains a more accurate model thdata set is presented [10].
the COR-CH-method. The slight difference between both al- Two labels are considered to partition each linguistic variable
gorithms may depend on the size of the search space tacldednain.
by the corresponding SA processes (Fig. 11 graphically shows) Obtained Results and Analysiable IV shows the arith-
these sizes for the problems considered), larger in the COR-QHetic mean and standard deviation values of the 10 linguistic
method. models generated by each method in this application. Due to

This fact s clearly shown when analyzing the evolution chartle small search space tackled by the COR-WM-method in the
of both methods (Fig. 12). Indeed, we may observe that thiee problem (see Fig. 11), an explicit enumeration instead the
COR-CH-method only obtains a solution as good as the osinulated annealing is used in this case.
generated by the COR-WM-method at the end of the algorithmIn view of the obtained results, both COR-WM-method and
run. COR-CH-method clearly outperform the corresponding WM

The main difference between the COR-CH-method and thed CH methods. Significantly more accurate models (from a
fuzzy grid-based NIT-method is that the latter makes use of tB8% better to a 65%) are obtained thanks to the cooperative rule
two best consequents in each subspace giving a certainty faciomsideration, of course maintaining the same number of rules.
to each while the former analyzes what rule provides the highdoreover, the low standard deviation values show the robust-
global accuracy and only makes use of such a rule. Thus, thess of the COR-based algorithms.
model obtained by the COR-CH-method is more accurate andlable V shows the candidate consequent sets generated by
presents a significantly simpler KB (49 rules against 98, a 508te example approach and the RBs obtained by the WM-method
lesser) than the NIT-method one, which is a very important asad COR-WM-method for a data set partition. The fact of
pectin linguistic modeling where the interpretability is the mainsing only two consequents different from those generated by
requirement. Therefore, in this problem, using the most globallye WM-method (shown in boldface and italics) makes the
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TABLE IV
RESULTS OBTAINED IN THE RICE TASTE EVALUATION PROBLEM
#R MSE;,, MSE,,.:
Method T o T o T o
WM-method 15 1| 0.013284 0.005987 | 0.013119  0.004239
WM+RV Fy-method | 15 1 | 0.014841  0.006291 | 0.0156127  0.005754
WM+RV Fs-method | 15 1 | 0.017049  0.006589 | 0.017320  0.005377
CH-method (RVF;) | 32 0] 0.020296 0.006479 | 0.021184  0.006010
CH-method (RVF,) | 32 0| 0.011567 0.002698 | 0.011927  0.003899
CH-method (RVF3) | 32 0| 0.009803 0.002142 | 0.010834  0.002209
COR-WM-method 15 1| 0.007979  0.001887 | 0.008244 0.001084
COR-CH-method 32 0| 0.007076 0.000571 | 0.008012 0.001766
NIT-method 64 O} 0.008626 0.000345 | 0.009851 0.001931
Z = arithmetic mean, o = standard deviation
TABLE V TABLE VI
WM-METHOD (MSE¢a 4+ = 0.014704/0.016 700) vs. RESULTS OBTAINED IN THE ELECTRICAL APPLICATION
COR-WM-METHOD (MSE4 4 /15t = 0.008232/0.007546) IN THE FIRST
DATA SET PARTITION OF THE RICE PROBLEM #R MSE:,q MSE;,:
Method o z o z 4
FEvaluation WM-method 22 1| 211,733 8,069 | 236,770 12,647
. Candidate - WM+RV Fy-method | 22 1 | 207,302 8,564 | 239,114 35,364
Rule| Flav. App. Taste Stickiness Tough.| > 8% \WM| QO N RV Fomethod | 22 1| 206437 8247 | 236707 31829
R; |bad bad bad not-sticky tender {low} low | low CH-method (RVFy) | 30 2| 228,577 26,035 | 267,323 35,535
Rz |bad bad bad not-sticky tough | {low,high} |low | low CH-method (RVFE;) | 30 2| 268,781 12,284 | 299,444 33,729
Ry | bad good bad not-sticky tender low low | low CH-method (RVF;) | 30 2| 270,264 8,232 | 289,134 34,935
Ry | bad good good not-sticky tender| {low,high} |low | high COR-WM-method | 22 1 | 180,995 7,794 | 220,320 32,492
Ry |bad good good sticky tender| {low} |low| low COR-CH-method | 30 2 | 171,659 2,997 | 203,050 16,890
Re |good bad bad not-sticky tender| {low} |low| low  Ryemhod 61 4] 182,207 2,764 | 219,283 45,400
R7 |good bad bad not-sticky tough low low | low — —— 2 2
Rs |good bad good mot-sticky tender low} low | low & = arithmetic mean, o = standard deviation
Ry |[good good bad not-sticky tender {1ow,highi high| high
Ry |good good bad not-sticky tough | {low,high} |low | high
Ri1 |good good bad  sticky tender {high{ high| high ~ C. The Electrical Distribution Network Problem
R;2 |good good good not-sticky tender| {(high high| high o . .
Ri3 |good good good not-sticky tough {low,high} high| high 1) Problem Description: Sometimes, there is a need to mea-
Ry4 |good good good  sti tender | {low,high} |high| high io i ;
e good good ggod sﬁi}'y tough { {highg} high high sure the amount of electric lines that an electric company owns.

Flay. = Flavor, App. = Appearance, Tough. = Toughness
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This measurement may be useful for several aspects such as esti-
mation of the maintenance costs of the network, which was the
main goal of the problem presented here in Spain [17]. Low-
voltage lines are contained in villages and it is very expensive
to measure their length. Therefore, an indirect method to do so
is needed.

The problem involves finding a model that relates the total
length of low-voltage lingnstalled in a rural town with the
number of inhabitants the town and the mean of the distances
from the center of the town to the three furthest clients irait (
dius of villagg [17]. This model will be used to estimate the total
length of line being maintained. Moreover, it would be prefer-
able that the obtained solutions are not only numerically accu-
rate in the problem-solving, but interpretable by human beings

Fig. 13. Evolution chart of the COR-CH-method in the first data set partitiocld Some degree.

of the

rice problem.

The data set is composed of 495 pieces of real data obtained
from direct measures in this number of villages [17]. We have

COR-WM-method’s model significantly more accurate (44%erformed a five-fold cross-validation for this experiment.
in training and 55% in test).
Opposite to the NIT-method, the COR-based methods2) Obtained Results and Analysighe arithmetic mean and

Seven labels are regarded for each linguistic variable.

obtain a more accurate model with a much lesser numberstndard deviation values of the 5 models generated by each
rules, which significantly improves the interpretability. Thenethod are collected in Table VI.

COR-CH-method obtains the most accurate linguistic modelFrom an analysis of these results, we may again note the
among all the analyzed models. Moreover, it shows a stroggod behavior presented by the proposed COR-based methods.
convergence as can be seen in Fig. 13. We can conclude addirir linguistic models are again more accurate than the cor-
that a cooperative set of simple rules performs better than a mesponding WM and CH methods, with the model obtained by
cooperative set of double-consequent rules. the COR-CH-method being the most accurate among all the an-
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TABLE VII
CH-METHOD vS. COR-CH-METHOD IN A SPECIFIC DATA SET
OF THE ELECTRICAL PROBLEM

TABLE VIII
VALUES OF PARAMETERS USED IN THE TWO SA-BASED METHODS

COR-WM COR-CH
X1 To Nmaz Amaz | Jo0 Nmaz Amaz
X2 __ES Vs S M L VL EL F 40 98 49 | 40 98 98
ES {ES’VS} {ES,VS,S} {VS’ES’S} {VS,S} Rice —_ —_ —_ 70 32 32
VS,ES, | {VS.S, {vs,s, [ {VSs, Electri 2 2
Vs {S,M} L | Moy | mesy {S,M} lectrical | 500 24 4 500 3 32
1VS,5,ES, | {VS,S;M, [{M,L,VS, | {S,L,VL,
S I'MLvL} | L.ES.VL} | S,VL.ES) M Es,vs}| (M5}
{S,vs,M, | {L,M,S, [{VL,S,VS,| {VLM, i iati i -
M| esvL} VS, vLESH LMpBLy | EBLL) {VL,EL}] [{SM} _met_hodds obtalnr:esser _stan:ard r(]JIe_V|at|k;)n values in the general
IVS,SM, | {M,VS,S, [{S;M,VL, | {BLM, ization degree that again show their robustness.
L1 L vL} L,VL} LELy | visy [(VL-BL {s.M}
VS,S {18
vi| V55 ¥ L,M,S M,S
M,L} VS,M} { L ) V. CONCLUDING REMARKS
EL| {M,S} {M,S)

(a) Candidate consequent sets in each subspace following the fuzzy

grid approach

This paper has performed a double task:

1) analyzing the features afl hocdata-driven RB learning
methods by giving a taxonomy and a generic integration

M S S )1\(41 L VL EL scheme;
g; gz ‘Ff: vss \]:As L Vi BL ;; ‘z: ;;s vsTvs 2) introducing the COR methodology.
vs|vs|vs|vs|vs]s vs|vs|vs|vs| s |m The behavior of different methods, including two proposals
s {vs|vs|M|s |M s|vs|sis|mM|s based on our methodology, has been analyzed when solving
M|S|L|VLIVL|VL s MIVS|M|M|ESIVL 5 three specific modeling problems. In view of the obtained re-
LIVSIM| S |BSIVL] S, L js "I:‘ ﬁ ESS ALTE sults, we may point out some interesting conclusions.
VL|VS|L|[L |M VL ) )
BLIM M LM M 1) Among non cooperative methods, both approaches obtain
models with similar accuracy although the example-based
(b) CH-method’s RB gc COR-CH-method’s RB I | y gb frul P
(MSE¢yq/tst = 228,577/267,323) (MSEqpq/es¢ = 171,659/203,050) ones usually generate a lesser number of rules. Howevgr,
sometimes these methods are not as accurate as desired
900,000 due to the reduced number of rules. On the other hand,
800’000 E example-based methods seem to be more suitable than the
700'000 § fuzzy grid-based ones for real-world problems affected by
O noise.
600,000 { .
W 500,000 ‘\3 2) As regards our cooperative proposals, they have ob-
2 oo b ! COR-CH-method tained very good results combining accuracy and
200000 |1 1 interpretability. This leads us to conclude that the consid-
200,000 e eration of cooperative rules improves the performance of
100,000 the linguistic models and the derivation of RBs by firstly
0 COR-WM-method , ‘ generating a candidate rule set and then searching the
1 200 400 Eva‘:ﬂzﬁon 800 1,000 1,200 best combination of rules is a good way to accomplish

this aspect. Moreover, the use of cooperative rules seems

Fig. 14. Evolution chart of the COR-WM-method and COR-CH-method for a to be very robust against noise.

specific data set partition in the electrical problem.
APPENDIX |
SA-BASED ALGORITHMS CONSIDERED IN THE
EXPERIMENTAL STUDY

The SA-based algorithms used in the COR-based methods
take the following aspects into account.

The differences of accuracy found between the 1) The cooling scheme used will be the exponential one pro-
COR-WM-method and COR-CH-method seem to be re-  posed by Kirkpatrick [19]{x+1 = Ti-C, withC' = 0.9).
lated to the sizes of the search spaces tackled, which allow the2) The equilibrium at a specific temperature will be achieved
COR-CH-method to accomplish a better search thus obtaining When amaximum number of neighbo{$/,..x) has been
a better performing model. This fact is clearly illustrated ~ generated or when maximum number of acceptances
in Fig. 14, where the evolution charts of both processes are  (Amax) has been attained.
shown. It is also interesting to note that the consideration of 3) Finally, as regards the stopping criterion, the algorithm
cooperation among the linguistic rules lessens the noise effect Will stop when no neighbor is accepted for a specific tem-
observed in noncooperative methods, especially in the CH  perature.
ones. Table VIl shows the values of parameters considered in the

The COR-CH-based method again obtains a model witlwvo SA-based methods for each application, wHEyestands
better performance than the NIT-method. Moreover, ofor theinitial temperature

alyzed models. Table VII shows the candidate consequent sets
(according to the fuzzy grid approach) and the RBs generated
by this method and the CH-method (witV}';) for a specific
data set partition. In that tabl&;; stands for the population size
and X for the radius of village.
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We may outline some general criteria about the values use Main RB
for each parameter. hy>h,  IF..THEN Y is Lg with h;

1
h
1) A logical stance to establish the value &f,.x is to X h, Secondary RB
make it a multiple of the number of rules considered, ; 0 IF ... THEN Y is Lp with h,
i.e., the number of subspaces with examples according t
the 'e‘f"m'”g gpproach 'followe(d’\fc). Thus, th.e values Fig. 15. Obtaining linguistic rules from singleton ones in the NIT-method.
associated with the different subspaces will have, on
average, the same probability of being changed. The
value of A, is usually a percentage (50%-100%) ofSA-based algorithms very sensitive to the initial temperature
Ninax- value—particularly the COR-CH-method because of its larger
Higher values forV,,., and A,,.. are usually recom- search space size—obtaining significantly different accuracy
mended when the algorithm must tackle a large seartsults depending on it. To face this difficulty performing a
space. proper exploration, a high enough initial temperature should be
3) Higher values fofl;, are usually recommended when theonsidered. After some previous experiments, this value was
problem has a high risk of falling in local optima. set to 500 in both SA-based methods.
In the following subsections, detailed descriptions of the pa- Vmax and Au.x values were set tdVc in both algorithms.
rameter value decisions taken for each problem are shown. The number of evaluations needed to obtain the solution was
69 and 1,129 for the COR-WM-method and COR-CH-method,

Ly Ly Ly Ly

Po

2)

A. Surface Modeling of the Two-Dimensional Function

As the search space tackled by COR-based methods for the
F problem is large (see Fig. 11), the parameters of the two SA

respectively.

APPENDIX Il

processes have been set with the aim of exploring a great numbeKozaki, ISHIBUCHI, AND TANAKA 'S LEARNING METHOD

of possibilities at each temperature. This W&y, ., was2- N¢
in both cases. As for,,..., the values wereV- and2 - N¢

The NIT-method—proposed by Nozaki, Ishibuchi, and

for the COR-WM-method and COR-CH-method respectivelyanaka in [10]—consists of two phases.

since the former tackles a smaller search space.

The initial temperature was 40 in both cases. Nevertheless,
similar accuracy results were obtained with a wide range of
values. This fact shows the robustness of the SA-based algo-
rithms for theZy parameter in this problem.

The COR-WM-method and COR-CH-method respectively
needed 6,084 and 6,924 evaluations to find their solutions.
Considering the huge search space tackled, these values are
significantly small. Experiments with a genetic algorithm
tackling the same search space obtained similar accuracy
results with a number of evaluations in the order of 20 000.

B. The Rice Taste Evaluation Problem

For the rice problem, we should say that in the COR-WM-
method case, due to the small size of the example set and to
the small number of linguistic terms in the consequent linguistic
variable, a reduced number of combinations (see Fig. 11) is gen-

erated in the first step of the combinatorial search. Therefore, the2)

explicit enumeration has been used in this method instead of the
SA procedure since the best solution can be quickly found.

For the COR-CH-method, which works with a medium
search space size (see Fig. 1¥),.. and A, were set to
Ne. The initial temperature was 70. This decision was taken
because the problem has a slight risk of falling in local optima
and the SA-based algorithms presented certain sensibility to
this parameter. As for the number of evaluations needed to
obtain the solution, the average value for the 10 models was
3,963.

C. The Electrical Distribution Network Problem

Due to the nature of the electrical problem, there is a
high risk of coming across local optima. This fact makes the

1) First phase, generation of singleton rutesn a first step,

a KB with singleton consequents (i.e., containing real
values instead linguistic terms in the output variable) is
learnt. To determine the real consequent of each rule, a
weight is defined for each training data array as the re-
sult of raising the membership degree of the input to the
power « (a parameter that defines a nonlinear scaling
function) and of getting the product of the membership
function values of each input. This additional parameter
will not be considered in our experiments (we will set
« = 1) since this paper aims to analyze the rule gener-
ation process without modifying the DB definition.

The real-valued consequent will be obtained as the
weighted average of the known output value associated
with each array of input values. If the weight (matching
degree) is zero, the rule will not be considered (therefore,
the NIT-method follows the fuzzy grid approach).
Second phase, transformation into linguistic rulels
this step, singleton representation is translated into the
linguistic one keeping a similar accuracy. It is achieved
thanks to the use of two linguistic RBs: the main and sec-
ondary ones. In the first place, it will be necessary to ac-
complish a fuzzy partition of the universe of discourse
of the consequent in some linguistic labels. The authors
consider uniformly distributed partitions with triangular
membership functions (as shown in Fig. 1).

Then, the membership degree of the singleton conse-
quent(po) to each fuzzy set in the output variable fuzzy
partition is computed. The linguistic label of the fuzzy set
with the largest membership degrde (n the example of
Fig. 15) is taken to compose the fuzzy rule in the main RB,
whereas the linguistic label with the next higher member-
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TABLE IX
NOTATION FOLLOWED IN THE PAPER

(1

Notation Meaning
n | Number of input variables
i | Input variable counter, (1 < i < n) [2
A; | Set of linguistic terms of the i-th input variable
B| Set of linguistic terms of the output variable [3]
k | Term counter of the output variable, (1 < k < |B|)
E [ Set of input-output data pairs (examples) [4]
N | Number of examples, N = |E}
{ | Example counter, (1 <1< N) (3]
z! | Value of the i-th input variable of the I-th example
y’ Value of the output variable of the I-th example (6]
el [ An (n + 1)-dimensional vector containing the I-th ex- 7]

ample, & = (z},...,2%,y9

Al | The fuzzy set best covering z¢, Al € 4;

B’ The fuzzy set best covering yl, B’ €B 8]
CR! | Candidate rule obtained from the [-th example, CR' =

IF X1 is A and ... and Xn is AL, THENY is B

N, [ Number of multidimensional fuzzy input subspaces, [9]
N, = H?=l I'A“I

s | Multidimensional subspace counter, (1 < s < N,)

A? | Linguistic term used in the subspace S; for the i-th [10]
input variable, A} € A;

S5 | s-th n-dimensional fuzzy input subspace,

Ss =(Af,...,A},..., A7) [11]
E!|Set of input-output data pairs (examples) that
are located in the subspace Ss, E, = {e: =

@8y s2h ) E B | pag(al) . pag (@h) # 0} [12]
egs | 1*-th example located in the subspace S;, €;s € E)

B? | Set of linguistic labels in the output variable term set

which contain examples belonging to E., B®* = {By, €

B such that 3es € E, with up, (@) #0} [13]
¢s | Number of candidate consequent fuzzy sets in the sub-
space S,, ¢; = |B?|

k® | Candidate consequent fuzzy set counter in the sub-

space Ss, (1 <k* < ¢s) (14]
Bg, | k*-th candidate consequent fuzzy set in the subspace
Ss, B, € B®
R;, | Rule in the subspace Ss with the consequent B}, (15]
Nc¢ | Number of multidimensional fuzzy input subspaces
which contain examples, N¢ = |{E} s.t. E; # 0} [16]
7 | Counter of candidate consequent sets which contain at
least one example, (1 < j < N¢) [17]

r; | Identification of the j-th candidate consequent set that
contain at least one example, i.e., r; € {1,...,N,}
such that B™5 £ ¢

[ST[Cardinality of the set 5 18]
#4(z) | Membership degree of the value x over the linguistic
label (associated fuzzy set) A
CVr{(R,e) | Covering value of the rule R = IF X, is A; and...and [19]
Xn ts Ap, THEN Y is B over the example e =
(z1,...,%n,y) using the t-norm T,
CVr(R,e) = T(4a,(Z1);- - -, A, (Zn), 15 (Y))

ship value (., in Fig. 15) is considered for the secondary
RB.

Besides, the said membership degrees are considered as rule
weights ¢3 andh. in the drawing). The inference system con-
sidered makes use of these weights to draw profit from the two
RBs.

APPENDIX Il
NOTATION

Table IX collects the notation used in this paper.
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