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Abstract

When designing rule-based models and classifiers, some precision is sacrificed to

obtain linguistic interpretability. Understandable models are not expected to outper-

form black boxes, but usually fuzzy learning algorithms are statistically validated by

contrasting them with black-box models. Unless performance of both approaches is

equivalent, it is difficult to judge whether the fuzzy one is doing its best, because the

precision gap between the best understandable model and the best black-box model is

not known.

In this paper we discuss how to generate probabilistic rule-based models and clas-

sifiers with the same structure as fuzzy rule-based ones. Fuzzy models, in which features

are partitioned into linguistic terms, will be compared to probabilistic rule-based models

with the same number of terms in every linguistic partition. We propose to use these

probabilistic models to estimate a lower precision limit which fuzzy rule learning al-

gorithms should surpass. � 2002 Published by Elsevier Science Inc.
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1. Introduction

Descriptive fuzzy models and classifiers depend on linguistic variables
[23,24], which, in turn, are related to fuzzy partitions of input and output
variables. Fuzzy rule learning algorithms induce rules and partitions from
examples, so both a linguistic description and the meaning of every term in it
are obtained.

It is commonly assumed that some precision must be sacrificed to achieve
interpretability and thus black-box models and classifiers are more precise than
their understandable fuzzy counterparts. But, when designing fuzzy models,
one does not always have a reference about the error that the understandable
model should have and thus, it is difficult to judge how far the learning algo-
rithm is from doing its best. Many times, fuzzy models are compared to models
with a different structure (statistical, neural networks, etc.) but this comparison
is relevant only when both methods perform similarly. If not, it cannot be said
whether the difference is due to a failure in the learning algorithm or it is in-
herent to the problem. To solve this problem, we propose to use statistical
procedures to obtain models and classifiers very similar to their fuzzy coun-
terparts, so that their performance gives a reference about the minimum quality
that should be obtained when designing linguistically understandable fuzzy
models or classifiers.

This paper is organized as follows. First, we define statistical classifier sys-
tems and regression models. Then we establish the meaning of ‘‘linguistically
understandable’’ classifiers or models, and propose simple methods for esti-
mating these classifiers and models’ parameters from a sample. Finally, we
compare the output of these algorithms with the output of some usual fuzzy
rule learning algorithms and discuss the advantages of both approaches.

2. Statistical classifiers and models

2.1. Definition of a statistical classification problem

Let us suppose we have a set X that contains objects x, each one of them
belonging to a class ci, i ¼ 1; . . . ;Nc, and we perform the set of measurements
X ðxÞ ¼ ðX1ðxÞ; . . . ;XNiðxÞÞ over every object. Let us also assume that the
mapping X fulfills all necessary conditions to be a random variable. We will say
that a classification system is a decision rule that maps every element of X ðXÞ
to a class ci, whose main objective is to produce a low number of errors. Al-
ternative objectives could also be used: for instance, the decision rule could be
expressed in a natural language (e.g., by using if–then rules) or we could search
for decision rules whose algorithmic expression is short enough, to save
computation time when making a decision.
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We will limit ourselves to the main objective, by now. For example, let X be
a set of fruits: apples ðc1Þ, pears ðc2Þ or bananas ðc3Þ. We observe the weight
and the color of a randomly selected fruit, for example, X ðxÞ ¼
ðyellow; 150Þ. Our classification system relates the pair ðyellow; 150Þ to the
class c3, and we wish this relation to be true most of the times (i.e., most of the
yellow fruits that weight 150 g are bananas).

Since we did not assume that x1 6¼ x2 ) X ðx1Þ 6¼ X ðx2Þ (i.e., we admit that
there can exist a yellow pear weighting 150 g) perhaps a decision rule that never
fails cannot be defined for this problem. But an optimum classifier can be
defined with respect to the average number of errors. Usually we evaluate the
expectation of a new random variable that quantifies the cost of assigning the
class ci to an object when it belongs to class cj, costði; jÞ. If the classifier is a
decision rule, DðX Þ, and ‘‘classðxÞ’’ is the class of the object x then the error is

errðDÞ ¼
Z

X
costðDðX ðxÞÞ; classðxÞÞ dP :

If we choose costði; jÞ ¼ 1 when i 6¼ j and 0 else, the expectation of the cost
function is the mean number of errors. This rule is called ‘‘minimum error
Bayes rule’’ and the optimum classifier is [9]

DðxÞ ¼ arg max
i¼1;...;Nc

P ðclassðxÞ ¼ ci jX ¼ xÞ:

Observe that an algorithm to set up a decision rule from a sample was not
given. It was merely stated that if objects are randomly selected and the min-
imum error Bayes rule is used, then the optimum classifier has this form.

2.2. Definition of a regression problem

Let us suppose again we have a set X that contains objects x, and we per-
form the set of observations

ZðxÞ ¼ ðX ðxÞ; Y ðxÞÞ ¼ ðX1ðxÞ;X2ðxÞ; . . . ;XNiðxÞ; Y1ðxÞ; . . . ; YNo
ðxÞÞ;

where Z is a random variable. The regression function is a mapping r that
approximates the value of ‘‘Y’’ measurements (outputs) with the images of ‘‘X’’
measurements (inputs). We will admit that the best approximation is the one
that minimizes the mean difference between Y and rðX Þ,

EðrÞ ¼
Z

X
kY ðxÞ � rðX ðxÞÞk dP :

If we define kY ðxÞ � rðX ðxÞÞk ¼ ðY ðxÞ � rðX ðxÞÞÞTðY ðxÞ � rðX ðxÞÞÞ it is well
known that the solution is the conditional expectation EðY jX Þ and, in this
particular case,

rðxÞ ¼ EðY jX ¼ xÞ:
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Once the general expression for the regression function or model is given,
inducting it from a sample of objects can be formulated again as a parametric
problem (i.e., linear regression, etc.) or as a non-parametric estimation of the
conditional density functions f ðy jxÞ, making

rðxÞ ¼ EðY jX ¼ xÞ ¼
Z
Y ðXÞ

yf ðy jxÞ dy:

Alternatively, if X contains outliers, it is common to define a robust esti-
mator like

rðxÞ ¼ arg max
Y ðXÞ

f ðy jxÞ:

When Y ðxÞ is a discrete set, robust regression and classification are the same
problem.

3. A linguistically understandable statistical classifier

Sometimes it is needed to obtain a linguistically understandable classifier.
This means we need to set up a decision rule that can be codified in a language
that allows it to be linguistically communicated. Fuzzy logic techniques allow
the obtention of such classifiers [25].

The semantic of a fuzzy classifier depends on the equivalence between lin-
guistic values of attributes and certain fuzzy sets defined over the range of every
feature, and on a fuzzy inference procedure. For example, the sentence [6]

if x is ~AA then class ¼ ðc1 with conf p1; . . . ; cNc
with conf pNc

Þ

means

truthð ~AA ! c1Þ ¼ p1; . . . ; truthð ~AA ! cNc
Þ ¼ pNc

;

where the concept ‘‘ ~AA’’ is linked to a fuzzy subset of the feature space.
The same sentence can be given a probabilistic meaning [20]: if A is a crisp

subset of X ðXÞ, then the sentence means

P ðc1 jAÞ ¼ p1; . . . ; PðcNc
jAÞ ¼ pNc

;

with
PNc

i¼1 pi ¼ 1. The probabilistic logic-based view has some advantages. It
can be used to give a statistical meaning to the process of inducting a rule-
based classifier from examples, as we will show below. But it is not immediate
to compare it to fuzzy logic-based rules, in which ‘‘ ~AA’’ is a fuzzy set. On the
contrary, we will show that fuzzy classifiers can be compared to certain random
set-based classifiers, which in turn are defined as the expectation of the prob-
abilistic logic-based ones for a given sample distribution.
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3.1. Relationship between fuzzy and probabilistic classifiers

Suppose we have a machine learning procedure to estimate a crisp partition
fAjgj¼1;...;Nr

of the feature space, Aj \ Ak ¼ / for j 6¼ k, plus the values
P ðci jx 2 AjÞ ¼ pij that define a probabilistic logic-based classifier. The machine
learning task takes as input a random sample X of classified examples and
produces a partition fAX

1 ;A
X
2 ; . . .g and the values P ðci jx 2 AX

j Þ ¼ pXij . In turn,
for an input value x, the classifier that was learned from the sample X outputs
the probabilities of all classes according to the formula

P ðci jx;XÞ ¼
X
j

pXijA
X
j ðxÞ; ð1Þ

where AX
j ðxÞ is 1 if x 2 AX

j and 0 else.
It is well known that the expected error of this classifier (we will use the

notation h iX to denote expectation with respect to the sample distribution of X)
is the sum of two positive terms, bias plus variance, where the bias is the error
of the average classifier

P ðci jxÞ ¼
X
j

pXijA
X
j ðxÞ

* +
X

: ð2Þ

Since the variance term is positive, the error of this average classifier is lower
than the mean error of the individual classifiers. We can reorder the terms in
(2):

P ðci jxÞ ¼
X
j

pXijA
X
j ðxÞ

D E
X
; ð3Þ

and if the random variables pXij and AX
j ðxÞ (both defined with respect to X) were

independent,

P ðci jxÞ ¼
X
j

pXij
D E

X
AX
j ðxÞ

D E
X
¼
X
j

pXij
D E

X
UjðxÞ; ð4Þ

where UjðxÞ is the one-point coverage function of the random set AX
j . Observe

that
P

j A
X
j ðxÞ ¼ 1 for all x, so h

P
j A

X
j ðxÞiX ¼ 1 and then

P
j Uj ¼ 1 for all

values of x (in words, the sum of the memberships is always equal to 1).
Expression (4) is very similar to the fuzzy inference formula applied to a

fuzzy classifier defined by the rules ‘‘truthð ~AAj ! ciÞ ¼ tij’’, j ¼ 1; . . . ;Nr:

truthðciÞ ¼
_
j

truthð ~AAj ! ciÞ ^ ~AAjðxÞ ¼
_
j

tij ^ ~AAjðxÞ: ð5Þ

The truth value tij is the counterpart of the value hpXijiX and the one-point
coverage function UjðxÞ is related to the membership function of the fuzzy set
~AAjðxÞ. The t-norm ^ is replaced by the product, and the t-conorm _ by the sum.
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The value hpXijiX is the expected probability of class i given the set ÂAX
j , this is

the mean value of Pðci jAX
j Þ for all probabilistic logic-based classifiers with

respect to the sample distribution. It can be regarded as the degree of truth of
the assertion ‘‘All elements in Aj belong to class i’’. The function UjðxÞ is the
probability of x being covered by the random set AX

j , and thus can be associ-
ated to the truth of the assertion ‘‘x belongs to Aj’’. It is possible to assign
linguistic labels to the random sets AX

i and draw their coverage functions in a
form that closely resemble a Ruspini fuzzy partition (see Fig. 1). In Fig. 2 the
three types of classifiers that have been discussed (probabilistic, random sets
based and fuzzy sets based) are represented along with their inference proce-
dures.

3.2. Estimating the classifier from a sample

Let us suppose we know the antecedents of the rules (the functions ‘‘truth(Aj

is x)’’ or Uj; j ¼ 1; . . . ;Nr) and we wish to estimate their consequents (the
values ‘‘truth(Aj ! ci)’’ or hpXijiX). For simplicity in the notation, let hij ¼ hpXijiX
and H be the parameter vector of all unknown parameters,

H ¼ hpX11iX; . . . ; hpX1Nr
iX; . . . ; hpXNcNr

iX
	 


¼ h11; . . . ; h1Nr ; . . . ; hNcNrð Þ: ð6Þ

The verosimility function Vh is defined as follows:

Vh ¼
Y
x2X

XNr

j¼1

hclassðxÞ;jUjðxÞ ð7Þ

and its maximum, restricted to the conditions
PNc

i¼1 hij ¼ 1 for j ¼ 1; . . . ;Nr and
hij P 0, is a good estimation of the unknowns.

It is easier to work with the logarithm of this function

LðHÞ ¼ logðVhÞ ¼
X
x2X

log
XNr

j¼1

hclassðxÞ;jUjðxÞ: ð8Þ

Fig. 1. Graph of the degrees of truth of a numeric value being compatible with the properties

‘‘low’’, ‘‘medium’’ and ‘‘high’’. These labels are associated to random sets AX
1 , AX

2 and AX
3 , re-

spectively, and the degree of truth of the assertion ‘‘x is label’’ is the probability of x being covered

by the corresponding random set. For example: truth(‘‘80 is low’’)¼ P ð80 2 AX
1 Þ.
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Using Lagrange multipliers to cope with the restrictions, we have to mini-
mize

L1ðH; k1; . . . ; kNrÞ ¼
X
x2X

log
XNr

j¼1

hclassðxÞ;jUjðxÞ þ
XNr

j¼1

kj 1

 
�
XNc

i¼1

hij

!
: ð9Þ

Fig. 2. Three types of classifiers are used in this paper: probabilistic classifiers output degrees of

confidence depending on a crisp partition; the output of random set classifiers is the expectation of

probabilistic classifiers’ and confidences are added after multiplying them by the coverage func-

tions; fuzzy sets use t-norms and t-conorms instead of products and sums. We will compare random

set classifiers with fuzzy classifiers in experiments for which fuzzy memberships and coverage

functions are numerically identical.
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Taking derivatives with respect to hij and kj, we obtain the following con-
ditions that are true in the minimum:

X
x2X

classðxÞ¼i

UjðxÞPNr
j¼1 hijUjðxÞ

¼
X
x2X

classðxÞ¼k

UjðxÞPNr
j¼1 hkjUjðxÞ

; ð10Þ

XNc

i¼1

hij ¼ 1 for j ¼ 1; . . . ;Nr; i; k ¼ 1; . . . ;Nc: ð11Þ

The first set of equalities (Eq. (10)) produces Nc � 1 equations and the
second one (Eq. (11)) leads to Nr, thus the search of the parameters consists in
numerically solving a system of Nc � Nr nonlinear equations.

The pseudocode of the procedure we used to find the solution is shown in
Fig. 3. Observe the similarities and differences between gradient–descent-based
rule learning methods: this is a constrained minimization and the objective
function is not the classification error over a sample, but a function of the
classification margins of all examples, which can be related to boosting algo-
rithms [18].

Whilst fuzzy rule banks can be incomplete, probabilistic ones cannot. All
consequents are initialized to the value 1=Nc to express the initial absence of
knowledge. If the learning algorithm finishes and there are still rules like these,
they can be skipped when doing an inference (Eq. (4)) without affecting the
output of the classifier. We can define an ‘‘equivalent number of rules’’ to

Fig. 3. Pseudocode of the numerical algorithm used to solve the set of equations (11). The linear

search (determination of the value of a) was implemented with Brent’s method. All points examined

fulfill (11) because of the function normalize, and the algorithm stops when the conditions (10)

are approximately true.
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compare the complexity of a complete probabilistic rule bank to that of an
incomplete fuzzy rule bank as the number of rules for which the degree of
confidence in any of their consequent parts is different from 1=Nc.

Determining which set of N 0
r < Nr rules produces the best classifier has

practical relevance. When the number of features is high, the number of pa-
rameters grows above all practical linguistic interpretability, and then it is
useful to decide whether an approximate solution in which most of the pa-
rameters are 1=Nc (thus they can be ignored) is precise enough. Moreover,
many fuzzy rule learning algorithms produce incomplete rule banks and it is
reasonable to compare them to random set-based classifiers with the same
structure, but also with the same ‘‘equivalent number of rules’’.

As far as we know, finding the best set of N 0
r rules in polynomial time is an

open problem. A heuristic method to obtain banks with a reduced number of
rules is shown in Fig. 4. This algorithm does not guarantee that there is not a
different set of rules with higher verosimility, but has good properties in
practical problems. It just selects rules containing the parameters for which the
partial derivatives of Eq. (9) are higher in the initial point of the minimization
(hij ¼ 1=Nc).

Fig. 4. Pseudocode of the numerical algorithm that uses a heuristic method to learn a bank

comprising at most N 0
r rules.
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3.3. Approximate and descriptive rules

Nc rules of the form truthð ~AAj ! ckÞ ¼ pkj can be combined into the assert

if x is ~AAj then

class ¼ ðc1 with conf p1j; . . . ; cNc
with conf pNcjÞ:

ð12Þ

Unless the concept ~AAj can be expressed as the conjunction of independent
properties defined over every feature, it is difficult to understand the meaning
of this last assert; it is easier to use expressions like

if x1 is ~AAj1 and � � �and xNi is
~AAjNithen

class ¼ ðc1 with conf p1j; . . . ; cNc
with conf pNcjÞ;

ð13Þ

where all fuzzy sets ~AAjk, j ¼ 1; . . . ;Nr, belong to a given fuzzy partition of the
feature k. This is a typical rule structure in the field of fuzzy classifiers. We will
call linguistic or descriptive to classifiers based on expression (13), and ap-
proximate fuzzy classifiers to those based on expression (12), following the
nomenclature in [5].

Not all approximate fuzzy classifiers can be expressed with linguistic
classification rules. The conditions they must fulfill are immediate in fuzzy
logic

~AAjðxÞ ¼ ~AAj1ðx1Þ ^ � � � ^ ~AAjNiðxNiÞ
and exactly the same in probabilistic logic-based rules,

if x1 is Aj1 and � � �and xNi is AjNithen

class ¼ ðc1 with conf p1j; . . . ; cNc
with conf pNcjÞ;

ð14Þ

where the antecedents Aj must be hypercubes in the feature space. If AjðxÞ ¼ 1
for all x 2 A and 0 else,

AjðxÞ ¼ Aj1ðx1Þ ^ � � � ^ AjNiðxNiÞ
and all intervals Ajk must be elements of the same crisp partition of the feature
k.

Recalling Eq. (1), the probabilistic rule-based classifier that was learned
from the sample X outputs the probabilities of all classes according to the
formula

P ðci jx;XÞ ¼
X
j

pXij
YNi

k¼1

AX
jkðxkÞ; ð15Þ

where
QNi

k¼1 A
X
jkðxkÞ is 1 or 0. Operating, we obtain that

P ðci jxÞ ¼
X
j

pXij
D E

X

YNi

k¼1

AX
jkðxkÞ

* +
X

: ð16Þ
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Thus the condition we need to obtain a descriptive random set-based classifier
is

UjðxÞ ¼
YNi

k¼1

UjkðxkÞ ¼
YNi

k¼1

AX
jkðxkÞ

* +
X

; ð17Þ

which is fulfilled when random variables P ðxk 2 AX
jkÞ are independent. In this

last case,

UjkðxkÞ ¼ AX
jkðxkÞ

D E
X

ð18Þ

and the descriptive classifier can then be expressed as a set of rules of the form

if x1 is Uj1 and . . . and xNi is UjNi then

class ¼ ðc1 with conf hpX1jiX; . . . ; cNc
with conf hpXNcj

iXÞ:

Selecting a parametric family of coverage functions Ujk is equivalent to
define a family of sample distributions over X. It is immediate that all functions
Ujk can be interpreted as elements of a Ruspini’s fuzzy partition of feature k.
We will use triangular coverage functions in all numerical examples, as shown
in Fig. 1.

4. Numerical examples

4.1. Pure linguistic classification problem

For testing the algorithm we first generated a synthetic pure descriptive
problem. We defined the following set of rules:

If x1 is ~RR1 and x2 is ~RR1 then class1 ¼ 0:90 and class2 ¼ 0:10
If x1 is ~RR1 and x2 is ~RR2 then class1 ¼ 0:85 and class2 ¼ 0:15
If x1 is ~RR1 and x2 is ~RR3 then class1 ¼ 0:60 and class2 ¼ 0:40
If x1 is ~RR2 and x2 is ~RR1 then class1 ¼ 0:40 and class2 ¼ 0:60
If x1 is ~RR2 and x2 is ~RR2 then class1 ¼ 0:80 and class2 ¼ 0:20
If x1 is ~RR2 and x2 is ~RR3 then class1 ¼ 0:40 and class2 ¼ 0:60
If x1 is ~RR3 and x2 is ~RR1 then class1 ¼ 0:20 and class2 ¼ 0:80
If x1 is ~RR3 and x2 is ~RR2 then class1 ¼ 0:10 and class2 ¼ 0:90
If x1 is ~RR3 and x2 is ~RR3 then class1 ¼ 0:00 and class2 ¼ 1:00

The sets ~RR1, ~RR2 and ~RR3 are shown in Fig. 5. Then we generated two sets of
100 and 1000 examples each, using the algorithm shown in Fig. 6, and applied
the algorithm in Fig. 3 to infer the values of the coefficients. After 20 linear
searches in both cases (the order of convergence of this algorithm does not
depend on the number of examples, but the time needed to calculate the ver-

L. S�aanchez et al. / Internat. J. Approx. Reason. 29 (2002) 175–213 185



osimility function (Eq. (8)) grows linearly with it), the inferred rule banks are
summarized in Fig. 7.

4.2. Haykin’s two gaussian problems

To make a graphical comparison of this method, we are going to analyze the
dataset proposed in [10]: 4000 points taken from two overlapping gaussian
distributions with different variances.

5 � 2cv Dietterich’s test [7] was applied to judge the relevance of the dif-
ferences of the classification methods considered. The sample of 4000 points
were randomly permuted first, the first half of samples was used to train the
method and the second half to test it and then training and test sets were

Fig. 5. Membership functions of the example in Section 4.1.

Fig. 6. Algorithm used to output a point of the learning sample in the problem discussed in Section

4.1.

Fig. 7. True (left) and estimated values for the example explained in Section 4.1. The central table

was estimated from 100 samples, the right one from 1000.
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swapped and the learning and test phase repeated. This was repeated for five
different random permutations. Training errors were discarded so that box-
plots show the dispersion of the error in test sets. The mean of test errors are
tabulated for the experiment.

The optimal decision surface is a circle, and the bayesian test error is 0.185.
The error of the linear classifier is 0.24, which is near enough the optimal so-
lution to confuse many rule learning algorithms. The shape of the decision
surface in areas with low density of examples (i.e., the left side of the circle)
does not contribute too much to the classification error. For example, the
neural network shown in Fig. 8 has an error of 0.20, which is near the bayesian
error, but its decision surface is wrong in the left part.

In Figs. 8–11 this problem has been solved with some black-box methods
(linear, quadratic, 1-NN, neuronal) and descriptive rule-based methods: Wang
and Mendel’s (WM) [21], Ishibuchi’s (ISH) [11], Pal and Mandal’s (PM) [14]
and random set-based (RSB). This is not a problem well suited to linguistic
classifiers, so it is expected that rule-based methods perform worse than sta-
tistical ones. The optimal solution in this case is the quadratic one.

The p-values in the 5 � 2cv Dietterich’s test (Fig. 11) allow us to statistically
compare the performance of the different algorithms. Low values (<0:05) mean
that we reject that two algorithms are the same, being better than those with a
better mean (a lower value in Fig. 10). Statistical methods like this cannot
assess the differences when one of the methods has high variance in its results
(most of the fuzzy learning methods do) and should be completed with a
boxplot (see Fig. 9).

In Fig. 12, descriptive classifiers are compared when the number of linguistic
terms in every partition ranges from 4 to 7. In this figure we observe that the
decision surface of the descriptive random set-based classifier tends to the
optimum when the number of labels is allowed to increase, as we expected.

Later, we will compare all these classifiers over different datasets following
the same comparison methodology.

5. A linguistically understandable statistical model

There are different definitions of fuzzy rule-based models. Consequents can
be fuzzy sets, real numbers or hyperplanes [22]. Fuzzy rules in which the
consequent is a real number can be converted to linguistic rules in some cases
[13] but the latter type [19] cannot. We will adopt the same nomenclature we
used in fuzzy classifiers and define an approximate rule-based model as a set of
Nr rules of the form

if x is ~AAj then

output ¼ ð ~BB1 with conf t1j; . . . ; ~BBNo
with conf tNojÞ:

ð19Þ
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Fig. 8. From left to right, Upper part: decision surfaces of the quadratic (optimal for this problem)

and two black-box classifiers (linear and nearest neighbor) inducted for the problem described in

the text. Middle: neural network, fuzzy rule-based classifiers inducted by Wang and Mendel [21]

and Pal and Mandal’s method. Lower part: fuzzy rule-based classifier inducted by Ishibuchi [11],

and probabilistic rule-based as proposed in this paper. All rule-based classifiers are of ‘‘descriptive’’

type and four linguistic terms by feature were used. The dashed circle is the optimal decision

surface.
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Linguistic or descriptive fuzzy models must fulfill additional properties. We
will return to this point later.

A probabilistic rule-based model is identical to the fuzzy one except for the
antecedents being crisp sets and the interpretation given to them

if x is Aj then

output ¼ ðB1 with conf p1j; . . . ;BNo
with conf pNojÞ:

ð20Þ

Fig. 10. Mean value of classification error rates, estimated from the test sets of 5 � 2cv method.
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Fig. 9. Comparative performance of classification systems. The boxplots contain the minimum and

maximum of test error, the median, 25% and 75% percentiles according to 5 � 2cv comparison.

From left to right: linear, quadratic, neuronal, 1-NN, WM, ISH, PM and RSB classifiers.
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In addition,
PNo

i¼1 pij ¼ 1 for j ¼ 1; . . . ;Nr. In our framework, the only dif-
ference between a linguistic model and a linguistic classifier is in their
consequents: they are integer numbers in a classifier, but elements of a fuzzy
or crisp partition of the output space in fuzzy or probabilistic models,
respectively.

We will interpret the output of the probabilistic model with the help of a
density function with constant value over each set Bk like the one shown in Fig.
13. The values pij are the probability masses of every element of the output
partition

P ðy 2 Bi jxÞ ¼
X
j

pijAjðxÞ; ð21Þ

and the density function is

f ðy jxÞ ¼
X
i

BiðyÞ
rðBiÞ

X
j

pijAjðxÞ; ð22Þ

where rðBiÞ is the measure of the set Bi and BiðyÞ is 1 if y 2 Bi and 0
otherwise. Let us extend now the relationship between probabilistic and
random set-based classifiers, that was introduced in Section 3.1, to the
modeling problem. Let us suppose that a machine learning procedure pro-
duces AX

j , pXij and BX
i . The density function that the model learned from the

sample X outputs is

f Xðy jxÞ ¼
X
i

BiðyÞ
rðBiÞ

� �XX
j

pXijA
X
j ðxÞ: ð23Þ

The average value of f Xðy jxÞ is

f Xðy jxÞ
� �

X
¼
X
i

BiðyÞ
rðBiÞ

� �XX
j

pXijA
X
j ðxÞ

* +
X

ð24Þ

Fig. 11. p-Values in 5 � 2cv test for the Haykin problem.

190 L. S�aanchez et al. / Internat. J. Approx. Reason. 29 (2002) 175–213



Fig. 12. Effect of the number of elements in the partition: from upper to lower. All parts, from left

to right: decision surfaces induced by RSB, fuzzy WM, fuzzy ISH and fuzzy PM rule-based clas-

sifiers with 4, 5, 6 and 7 terms/feature. The dashed line is the optimal decision surface.
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assuming that the random variables ðBiðyÞ=rðBiÞÞX, pXij and AX
j ðxÞ are inde-

pendent,

f Xðy jxÞ
� �

X
¼
X
i

BiðyÞ
rðBiÞ

� �X
* +

X

X
j

pXij
D E

X
AX
j ðxÞ

D E
X

¼
X
i

CiðyÞ
X
j

pXij
D E

X
UjðxÞ; ð25Þ

where
P

j UjðxÞ ¼ 1,
P

ihpXijiXUjðxÞ ¼ 1 and
R
Y ðXÞ CiðyÞdy ¼ 1. The expected

value of this density function is also a density function,

Z
Y ðXÞ

f Xðy jxÞ
� �

X
dy ¼

X
i

X
j

pXij
D E

X
UjðxÞ

Z
Y ðXÞ

CiðyÞ dy ¼ 1; ð26Þ

so it makes sense to define

rðxÞ ¼
Z
YðXÞ

y
X
i

CiðyÞ
X
j

hpXijiXUjðxÞ dy ¼
X
j

UjðxÞ
X
i

pXij
D E

X
Mi; ð27Þ

where Mi is the center of gravity of the area under CiðyÞ:

Mi ¼
Z
YðXÞ

yCiðyÞ dy: ð28Þ

Observe the similarities between Eq. (27) and the output resulting from
fuzzy inference in the fuzzy model (19) followed by a center of gravity de-
fuzzification. UjðxÞ corresponds to the membership function ~AAjðxÞ, and CiðyÞ
corresponds to ~BBiðyÞ divided by its area.

Fig. 13. The output of a probabilistic rule-based model can be regarded as a simple density

function. rðBÞ is the measure of the set B.
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5.1. Estimating the model from a sample

Let us suppose we know the functions Uj and Ci, and we wish to infer the
values of the parameters hpXijiX from a sample X ¼ fðx1; y1Þ; ðx2; y2Þ; . . .g. Let H
be the vector of unknown parameters

H ¼ hpX11iX; . . . ; hpX1Nr
iX; . . . ; hpXNoNr

iX
	 


¼ h11; . . . ; h1Nr ; . . . ; hNoNrð Þ: ð29Þ

We want to maximize the following verosimility function:

LðHÞ ¼
X

ðxk ;ykÞ2X
log
X
j

UjðxkÞ
X
i

hijCiðykÞ ð30Þ

restricted to the conditions
P

i hij ¼ 1, hij P 0. Introducing the adequate Lag-
range multipliers

L1ðH; k1; . . . ; kNrÞ ¼
X

ðxk ;ykÞ2X
log
X
j

UjðxkÞ
X
i

hijCiðykÞ

þ
X
j

kj 1

 
�
X
i

hij

!
ð31Þ

and taking the partial derivatives with respect to hij and kj, we obtain the
following conditions that fulfill in the maximum:

X
ðxk ;ykÞ2X

UrðxkÞCiðykÞP
i

P
j UjðxkÞCiðykÞhij

¼
X

ðxk ;ykÞ2X

UqðxkÞCiðykÞP
i

P
j UjðxkÞCiðykÞhij

; ð32Þ

XNo

i¼1

hij ¼ 1 for j ¼ 1; . . . ;Nr; i; q; r ¼ 1; . . . ;No: ð33Þ

The pseudocode of the procedure we used to find the solution is shown in
Fig. 14.

5.2. Numerical example

In Fig. 15, we plot the solutions of a modeling problem that is comparable in
difficulty to the gaussian classification problem that was proposed in Section
4.2. 2000 points of the curve y ¼ x2 þ �, where � ! Nð0; 1Þ, were used to induce
the different models. The 5 � 2cv test is again considered to perform the
comparison.

In Figs. 16 and 17, the boxplot of the dispersion of the results and the
numerical values of the mean test error are given. Optimal mean square error is
1 (the variance of the noise) and the linear solution (the model with constant
output) has an error near 1.2, which is not far from the optimal solution.
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We applied linear, quadratic (which is the optimal model, in this case),
neuronal, weighted least squares (WLS) and WM model, as well as our RSB
model (Fig. 18).

6. Numerical results, classification

6.1. Experimental framework

We have selected five real-world problems, widely used in the machine learning
literature: Iris (multiclass, low noise), Pima (two classes, moderate noise), Cancer
(two classes, low noise), Glass (multiclass, high noise), Skulls (multiclass, very
high noise). We applied an extension of the WM method modeling method to
classification [2,5], ISH [11] and PM methods [14]. Statistical classification
methods were linear and quadratical discriminant analysis, neural networks and
nearest neighbor. When the number of rules was higher than 100, restricted
probabilistic rule banks were generated with the method proposed here, to judge
the influence of the number of rules in some problems.

5 � 2cv Dietterich’s test [7] is to be applied again to judge the performance
of the different classifiers. Datasets were randomly permuted first, the first half
of samples was used to train the method and the second half to test it and then
training and test sets were swapped and the learning and test phase repeated.
This was repeated for five different random permutations. Training errors were

Fig. 14. Pseudocode of the numerical algorithm used to solve the set of equations (32) and (33). The

linear search (determination of the value of a) was implemented with Brent’s method. All points

examined fulfill Eq. (33) because of the function normalize, and the algorithm stops when the

conditions (32) are approximately true.
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discarded so that boxplots show the dispersion of the error in test sets. Mean
and median of test errors are tabulated for every experiment. We choose the
median to estimate the mean test error because some of the learning methods
produce somewhat disperse results.

6.2. Iris

This is a multiclass linear with low noise problem, and all methods perform
correctly in it (Figs. 19–21). Probabilistic method is superior to ISH and PM,
but similar to modified WM method. The differences between black-box
methods and linguistic ones are negligible.

6.3. Pima

Pima’s Indians diabetes is a two-class almost linear problem, with a mod-
erate amount of noise. Contrary to Iris, WM method does not perform cor-

Fig. 15. From left to right, Upper part: linear, quadratical (optimal) and neuronal models. Middle:

WLS, WM and RSB model. All rule-based models are built from size-4 partitions.
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rectly here and it is worse than ISH and PM methods (Figs. 22–24). RSB
method is superior to all fuzzy methods even if restricted to 65 rules. There is a
significant loss of power in linguistic models with respect to black-box ones,
thus direct comparison between them would not be correct in this case.

6.4. Cancer

Breast Cancer dataset has a low amount of noise and thus can be solved
with low error with black-box methods. RSB method scores very well with 512
rules, but poorly with 51. RSB is better than WM, PM and ISH fuzzy methods
in this case (Figs. 25–27).

Fig. 16. Dispersion of test results after applying different methods to the problem discussed in the

text. From left to right: linear, quadratical, neuronal, WM, RSB with 4, 3 and 2 rules.

Fig. 17. Mean of test errors of linear, quadratical, neuronal, WM, WLS and RSB methods.
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Fig. 19. Test results of Iris database with linear, quadratic, neuronal, 1-NN, fuzzy WM, ISH, PM

and RSB classifiers with 60 rules.

Fig. 18. Effect of the number of linguistic terms in RSB and WM methods. Upper part: WM

method. Lower part: RSB. Both parts, from left to right: 4, 5, 6 and 7 terms/partition.
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Fig. 22. Test results of Pima database with linear, quadratic, neuronal, 1-NN, fuzzy WM, ISH, PM

and RSB classifiers with 6500 rules (column number 8), 650 rules (number 9) and 65 rules (number

10).

Fig. 21. Mean and median of test errors in Iris problem.

Fig. 20. p-Values of Iris classification problem.
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Fig. 23. p-Values of Pima classification problem.

Fig. 24. Mean and median of test errors in Pima problem.

Fig. 25. Test results of Cancer database with linear, quadratic, neuronal, 1-NN, fuzzy WM, ISH,

PM and RSB classifiers with 512 rules (column number 8), and 51 rules (number 9).
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6.5. Glass

This problem has a low number of samples for some classes, and this prevented
some statistical methods from being directly applicable. Quadratic analysis is not
directly applicable because the size of some classes is too small. Despite the ap-
parently high number of rules, Glass dataset can be conveniently solved with less
than 200 rules and there should not be significant differences between linguistic
and black-box methods (Figs. 28–30). RSB is superior to WM, ISH and PM, and
their models are roughly the same with 19 683 and 1968 rules.

6.6. Skulls

The Egyptian Skulls problem has a very high degree of noise, and it is
normally used to contrast hypotheses about the influence of some factors in the
class. The error of the best classifier is not much lower than the error of a
random classifier (Figs. 31–33). There is no statistical evidence to support that
one method is superior to all of them. Linguistic classifiers tend to perform
worse than linear discriminant analysis.

Fig. 27. Mean and median of test errors in Cancer problem.

Fig. 26. p-Values of Cancer classification problem.
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7. Numerical results, modeling

7.1. Experimental framework

We have selected four problems. Two of them are synthetic, and the other
two are real-world problems. We added different amounts of gaussian noise to
synthetic data, in order to study the behavior of all methods with corrupted
data.

Fig. 28. Test results of Glass database with linear, quadratic (not applicable), neuronal, 1-NN,

fuzzy WM, ISH, PM and RSB classifiers with 19 683 rules (column number 8), 1968 rules (number

9) and 196 rules (number 10).

Fig. 29. p-Values of Glass classification problem.
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Seven linguistic fuzzy models were evaluated over each dataset, plus classical
regression (linear and quadratical), neural networks, WLS and RSB. 5 � 2cv
Dietterich’s test [7] was applied to judge the relevance of the differences as
before. The boxplots show the dispersion of square error in test sets. Mean and
median of test errors are tabulated for every experiment.

WM and CH fuzzy models are described in [3]. Both WM and CH select
rules with the highest importance degree in groups defined by the antecedents.
WM learning is guided from examples, CH learning is guided by a fuzzy grid

Fig. 30. Mean and median of test errors in Glass problem.

Fig. 31. Test results of Egyptian Skulls database with linear, quadratic, neuronal, 1-NN, fuzzy

WM, ISH, PM and RSB classifiers.

202 L. S�aanchez et al. / Internat. J. Approx. Reason. 29 (2002) 175–213



[1] and the importance degree is the maximum in type ‘1’ methods, the mean in
type ‘2’ and the product between maximum and mean in type ‘3’ methods. NIT
models are taken from [13].

Weighted least squares (WLS) is a similar method to TSK fuzzy models.
We used the same coverage functions for the random sets that defined the
antecedents in descriptive models. ‘‘Consequents’’ are local linear models,
fitted by least squares to a resampling of the training set in which every
example appears a number of times proportional to the probability of being
covered by the random set defined in its corresponding antecedent. This
procedure does not yield linguistic rules, and it is expected to obtain results
comparable to a neural network except when the points are not evenly dis-
tributed. In this case, this model is prone to overfit. In neural networks, this
is solved by adding a regularity constraint, i.e., limiting the norm of the
gradient of the estimated function. In WLS the most conservative assumption
(norm of the derivative equal to 0 in all linear models) produces the NIT
model, thus it is only expected to outperform WLS when data are unevenly
distributed.

All methods but RSB learn by minimizing the square error over the
training set, thus they rely on the residual being normally distributed. RSB

Fig. 33. Mean and median of test errors in Skulls problem.

Fig. 32. p-Values of Skulls classification problem.
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should be superior when data are not evenly distributed and noise is not
symmetrical.

7.2. Three-dimensional function F 1

The first synthetic dataset comprises 676 points of the function z ¼ x2 þ y2 in
½0; 1� � ½0; 1�. Linear regression is not included because its error is greater than
the minimum by more than one order of magnitude in all cases. Gaussian noise
with zero mean and standard deviation of 10%, 20%, 30% and 50% of the
standard deviation of noiseless data was added. The boxplots of the residuals
are shown in Fig. 34, whilst the mean and median of test errors in Fig. 35. The
p-values of the 5 � 2cv test are displayed in Figs. 36 and 37. Observe in Fig. 37
that RSB method tends to be better when noise is high, while WM and CH
fuzzy models achieve better results when noise is low. The quadratical model is
the optimal one, in this case, as expected due to the original function shape.

7.3. Three-dimensional function F 2

This dataset comprises 674 points of the function z ¼ 10 � x�x�y
x�2x�yþy in

½0; 1� � ½0; 1�. The boxplots with the test errors are given in Fig. 38, the mean
and median of them in Fig. 39 and the p-values in Figs. 40 and 41. The same
conclusions drawn from the previous dataset can be applied here (see Fig. 41):
probabilistic methods are better when the noise is high.

7.4. Function building-1

This dataset is taken from [15]. It is not a synthetic problem, but the amount
of noise is very small. Since there are 14 inputs, the number of elements in each
partition was reduced to 2 in order to keep the problem small enough to be
linguistically understandable. The boxplot of the test error is shown in Fig. 42,
the mean and median of errors are shown in Fig. 43 and the p-values of the
comparison in Fig. 44. The best linguistic model is NIT in this case.

7.5. Electrical line length

This dataset was taken from [4,16]. It is a real-world problem with a
moderate amount of noise. Data are sparse, thus WLS method performs
poorly. There are significant differences between the mean and the median of
test error, as can be seen in Fig. 46. The boxplot of the test error is shown in
Fig. 45 and the p-values of the comparisons are shown in Fig. 47. The best
linguistic model is the probabilistic one.
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Fig. 34. Upper part: test error of WM-1, WM-2, WM-3, CH-1, CH-2, CH-3 and NIT fuzzy models,

a quadratical model, a neural network, WLS and RSB models over the function z ¼ x2 þ y2. Middle

and lower parts: the same experiments over the function plus 10%, 20%, 30% and 50% additive

gaussian noise. Observe that the probabilistic model tends to be better when the noise is high.
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Fig. 36. p-Values of 5 � 2cv test in F 1 dataset for 0%, 10% and 20% of gaussian noise added.

Fig. 35. Upper part: mean of test errors over F 1 dataset. Lower part: median of test errors.
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8. Concluding remarks and future work

A new family of linguistically understandable, probabilistic classifiers and
models has been introduced. Our initial aim was not to improve the properties
of fuzzy rule bases, but to study the advantages of fuzzy rule bases over
classical techniques. Therefore, it was necessary to design models to which
these techniques could be applied, while sharing a common structure with
fuzzy rule bases. We finished up with a random set-based rule base, that is
numerically identical to a Mamdani-type fuzzy rule base, except for the use of
the t-norm product and the sum operation instead of the t-conorm. We ex-
pected the quality of both, fuzzy and probabilistic rule approaches, to be
roughly equivalent; however, probabilistic models were not worse than the
fuzzy methods studied, and often they were significantly better. Also, some
inconsistencies were shown. There was no improvement in certain fuzzy
learning algorithms when new examples were added to the datasets.

Our experimental results show that there exist very little differences between
black boxes and probabilistic rules. These differences decrease with the number
of rules and are statistically significant only when the rule base is rather small.
Taking into account that our algorithm does not modify the fuzzy member-
ships in the antecedents, we can conclude that the effect of tuning the ante-
cedents should be balanced against the right selection of rule importances. It

Fig. 37. p-Values of 5 � 2cv test in F 1 dataset for 30% and 50% of gaussian noise added.

L. S�aanchez et al. / Internat. J. Approx. Reason. 29 (2002) 175–213 207



Fig. 38. Upper part: test error of WM-1, WM-2, WM-3, CH-1, CH-2, CH-3 and NIT fuzzy models,

a linear model, a quadratical model, a neural network, WLS and RSB models over the function

z ¼ 10 � x�x�y
x�2x�yþy. Middle and lower parts: the same experiments over the function plus 10%, 20%,

30% and 50% additive gaussian noise. Probabilistic model tends to be better when the noise is high

also in this case.
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has been argued that altering the semantic value of the linguistic terms pro-
duces rule bases whose meaning can be better understood, thus this method
should be preferred, but a deeper study is needed. In the near future, we plan to

Fig. 40. p-Values of test between all methods in F 2 dataset, 0%, 10% and 20% of gaussian noise

added.

Fig. 39. Mean and median of test values in dataset F 2.
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Fig. 41. p-Values of F 2, 30% and 50% of gaussian noise added.

Fig. 42. WM-1, WM-2, WM-3, CH-1, CH-2, CH-3 and NIT fuzzy models, linear model, neural

network, WLS and RSB models over the first output in the modeling problem ‘‘building’’ [15]. Only

two linguistic elements partition each variable, in order to keep the size of the model small enough

to be linguistically understandable.
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Fig. 43. Mean and median of test errors in the ‘‘building’’ database.

Fig. 44. p-Values of the comparison between all methods in the ‘‘building’’ problem.

Fig. 45. WM-1, WM-2, WM-3, CH-1, CH-2, CH-3 and NIT fuzzy models, linear model, neural

network, WLS and RSB models over the first output in the modeling problem ‘‘electrical line

length’’.

Fig. 46. Mean and median of errors in the ‘‘electrical line length’’ problem.
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compare both approaches and decide whether it is better to adjust the mem-
bership functions, and use models without rule importances, or to adjust the
rule importances, and use models with fixed memberships.

The efficiency of the learning algorithm proposed in this work decreases
when the number of variables is high, because it is necessary to store a vector
containing all parameters in computer memory. The number of parameters
grows with the product of the number of linguistic terms in all variables. This
problem could be solved with an incremental algorithm, able to obtain rules
one by one, that replaces the global minimization proposed in this work. Some
recent results [8] suggest us that boosting classifiers [12] and backfitting models
[17] are related to such an incremental version of the algorithm.
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