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Generating the Knowledge Base of a Fuzzy Rule-Based System
by the Genetic Learning of the Data Base

Oscar Cordón, Francisco Herrera, and Pedro Villar

Abstract—A new method is proposed to automatically learn
the knowledge base (KB) by finding an appropiate data base (DB)
by means of a genetic algorithm while using a simple generation
method to derive the rule base (RB). Our genetic process learns
the number of linguistic terms per variable and the membership
function parameters that define their semantics, while a rule
base generation method learns the number of rules and their
composition.

Index Terms—Fuzzy rule-based systems, data base, learning, ge-
netic algorithms.

I. INTRODUCTION

T HE generation of the knowledge base (KB) of a fuzzy rule-
based system (FRBS) presents several difficulties because

the KB depends on the concrete application, and this makes the
accuracy of the FRBS directly depend on its composition.

Many approaches have been proposed to automatically learn
the KB from numerical information. Most of them have focused
on the rule base (RB) learning, using a predefined data base
(DB) [3], [7], [13], [18], [22]–[24], [33], [39]. This operation
mode makes the DB have a significant influence on the FRBS
performance. In fact, some studies have shown that the system
performance is much more sensitive to the choice of the seman-
tics in the DB than to the composition of the RB [5], [12], [40].

The usual solution for improving the FRBS performance by
dealing with the DB components involves a tuning process of
the preliminary DB definition once the RB has been derived
[4], [5], [8], [19], [27]. This process only adjusts the member-
ship function definitions and does not modify the number of
linguistic terms in each fuzzy partition since the RB remains
unchanged. In contrast to this,a posterioriDB learning, there
are some approaches that learn the different DB componentsa
priori [9], [12], [15], [16], [26], [32], [37].

We propose a new process to automatically generate the KB
of a Mamdani FRBS based on a new learning approach com-
posed of two methods with different goals.
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1) A genetic learning process for the DB that allows us to
define:

a ) the number of labels for each linguistic variable;
b ) the definition points of each fuzzy membership

function.

2) A quick ad hoc data-driven method[7] that derives the
RB considering the DB previously obtained. This method
is run from each DB definition generated by the genetic
algorithm (GA), thus, allowing the proposed hybrid
learning process to finally obtain the whole definition of
the KB (DB and RB) by means of the cooperative action
of both methods.

In order to do that, this paper is organized as follows.
Section II shows some preliminaries about the KB learning
in FRBSs. In Section III, our method is presented, describing
the components of the genetic process coding of the solutions,
initial population, evaluation function, and genetic operators.
In Section IV, some experimental results are shown. Finally, in
Section V, some conclusions are pointed out.

II. A UTOMATIC LEARNING OF THEKB

Two problems arise when generating the KB of a FRBS:

1) the DB learning that comprises the specification of the
universes of discourse and the number of labels for each
linguistic variable, as well as the fuzzy membership func-
tions associated to each label;

2) the RB derivation, involving the determination of the
number of rules and of the specific composition of each
one of them (i.e., of the specific labels associated to each
linguistic variable).

The next two sections describe, respectively, the more usual
ways to learn the KB and the approach followed by the method
proposed in this paper.

A. Usual Solutions for the KB Learning

a) RB learning using a predefined DB:Most of the ap-
proaches proposed to automatically learn the KB from numer-
ical information have focused on this kind of KB learning. The
usual way to define this DB involves choosing a number of lin-
guistic terms for each linguistic variable (an odd number be-
tween three and nine, which is normally the same for all the
variables) and setting the values of the system parameters by
a uniform distribution of the linguistic terms into the variable
universe of discourse. The RB learning methods are based on
different techniques such asad hocdata-driven algorithms [3],
[13], [24], [39], least square methods [3], simulated annealing,
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Fig. 1. Graphical representation of the different KB learning approaches.

[7] and GAs [18], [22], [23], [33]–[36]. Fig. 1(a) graphically
shows this type of KB learning.

This operation mode makes the DB have a significant in-
fluence on the FRBS performance. In fact, studies such as the
ones developed in [5], [40] show, for the case of Fuzzy PI con-
trollers, that the system performance is much more sensitive
to the choice of the semantics in the DB than to the composi-
tion of the RB. Considering a previously defined RB, the per-
formance of the Fuzzy controller is sensitive to four aspects in
the following order: scaling factors, peak values, width values,
and rules. In [12], the influence of fuzzy partition granularity
(number of linguistic terms for variable) in the FRBS perfor-
mance is studied, showing that using an appropiate number of
terms for each linguistic variable, the FRBS accuracy can be im-
proved with no need to use a complex RB learning method.

b) Tuning membership functions:With the aim of making
the FRBS perform better, some approaches try to improve the
preliminary DB definition once the RB has been derived. To do
so, a tuning process considering the whole KB obtained (the pre-
liminary DB and the derived RB) is useda posteriorito adjust
the membership function parameters. Nevertheless, the tuning
process only adjusts the shapes of the membership functions
and not the number of linguistic terms in each fuzzy partition,
which remains fixed from the begining of the designing process.
A graphical representation of this kind of learning is shown in
Fig. 1(b). For some examples of tuning methods based on sim-
ulated annealing and GAs, refer to [4], [5], [8], [19], [27].

c) Learning the KB components simultaneously:Other
approaches try to learn the two components of the KB at the
same time [Fig. 1(c)]. Working in this way, they have the
possibility of generating better definitions but they deal with
a larger search space that makes the learning process more

difficult and slow. For some examples, refer to [6], [11], [28],
[29], [31], [38].

There is another way to generate the whole KB that considers
two different processes for deriving both components (DB and
RB), based on the DB learninga priori. This approach will be
described in the next section.

B. KB Derivation by Learning the DB A Priori

In this type of KB learning, a DB generation process wraps
a RB learning one working as follows: each time a DB has
been obtained by the DB definition process, the RB genera-
tion method is used to derive the rules, and some type of error
measure is used to validate the whole KB obtained [Fig. 1(d)].
We should note that this operation mode involves a partitioning
of the KB learning problem. While the learning processes be-
longing to the third family analyzed in the previous section
[Fig. 1(c)] look for solutions in a complex global search space
(DB RB), the processes in the current group are composed of
two different (and independent) learning processes looking for
solutions in two simpler search spaces (DB and RB ones) to ob-
tain complete solutions.

The next processes are examples of the KB learning approach
of Fig. 1(d).

1) The work proposed in [12] uses simulated annealing to
learn an appropiate fuzzy partition granularity for each
variable, maintaining the usual uniform distribution for
the fuzzy sets in each universe of discourse. Each time
a different granularity definition is generated, a specific
RB generation method is applied from that DB definition
to obtain the whole KB. Some results for different RB
learning methods are shown.
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2) In [16], a genetic process that obtains a KB for simplified
TSK rules is proposed. The method is composed of an
evolutionary process to learn the DB and by a gradient de-
scent method to generate the singleton consequents for all
the possible rules. This work imposes several constraints
over the DB in order to preserve the readability of the final
FRBS.

3) The method proposed in [26] deals with a GA to design
a FRBS for pattern classification problems. The coding
scheme generates binary chromosomes of fixed length,
with a segment per variable. Each segment has a prede-
fined length that determines its maximum granularity. In
the chromosome, a one indicates the peak value of a tri-
angular membership function and both extremes of the
neighbor membership functions. This representation pre-
serves the same constraints of the previous method. Fi-
nally, a data covering algorithm is run to obtain the class
associated to each antecedent combination.

4) The approach proposed in [15] uses a GA to learn the
DB and the Wang and Mendel’s rule generation method
[39] to derive the RB. The method always chooses an odd
number for the fuzzy partition granularity of each variable
and these values remain unchanged for the whole learning
process. This method only codifies two points for each
label (center and width) so all the triangles are isoceles.

Our method will belong to this group. We use a genetic
process to learn the DB and a simple ad hoc data-driven
algorithm to derive the RB as in [15]. In our approach we
also include the learning of the fuzzy partition granularity per
variable.

In order to evaluate its performance, the FRBSs obtained from
it will be compared with others designed by the usual way. That
is, learning of the RB using a predefined DB with and without
a tuning process of the DB maintaining fixed the RB previously
obtained [Figs. 1(a) and (b) respectively]. Also, with another
one belonging to the same family, the last method mentioned
on the previous paragraph [15].

III. L EARNING THE DB OF A FRBS USING GENETIC

ALGORITHMS

GAs [17], [30] are search and optimization techniques based
on a formalization of natural genetics. The genetic process starts
with a population of solutions called chromosomes that consti-
tutes the first generation and undergoes evolution. While
a certain termination condition is not met, each chromosome is
evaluated by means of an evaluation function (a fitness value is
assigned to the chromosome) and a new population is created

by applying a set of genetic operators to the individ-
uals of generation .

Different proposals that use GAs in order to design FRBS are
contained in [9], [20]. GAs have been basically applied to the
learning of the different components of the KB (RB in isolation
[18], [22], [23], [33]–[36], or both DB and RB [6], [11], [28],
[29], [31], [38]) and to adjust a preliminary DB definition main-
taining fixed an RB previously derived [5], [8], [19], [27].

The important questions when using GAs are how to code
each solution, how to evaluate these solutions and how to create

new solutions from existing ones. Moreover, it is relatively im-
portant the choice of the initial population, because we can ob-
tain the better solutions more quickly if an adequate initial gene
pool is chosen.

In this section, we propose a new process to automatically
generate the KB of a Mamdani FRBS based on a new learning
approach composed of two methods with different goals.

1) A genetic learning process for the DB that allows us to
define:

a ) the number of labels for each linguistic variable;
b ) the definition points of each fuzzy membership

function.

Triangular membership functions are considered due to
their simplicity.

2) A quick ad hoc data-driven method that derives the RB
considering the DB previously obtained. This method is
run from each DB definition generated by the GA, thus,
allowing the proposed hybrid learning process to finally
obtain the whole definition of the KB (DB and RB) by
means of the cooperative action of both methods.

Each chromosome represents a complete DB definition by en-
coding the said parameters. To evaluate a chromosome, we use
an ad hoc data-driven method to learn the RB considering the
DB contained in it, obtaining a complete KB and then the accu-
racy of the FRBS obtained on a training data set is measured.

The next four subsections describe the main components of
the genetic learning process.

A. Encoding the DB

The two components of the DB to be encoded are the number
of linguistic terms for variable (granularity) and the membership
functions that define their semantics. Therefore, each chromo-
some will be composed of two parts.

1) Number of labels . For a system with variables
(including input and output variables), the number of la-
bels per variable is stored into an integer array of length

. In this contribution, the possible values considered are
the set .

2) Membership functions . As we deal with triangular
functions, a real number array of positions
is used to store the membership functions (variables,
with nine as maximum number of labels for each variable,
and each label defined by three real values). Of course, if
a chromosome does not have the maximum number of
labels in one variable, the space reserved for the values of
these labels is ignored in the evaluation process.

If is the granularity of variable are the def-
inition points of the label of the variable , and is the in-
formation about the fuzzy partition of variablein (all its
labels), a graphical representation of the chromosome is shown
next
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Fig. 2. Variation intervals for the membership function definition points.

With the aim of avoiding incoherent situations, such as the
peak value of a label being greater than the peak value of the next
label, a variation interval is defined for each one of the member-
ship function definition points. These intervals are calculated
taking uniform fuzzy partitions for each variable as a base. The
variation intervals of each definition point of the labelof the
variable , are defined next

The graphical representation of these intervals is shown in
Fig. 2.

Of course, when the number of labels of a variable changes by
the action of a genetic operator, a new uniform fuzzy partition
for that new granularity is built and the new variation intervals
are calculated.

B. Initial Gene Pool

The initial population is composed of four groups with the
same number of individuals. The generation of the initial gene
pool is described next.

1) In the first part, each chromosome will have the same
number of labels in all its variables and the member-
ship functions are uniformly distributed across the vari-
able working range.

2) In the second group, each chromosome can have a dif-
ferent granularity per variable (different values in) and
the membership functions are uniformly distributed as in
the first part.

3) In the third part, each chromosome will have the same
number of labels in all its variables. Then a uniform fuzzy
partition is built for each variable as in the first part and
the variation intervals of all the definition points are cal-
culated. Finally, a value for all the definition points is ran-
domly chosen from the correspondent variation interval.

4) In the last group, each chromosome can have different
number of labels per variable as in second part and the

membership functions are calculated in the same way as
in the third part, a random value in the variation interval.

The aim of generating the initial population in these four dif-
ferent groups is to sample it to achieve an appropiate diversity.
Although GAs have proven to be robust and get good solutions
starting from randomly generated populations (group four), a
quick convergence can be obtained using the knowledge avail-
able about the problem to sample the population in a biased way.

C. Evaluating the Chromosome

There are two steps that must be done to evaluate each chro-
mosome.

1) Run the RB generation method using the DB definition
contained in the chromosome, obtaining a complete KB.

2) Calculate the mean square error (MSE) over the training
set using the KB obtained (genetically derived DBRB).
In order to improve the generalization capability of the
final FRBS, we will lightly penalize the FRBSs with a
high number of rules (NR). Therefore, the fitness function
is based on the one proposed in [25]

In this contribution, we consider and is calcu-
lated taking two values as a base. The MSE of the FRBS
obtained with the RB generation method, the DB with
the maximum number of labels per variable and uniform
fuzzy partitions , and the number of rules
of that RB

With being a weighting percentage.

D. Genetic Operators

Due to the special nature of the chromosomes involved in this
DB definition process, the design of genetic operators able to
deal with it becomes a main task. Since there is a strong rela-
tionship among the two chromosome parts, operators working
cooperatively in and are required in order to make best
use of the representation used.

Taking into account these aspects, the following operators are
considered.

1) Selection: The selection probability calculation follows
linear ranking [1]. Chromosomes are sorted in order of raw
fitness and then the selection probability of each chromosome

is computed according to its rank [with
] by using the following nonincreasing

assignment function:

where is the population size and specifies the
expected number of copies for the worst chromosome (the best
one has expected copies). In the experiments

.
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Linear ranking is performed along withstochastic universal
sampling [2]. This procedure guarantees that the number of
copies of any chromosome is bounded by the floor and by the
ceiling of its expected number of copies.

Our reproduction operator includes the elitist selection.
2) Crossover: As regards the recombination process, two

different crossover operators are considered depending on the
two parents’ scope.

1) Crossover when both parents have the same granularity
level per variable:If the two parents have the same values
in (each variable has the same number of labels in the
two parents), the genetic search has located a promising
space zone that has to be adequately exploited. This task is
developed by applying the max-min-arithmetical (MMA)
crossover operator in and obviously, by maintaining
the parent values in the offspring. This crossover op-
erator is proposed in [21] and works in the way shown
below.

If and
are to be crossed, the following four

offspring are generated:

This operator uses a parameterthat is either a constant,
or a variable whose value depends on the age of the pop-
ulation. We use , value taking from [21]. The
resulting descendents are the two best of the four afore-
said offspring.

2) Crossover when the parents encode different granularity
levels:This second case highly recommends the use of
the information encoded by the parents for exploring the
search space in order to discover new promising zones.
Hence, when is crossed at a certain point, the values in

corresponding to the crossed variables are also crossed
in the two parents. In this way, a standard crossover op-
erator is applied over the two parts of the chromosomes.
This operator performs as follows: a crossover pointis
randomly generated in and the two parents are crossed
at the -th variable in . The crossover is developed this
way in the two chromosome parts, and , thereby,
producing two meaningful descendents.

Let us look at an example in order to clarify the stan-
dard crossover application. Let

be the individuals to be crossed at point, the two re-
sulting offspring are:

Hence, the complete recombination process will allow the
GA to follow an adequate exploration and exploitation rate in
the genetic search. The expected behavior consists of an initial
phase where a high number of standard crossovers and a very
small number of MMA ones (equal to zero in the great majority
of the cases) are developed. The genetic search will perform a
wide exploration in this first stage, locating the promising zones
and sampling the population individuals in several runs. At this
moment a new phase begins, characterized by the increase ex-
ploitation of these zones and the decrease of the space explo-
ration. Therefore, the number of MMA crossovers rise a lot and
the application of the standard crossover decreases. This way, to
perform an appropiate exploration- exploitation balance in the
search was succesfully applied in [11].

3) Mutation: Two different operators are used, each one of
them acting on different chromosome parts. A brief description
of them is given below.

1) Mutation on : The mutation operator selected for
is similar to the one proposed by Thrift in [33]. When a
mutation on a gene belonging to the first part of the chro-
mosome is going to be performed, a local modification is
developed by changing the number of labels of the vari-
able to the immediately upper or lower value (the decision
is made at random). When the value to be changed is the
lowest (3) or highest one (9), the only possible change is
developed. Once a new value is selected, a uniform fuzzy
partition for this variable is stored in its corresponding
zone of .

2) Mutation on : Since both parts are based on a real-
coding scheme, Michalewicz’s nonuniform mutation op-
erator is employed [30].

If is a chromosome and
the element was selected for this mutation (the do-
main of is ), the result is a vector

, with , and

if
if

with being the current generation,being a random
number that may have a value of zero or one, and the
function returns a value in the range such
that the probability of being close to 0 increases
as increases

with being a random number in the interval
being the maximum number of generations andbeing a
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parameter chosen by the user, which determines the de-
gree of dependency with the number of iterations. This
property causes this operator to make a uniform search in
the initial space when is small and a very local one in
later stages. In the experiments, we consider , that
is the value proposed for the author in [30].

E. Restart

Due to the large size of the search space tackled and to the
special coding considered with two different information levels,
the genetic search can get trapped in local optima. In some pre-
liminary experiments the population did converge so fast to a
determinated granularity level and other promising zones
were not explored. This process is known asgenetic driftand it
is usual when working with multimodal search spaces [17]. To
avoid this problem, a restart operator is used when the differ-
ence between the fitness of the best individual and the average
fitness of the population is less than a 5% of the first.

A usual way to proceed involves copying the best individual
in the new population and creating the remaining chromosomes,
starting from that individual, by randomly changing the 70%
of the genes and maintaining fixed the remainder 30% [14]. In
this case, as it has not the same effect to modify a value in
or in , we will first decide over which part a change will be
developed. If it is a value in , a new value is randomly chosen
from the variation interval of this point, while if it is a value in

, a new number of labels is randomly selected and a uniform
fuzzy partition for this variable is stored in its corresponding
zone of .

IV. EXPERIMENTAL RESULTS

We have considered three different problems for the experi-
ments developed.

1) P1: An electrical network distribution problem in
northern Spain [10]. The system tries to estimate the
length of the low voltage line installed in a determined
village. The problem has two input variables:the popu-
lation of the villageand its radius; one output variable
the length of the installed line. We were provided with
real data of 495 villages. The training set contains
elements and the test set containselements, randomly
selected from the whole sample.

2) P2: A problem with estimations of minimum mainte-
nance costs which are based on a model of the optimal
electrical network for spanish towns [10]. The problem
has four input variables:Sum of the lengths of all streets
in the town, Total area of the town, Area that is occupied
by buildingsand Energy supply to the townand one
output variable:Maintenance costs of medium voltage
line. These values are somewhat lower than the real
ones, but companies are interested in an estimation of
the minimum costs. Of course, real maintenance costs
are exactly accounted but a model that relates these costs
to any characteristic of simulated towns with the optimal
installation is important for the electrical companies.
We were provided with data concerning the four char-
acteristics of the towns and their minimum maintenance

Fig. 3. Graphical representation of the mathematical function.

TABLE I
GENETIC ALGORITHM PARAMETER VALUES

costs in a sample of 1059 simulated towns. The training
set contains elements and the test set contains
elements.

3) P3: The modeling of a tridimensional mathematical func-
tion defined by.

Fig. 3 shows its graphical representation. We were pro-
vided with data of 741 points. The training set contains

elements and the test set containselements, ran-
domly selected from the whole sample.

The genetic parameters used in the expermients are presented
in Table I. A quick and simple RB generation algorithm, the
Wang and Mendel’s rule generation method1 will be considered.
We have chosen this method due its simplicity and to compare
our learning process with the one presented in [15] that used it
to derive the RB. Our genetic process is independent of the RB
generation method, so anyone of them can be used to derive the
RB.

For every benchmark, the best results obtained by our genetic
learning process and the other methods considered for compar-
ison purposes are shown in Tables II, III, and IV, which contain
the following columns.

1) Method: learning process used to obtain the KB.

a ) : Wang and Mendel’s rule generation method
[39]. This line shows the results of the FRBS with best
MSE over the training set considering the
interval as possible values for the number

1See Appendix A for a brief description of this method.



IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 4, AUGUST 2001 673

TABLE II
BESTRESULTS FOR THELOW VOLTAGE LINE LENGTH PROBLEM (P1)

TABLE III
BESTRESULTS FOR THEOPTIMAL ELECTRICAL NETWORK PROBLEM (P2)

TABLE IV
BEST RESULTS FOR THEMATHEMATICAL FUNCTION PROBLEM (P3)

of labels, with all the variables having the same gran-
ularity and uniform fuzzy partitions.
b ) : Wang and Mendel’s rule generation
method tuning. A genetic tuning process [8] is
applied to the previous FRBS DB.
c ) : Filipic and Juricic’s method [15]. This method
was briefly described in Section II. As the granularity
of each variable must be an odd number, the posible
values are . All the variables will have the
same granularity.
d ) : The genetic learning process proposed
in this paper (granularity membership functions).

Due to the non deterministic nature of the last three
methods ( and ), four runs have
been developed for them. This is the reason why two
lines appear in the tables for and .
The first one shows the FRBS with best and the
other shows the FRBS with best average between the

and the MSE over the test set . If these
two FRBSs are equal, only one line appears in the table.

2) Granularity: the number of labels for each problem vari-
able.

3) Number rule: the number of rules of the FRBS RB.
4) : MSE over the training set.
5) : MSE over the test set.

6) : improvement percentage of the obtained
respect to the obtained using the Wang and
Mendel’s method .

7) : improvement percentage of the obtained
respect to the obtained using the Wang and
Mendel’s method .

As it can be observed, in the majority of cases our method
shows a high accuracy improvement of the final FRBS com-
pared with the usual way to design FRBSs, using the same RB
learning method. As regards the method that considers the same
KB learning approach , there is also a significant improve-
ment. Although some results of methods and in

are better than the ones obtained with (in
Table II), their are very high, that is, the former FRBSs
are over-fitted to the training data. The method has a
better generalization capability.

Moreover, the FRBSs obtained by our method always gen-
erates RBs with a lesser (or at most, equal) number of rules
than any obtained by the other methods. This result is of sig-
nificant importance since more accurate fuzzy models can be
obtained with a lesser number of rules on the RB by consid-
ering a learning approach different than the usual approach.

V. CONCLUDING REMARKS

This paper has presented the usual ways to automatically de-
sign the KB of a FRBS and has analyzed results that consider the
DB definition task in the FRBS design process. A new genetic
process has been proposed to automatically design the whole
KB; the DB being evolved by a GA and the RB being generated
by a simple rule generation method.

Our genetic process may be applied to any RB learning
method, having in mind its run time since the RB generation
method must be run many times within the DB learning process.

As a possible extension of the presented method, an input
selection can be developed. This process could be previous to
the learning of the DB or integrated in the GA.

APPENDIX A
THE WANG AND MENDEL LEARNING METHOD

Thead-hocdata covering RB generation process proposed by
Wang and Mendel in [39] has been widely known because of its
simplicity and good performance. The generation of the RB is
put into effect by means of the following steps.

1) Consider a fuzzy partition of the input variable spaces: It
may be obtained from expert information (if available)
or by a normalization process. If the latter is the case,
perform a fuzzy partition of the input variable spaces di-
viding each universe of discourse into a number of equal
or unequal partitions, select a kind of membership func-
tion and assign one fuzzy set to each subspace.

2) Generate a preliminary linguistic rule set: This set will
be formed by the rule best covering each example (input-
output data pair) contained in the input-output data set.
The structure of these rules is obtained by taking a specific
example, i.e., an dimensional real array (input and
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one output values) and setting each one of the variables to
the linguistic label best covering every array component.

3) Give an importance degree to each rule: Let IF
is and and is then is , be the linguistic
rule generated from the example .
The importance degree associated to it will be obtained
as follows:

4) Obtain a final RB from the preliminary fuzzy rule set: The
rule with the highest importance degree is chosen for each
combination of antecedents.
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