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Generating the Knowledge Base of a Fuzzy Rule-Based System
by the Genetic Learning of the Data Base

Oscar Cordoén, Francisco Herrera, and Pedro Villar

Abstract—A new method is proposed to automatically learn 1) A genetic learning process for the DB that allows us to
the knowledge base (_KB) by _finding an appropiatt_e data base (D_B) define:
by means of a genetic algorithm while using a s_lmple generation a) the number of labels for each linguistic variable:
method to derive the rule base (RB). Our genetic process learns S : g e
the number of linguistic terms per variable and the membership b) the definition points of each fuzzy membership
function parameters that define their semantics, while a rule function.
base generation method learns the number of rules and their 2) A quick ad hoc data-driven methof] that derives the
composition. _ RB considering the DB previously obtained. This method
Index Terms—Fuzzy rule-based systems, data base, learning, ge- is run from each DB definition generated by the genetic
netic algorithms. algorithm (GA), thus, allowing the proposed hybrid
learning process to finally obtain the whole definition of
|. INTRODUCTION the KB (DB and RB) by means of the cooperative action

HE generation of the knowledge base (KB) of a fuzzy rule- of both methods. ) ) )
T based system (FRBS) presents several difficulties becausfﬁ,r',OrOIer to do that, this .pa'\per. is organized as fOHOWS'
the KB depends on the concrete application, and this makes tion II shows Some prellmlnarles_ about the KB Iear_m_ng
accuracy of the FRBS directly depend on its composition. in FRBSs. In Section I, our_method is pre_sented, descnpmg

Many approaches have been proposed to automatically IeH?ﬁ components of the ggnetlc process coding of_the solutions,
the KB from numerical information. Most of them have focusew‘Itlal p_opulat|on, evaluatl_on function, and genetic op.erator_s.
on the rule base (RB) learning, using a predefined data béges?ctlon IV, some expgr|mental re;ults are shown. Finally, in
(DB) [3], [7], [13], [18], [22][24], [33], [39]. This operation Section V, some conclusions are pointed out.
mode makes the DB have a significant influence on the FRBS
performance. In fact, some studies have shown that the system [I. AUTOMATIC LEARNING OF THEKB
performance is much more sensitive to the choice of the seman- . . )
tics in the DB than to the composition of the RB [5], [12], [40]. Two problems ar_|se when generatmg the KB Of a '_:RBS'

The usual solution for improving the FRBS performance by 1) the DB learning that comprises the specification of the
dealing with the DB components involves a tuning process of ~ Universes of discourse and the number of labels for each
the preliminary DB definition once the RB has been derived linguistic variable, as well as the fuzzy membership func-
[4], [5], [8], [19], [27]. This process only adjusts the member- tions assomgteq to E_!ach Igbel; o
ship function definitions and does not modify the number of 2) the RB derivation, involving the determination of the
linguistic terms in each fuzzy partition since the RB remains ~ number of rules and of the specific composition of each
unchanged. In contrast to this,posterioriDB learning, there one of them (i.e., of the specific labels associated to each
are some approaches that learn the different DB compoments  lInguistic variable).
priori [9], [12], [15], [16], [26], [32], [37]. The next two sections describe, respectively, the more usual

We propose a new process to automatically generate the KBYS to learn the KB and the approach followed by the method
of a Mamdani FRBS based on a new learning approach coffoposed in this paper.
posed of two methods with different goals.

A. Usual Solutions for the KB Learning

a) RB learning using a predefined DBVost of the ap-
proaches proposed to automatically learn the KB from numer-
, _ _ _ical information have focused on this kind of KB learning. The
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was supported by CICYT under PB98-1319. usual way to define this DB involves choosing a number of lin-
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Fig. 1. Graphical representation of the different KB learning approaches.

[7] and GAs [18], [22], [23], [33]-[36]. Fig. 1(a) graphically difficult and slow. For some examples, refer to [6], [11], [28],
shows this type of KB learning. [29], [31], [38].

This operation mode makes the DB have a significant in- There is another way to generate the whole KB that considers
fluence on the FRBS performance. In fact, studies such as the different processes for deriving both components (DB and
ones developed in [5], [40] show, for the case of Fuzzy Pl coRB), based on the DB learniraypriori. This approach will be
trollers, that the system performance is much more sensitidescribed in the next section.
to the choice of the semantics in the DB than to the composi-
tion of the RB. Considering a previously defined RB, the peg kB perivation by Learning the DB A Priori
formance of the Fuzzy controller is sensitive to four aspects in ) . .
the following order: scaling factors, peak values, width values, !N this type of KB learning, a DB generation process wraps
and rules. In [12], the influence of fuzzy partition granularitt RB learning one working as follows: each time a DB has
(number of linguistic terms for variable) in the FRBS perforP€en obtained by the DB definition process, the RB genera-
mance is studied, showing that using an appropiate numberigf method is used to derive the rules, and some type of error
terms for each linguistic variable, the FRBS accuracy can be iff€asure is used to validate the whole KB obtained [Fig. 1(d)].
proved with no need to use a complex RB learning method. We should note that this operation mode involves a partitioning

b) Tuning membership functionaVith the aim of making of th.e KB Iearning problgm. While thg learning p.rocesses.be-
the FRBS perform better, some approaches try to improve #89ing to the third family analyzed in the previous section
preliminary DB definition once the RB has been derived. To df19- 1(c)] look for solutions in a complex global search space
s0, atuning process considering the whole KB obtained (the pfB + RB), the processes in the current group are composed of
liminary DB and the derived RB) is us@dposteriorito adjust two cyffergnt (anq independent) learning processes looking for
the membership function parameters. Nevertheless, the tunf@tions in two simpler search spaces (DB and RB ones) to ob-
process only adjusts the shapes of the membership functié¥§ complete solutions.
and not the number of linguistic terms in each fuzzy partition, 1 he nextprocesses are examples of the KB learning approach
which remains fixed from the begining of the designing proceé%f. Fig. 1(d).

A graphical representation of this kind of learning is shown in 1) The work proposed in [12] uses simulated annealing to
Fig. 1(b). For some examples of tuning methods based on sim- learn an appropiate fuzzy partition granularity for each
ulated annealing and GAs, refer to [4], [5], [8], [19], [27]. variable, maintaining the usual uniform distribution for

c) Learning the KB components simultaneous@ther the fuzzy sets in each universe of discourse. Each time
approaches try to learn the two components of the KB at the  a different granularity definition is generated, a specific
same time [Fig. 1(c)]. Working in this way, they have the RB generation method is applied from that DB definition
possibility of generating better definitions but they deal with to obtain the whole KB. Some results for different RB
a larger search space that makes the learning process more learning methods are shown.
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2) In[16], a genetic process that obtains a KB for simplifiedew solutions from existing ones. Moreover, it is relatively im-
TSK rules is proposed. The method is composed of aortant the choice of the initial population, because we can ob-
evolutionary process to learn the DB and by a gradient diin the better solutions more quickly if an adequate initial gene
scent method to generate the singleton consequents forpalbl is chosen.
the possible rules. This work imposes several constraintsin this section, we propose a new process to automatically
over the DB in order to preserve the readability of the finajenerate the KB of a Mamdani FRBS based on a new learning
FRBS. approach composed of two methods with different goals.

3) The method proposed in [26] deals with a GA to design 1) A genetic learning process for the DB that allows us to
a FRBS for pattern classification problems. The coding  define:
scheme generates binary chromosomes of fixed length,
with a segment per variable. Each segment has a prede-
fined length that determines its maximum granularity. In
the chromosome, a one indicates the peak value of a tri-
angular membership function and both extremes of the
neighbor membership functions. This representation pre-
serves the same constraints of the previous method. Fi-
nally, a data covering algorithm is run to obtain the class
associated to each antecedent combination.

4) The approach proposed in [15] uses a GA to learn the
DB and the Wang and Mendel's rule generation method
[39] to derive the RB. The method always chooses an odd
number for the fuzzy partition granularity of each variable
and these values remain unchanged for the whole learni

a) the number of labels for each linguistic variable;
b) the definition points of each fuzzy membership
function.

Triangular membership functions are considered due to
their simplicity.

2) A quick ad hoc data-driven method that derives the RB
considering the DB previously obtained. This method is
run from each DB definition generated by the GA, thus,
allowing the proposed hybrid learning process to finally
obtain the whole definition of the KB (DB and RB) by
means of the cooperative action of both methods.

Each chromosome represents a complete DB definition by en-

oding the said parameters. To evaluate a chromosome, we use

process. This method only codifies two points for eac ri?:?):t(;(i:nzzt?r;(ijtm(/)i?amier:g(;dc?rrllzzliertnetlzg Er? diﬁgi'?ﬁ;gg;&e
label (center and width) so all the triangles are Isocelesr'acy of the FRBS obtained on a training data set is measured.

Our method will belong to this group. We use a gengtlc The next four subsections describe the main components of
process to learn the DB and a simple ad hoc data-driven

algorithm to derive the RB as in [15]. In our approach wi € genetic learing process.

also include the learning of the fuzzy partition granularity per i

variable. A. Encoding the DB
In order to evaluate its performance, the FRBSs obtained fromThe two components of the DB to be encoded are the number

it will be compared with others designed by the usual way. Thatlinguistic terms for variable (granularity) and the membership
is, learning of the RB using a predefined DB with and withoutnctions that define their semantics. Therefore, each chromo-

a tuning process of the DB maintaining fixed the RB previouskome will be composed of two parts.

obtained [Figs. 1(a) and (b) respectively]. Also, with another 1) Number of label§C) ). For a system withV variables

one belonging to the same family, the last method mentioned  (including input and output variables), the number of la-

on the previous paragraph [15]. bels per variable is stored into an integer array of length
N. Inthis contribution, the possible values considered are
the set{3,...,9}.

2) Membership function§C>). As we deal with triangular
functions, a real number array 6f x 9 x 3 positions
GAs [17], [30] are search and optimization techniques based s used to store the membership functions ariables,

on aformalization of natural genetics. The genetic process starts  with nine as maximum number of labels for each variable,

with a population of solutions called chromosomes that consti-  and each label defined by three real values). Of course, if

tutes the first generatidd+(0)] and undergoes evolution. While a chromosome does not have the maximum number of

a certain termination condition is not met, each chromosome is  labels in one variable, the space reserved for the values of

evaluated by means of an evaluation function (a fitness value is  these labels is ignored in the evaluation process.

assigned to the chromosome) and a new population is createtf J; is the granularity of variable, 7, P, P are the def-

[G(t+ 1)] by applying a set of genetic operators to the individnition points of the labe)j of the variablei, andCy; is the in-

uals of generatiori=(t). formation about the fuzzy partition of variablan C; (all its
Different proposals that use GAs in order to design FRBS dehels), a graphical representation of the chromosome is shown

contained in [9], [20]. GAs have been basically applied to theext

learning of the different components of the KB (RB in isolation

[18], [22], [23], [33]-[36], or both DB and RB [6], [11], [28], Cr =y, 1y, ... ly)

[29], [31], [38]) and to adjust a preliminary DB definition main- O — (Pl p2 ps pL p2 ps )

taining fixed an RB previously derived [5], [8], [19], [27]. 2T A Sl Bl e o Sl Sl Tl
The important questions when using GAs are how to code Cy = (C21,C2,...,Can)

each solution, how to evaluate these solutions and how to create C=CC,.

I1l. L EARNING THE DB OF A FRBS WsING GENETIC
ALGORITHMS
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membership functions are calculated in the same way as
in the third part, a random value in the variation interval.
The aim of generating the initial population in these four dif-
ferent groups is to sample it to achieve an appropiate diversity.
Although GAs have proven to be robust and get good solutions
starting from randomly generated populations (group four), a
quick convergence can be obtained using the knowledge avail-
{ able about the problem to sample the population in a biased way.

< VUG P N,

Vi Rilj Lf’j v
2 2
L2 R}

Loyl 2 2R3
u i 1 1 u C. Evaluating the Chromosome
i There are two steps that must be done to evaluate each chro-
mosome.
Fig. 2. Variation intervals for the membership function definition points. 1) Run the RB generation method using the DB definition

contained in the chromosome, obtaining a complete KB.
With the aim of avoiding incoherent situations, such as the 2) Calculate the mean square error (MSE) over the training
peak value of a label being greater than the peak value of the next  set using the KB obtained (genetically derived DRB).
label, a variation interval is defined for each one of the member-  In order to improve the generalization capability of the
ship function definition points. These intervals are calculated  final FRBS, we will lightly penalize the FRBSs with a
taking uniform fuzzy partitions for each variable as a base. The  high number of rules (NR). Therefore, the fitness function
variation intervals of each definition point of the laljedf the is based on the one proposed in [25]

variablei, (P}, P%, P2), are defined next

FC:wl'MSE+CU2'NR.

2 1 2 1
P e Ly, Ry = |Vii — 2 5 LV + 2 5 - In this contribution, we consider; = 1 andw, is calcu-
L _ lated taking two values as a base. The MSE of the FRBS
) s s , VE-VE O VE- sz obtained with the RB generation method, the DB with
P% e [Li, Rij] = |Vii - 5 Vi 5 the maximum number of labels per variable and uniform
L Vi _ vy - V2: fuzzy partitions(MSE,,,.x 1), and the number of rules
P € [L5. By = |V = 5 v+ of that RB (NRuax 1)
- : wy = v - B
The graphical representation of these intervals is shown in NRax b
Fig. 2.

With « being a weighting percentage.
Of course, when the number of labels of a variable changes by “ g gniing p g

the action of a genetic operator, a new uniform fuzzy partitiQ§ Genetic Operators
for that new granularity is built and the new variation intervals

are calculated. Due to the special nature of the chromosomes involved in this

DB definition process, the design of genetic operators able to
B. Initial Gene Pool deal with it becomes a main task. Since there is a strong rela-
The initial population is composed of four groups with th(talonSh'p among the two chromosome parts, operators working
L . - cooperatively inC; andC, are required in order to make best
same number of individuals. The generation of the initial gene .
i . use of the representation used.

pool is described next. L .

i . Taking into account these aspects, the following operators are
1) In the first part, each chromosome will have the samgnsidered.
number of labels in all its variables and the member- 1) gejection: The selection probability calculation follows

ship functions are uniformly distributed across the varjiear ranking [1]. Chromosomes are sorted in order of raw

able working range. fitness and then the selection probability of each chromosome
2) In the second group, ea}ch chrc_)mosome can have a %II(Ci) is computed according to its rankank(C;) [with
ferent granularity per variable (different valuegiin) and rank(Cress) = 1] by using the following nonincreasing

the membership functions are uniformly distributed as ié?ssignment function:
the first part.
3) In the third part, each chromosome will have the same p_ (C;)
number of labels in all its variables. Then a uniform fuzzy 1 rank(C;) — 1
partition is built for each variable as in the first part and = NG <77max — (Mmax — Mmin) - ﬁ)
the variation intervals of all the definition points are cal-
culated. Finally, a value for all the definition points is ranwhereNC is the population size angl.;, € [0, 1] specifies the
domly chosen from the correspondent variation intervabxpected number of copies for the worst chromosome (the best
4) In the last group, each chromosome can have differemte hasy,.x = 2 — 7min €Xpected copies). In the experiments
number of labels per variable as in second part and thg;, = 0.75.
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Linear ranking is performed along wiitochastic universal
sampling[2]. This procedure guarantees that the number of
copies of any chromosome is bounded by the floor and by the
ceiling of its expected number of copies.

Our reproduction operator includes the elitist selection.

2) Crossover: As regards the recombination process, two
different crossover operators are considered depending on the
two parents’ scope.

1)

2)

Crossover when both parents have the same granularity

671

be the individuals to be crossed at pojntthe two re-
sulting offspring are:

Co= (s by lgs oo, Uy Con, oo, G,

02])-1—17 AR CQ]V)
’ ’ ’ ’ ’
Ct - (ll7 .o '7lp7lp+17 .o .,l]\T,CQl,. ..702]),
02])-1—17 LR CQN)-

level per variableif the two parents have the same values Hence, the complete recombination process will allow the
in C; (each variable has the same number of labels in t&A to follow an adequate exploration and exploitation rate in
two parents), the genetic search has located a promisihg genetic search. The expected behavior consists of an initial
space zone that has to be adequately exploited. This tasgligse where a high number of standard crossovers and a very
developed by applying the max-min-arithmetical (MMA)small number of MMA ones (equal to zero in the great majority
crossover operator ity and obviously, by maintaining of the cases) are developed. The genetic search will perform a
the parent’; values in the offspring. This crossover opwide exploration in this first stage, locating the promising zones
erator is proposed in [21] and works in the way showand sampling the population individuals in several runs. At this

below. moment a new phase begins, characterized by the increase ex-
if ¢t = (c,...,cx,...,cg) and C' = ploitation of these zones and the decrease of the space explo-
(dl,...,¢,..., ) are to be crossed, the following fourration. Therefore, the number of MMA crossovers rise a lot and
offspring are generated: the application of the standard crossover decreases. This way, to
perform an appropiate exploration- exploitation balance in the
CH—I = (CH—I e CH—1 e CH—I) i i
1 IEEERREEACY IERREFLSY:{ search was succesfully applied in [11].
At =de + (1 - d)d, 3) Mutation: Two different operators are used, each one of
ottt — (Ct+1 Attt ct+1) them acting on different chromosome parts. A brief description
2 - 21 90 %2k 90 2H . .
A = de, + (1= d)ex of them is given below.
fL ,"H a1 11 1) Mutation onC’: The mutation operator selected f0Of
Gy = (031 IRRRER:T: ,...,cgy) is similar to the one proposed by Thrift in [33]. When a
cgtl = min{cx, ¢, } mutation on a gene belonging to the first part of the chro-
Ci+1 _ (cfj{l, o Cfilv o cz}l) mosome is going to be performed, a local modification is
czgl — max{cy, ¢, }. developed by changing the number of labels of the vari-

This operator uses a parametghat is either a constant,
or a variable whose value depends on the age of the pop-
ulation. We usel = 0.35, value taking from [21]. The
resulting descendents are the two best of the four afore-
said offspring.
Crossover when the parents encode different granularity 2)
levels: This second case highly recommends the use of
the information encoded by the parents for exploring the
search space in order to discover new promising zones.
Hence, whert’; is crossed at a certain point, the values in
C, corresponding to the crossed variables are also crossed
in the two parents. In this way, a standard crossover op-
erator is applied over the two parts of the chromosomes.
This operator performs as follows: a crossover ppirgt
randomly generated ifi; and the two parents are crossed
at thep-th variable inC;. The crossover is developed this
way in the two chromosome part§; andC-, thereby,
producing two meaningful descendents.

Let us look at an example in order to clarify the stan-
dard crossover application. Let

Co=1,.. . Ly lpgr, o IN,Cor, ., Coy
Copy1s---,Con)
/ ’ ’ ’ ’ 7 7
Cy = (ll,...,lp,lp+1,...,ZN,CQI,...,CQP,
’ 7
C(2])-1—17 . '702]\7)

able to the immediately upper or lower value (the decision
is made at random). When the value to be changed is the
lowest (3) or highest one (9), the only possible change is
developed. Once a new value is selected, a uniform fuzzy
partition for this variable is stored in its corresponding
zone ofCs.
Mutation onC5: Since both parts are based on a real-
coding scheme, Michalewicz’s nonuniform mutation op-
erator is employed [30].

If ¢! = (c1,...,¢k,...,cH) is @ chromosome and
the elemenic;, was selected for this mutation (the do-
main of ¢, is [cxs, cir]), the result is a vecto€! ! =

(1., ¢y ycg), Withk € 1,..., H, and
= Ck+A(tvck1’_ck)7 if e=0
k= Ck —A(t,ck —Ckl), fe=1

with ¢ being the current generation,being a random
number that may have a value of zero or one, and the
function A(t, ) returns a value in the rang@, 4] such
that the probability ofA(%,y) being close to O increases
ast increases

Aty =y (1 r0-H)

with » being a random number in the intenal 1], T
being the maximum number of generations arting a
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parameter chosen by the user, which determines the de-
gree of dependency with the number of iterations. This 10
property causes this operator to make a uniform search in e
the initial space when is small and a very local one in 5 N
later stages. In the experiments, we consider 5, that
is the value proposed for the author in [30]. o
E. Restart 0

Due to the large size of the search space tackled and to the
special coding considered with two different information levels,
the genetic search can get trapped in local optima. In some pre-
liminary experiments the population did converge so fast to a
determinated granu|arity |evecl) and other promising zonesFig. 3.  Graphical representation of the mathematical function.
were not explored. This process is knowrgasetic driftand it
is usual when working with multimodal search spaces [17]. To
avoid this problem, a restart operator is used when the differ-

TABLE |
GENETIC ALGORITHM PARAMETER VALUES

ence between the fitqess_ of the best individual ar_1d the average Parameter Value
fitness of the population is less than a 5% of the first. Population size 64

A usual way to proceed involves copying the best individual Slrosszver proﬁ::}i}:y 8.(1;
. . . .. utation pro 111 .
in th(_e new populaU_on grjd creating the remaining c_hromosomes, Parameter b (m: aniform m},:mion) 5
starting from that individual, by randomly changing the 70% Parameter d (MMA crossover) 0.35
of the genes and maintaining fixed the remainder 30% [14]. In Number of generations 1000

Parameter o (weight w, in fitness function)  {0.05,0.1,0.2}

this case, as it has not the same effect to modify a valué,in
or in Cs, we will first decide over which part a change will be
developed. If itis a value if¥s, a new value is randomly chosen

from the variation interval of this point, while if it is a value in

C1, a new number of labels is randomly selected and a uniform
fuzzy partition for this variable is stored in its corresponding 3)

zone ofCs.

IV. EXPERIMENTAL RESULTS

We have considered three different problems for the experi-

ments developed.

1) P An electrical network distribution problem in
northern Spain [10]. The system tries to estimate the
length of the low voltage line installed in a determined
village. The problem has two input variableése popu-
lation of the villageandits radius one output variable
the length of the installed linéNe were provided with
real data of 495 villages. The training set conta®6

costs in a sample of 1059 simulated towns. The training
set contains847 elements and the test set conta2i2
elements.

P3: The modeling of a tridimensional mathematical func-
tion defined by.

r1 — T1T2
F =10 —
(z1,2) x1 — 2w1w + X9

z1,x2 € [0,1], Fx1,z2) € [0,10].

Fig. 3 shows its graphical representation. We were pro-
vided with data of 741 points. The training set contains
674 elements and the test set contafiTselements, ran-
domly selected from the whole sample.

The genetic parameters used in the expermients are presented
in Table I. A quick and simple RB generation algorithm, the

elements and the test set conte®selements, randomly Wang and Mendel’s rule generation methedil be considered.

selected from the whole sample.

We have chosen this method due its simplicity and to compare

2) P2 A problem with estimations of minimum mainte-our learning process with the one presented in [15] that used it
nance costs which are based on a model of the optimglderive the RB. Our genetic process is independent of the RB
electrical network for spanish towns [10]. The problergeneration method, so anyone of them can be used to derive the

has four input variablesSum of the lengths of all streetsRB.
For every benchmark, the best results obtained by our genetic

in the town Total area of the towpArea that is occupied

by buildingsand Energy supply to the towand one |earning process and the other methods considered for compar-
output variable:Maintenance costs of medium voltageson purposes are shown in Tables I, 11, and IV, which contain
line. These values are somewhat lower than the reg@le following columns.

ones, but companies are interested in an estimation ofl) Method: learning process used to obtain the KB.

the minimum costs. Of course, real maintenance costs
are exactly accounted but a model that relates these costs

to any characteristic of simulated towns with the optimal
installation is important for the electrical companies.
We were provided with data concerning the four char-

a) WM: Wang and Mendel’s rule generation method
[39]. This line shows the results of the FRBS with best
MSE over the training sefMSEy,,) considering the

interval {3,...,9} as possible values for the number

acteristics of the towns and their minimum maintenanceSee Appendix A for a brief description of this method.
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BESTRESULTS FOR THELOW VOLTAGE LINE LENGTH PROBLEM (P1)

TABLE I 6) %tra: improvement percentage of théSE,,, obtained
respect to theMSEy,, obtained using the Wang and
Mendel's method WM).

i . | MSEera | MSEew | % tra | % tst ; .
ROl gy | et Ao ta |, ol 7) %tst: improvement percentage of thdSE,,, obtained
WMLT | O 00 | 20 | 1410224 | 2518084 | 28.6% | 112% respect to theMSE,; obtained using the Wang and
999 20 | 1448312 | 2237348 | 26.7% | 21.1% Mendel's method WM).
FJ 99 9 34 | 133763.6 | 423639.8 | 32.3% | -49.3%
777 75| 152069.3 | 161245.4 | 22.5% | 43.1% . . .
= 32 5% As it can be observed, in the majority of cases our method
GaMF| 7 99 28 | 146741.1 | 191360.2 | 25.7% | 32.5% ) : /

T 2511498324 | 1527937 | 24.1% | 46.1% shows a high accuracy improvement of the final FRBS com-
pared with the usual way to design FRBSs, using the same RB
learning method. As regards the method that considers the same

TABLE Il KB learning approacklF'J), there is also a significant improve-
BESTRESULTS FOR THEOPTIMAL ELECTRICAL NETWORK PROBLEM (P2) ment. Although some results of method&M + T andFJ in
MSE;,, are better than the ones obtained with + MF (in
method [ granularity | # rul. [ MSEy,, | MSE, | % tra | % tst  Table Il), theirMSE,,; are very high, that is, the former FRBSs
WM |9 9 0 9 9| 130 | 323374 | 335049 | — = . o
____  are over-fitted to the training data. The meth@d+ MF has a
WM+T [0 0 0 9 0] 130 | 134425 17585.7 | 58.4% | 47.5% o -
099 0 9 13 | a1 isie| 1% [seqw  Petter generalization capability.
Pl oo 99T T30 | 1eesis 128 [ HI% | 29% Moreover, the FRBSs obtained by our method always gen-
4390900 06 31635 | 11121.3 | 71.6% | 66.8% erates RBs with a lesser (or at most, equal) number of rules
Gr+MF . . . .
5397 9] 68 90877 | 104141 [ 68.1% | 689%  than any obtained by the other methods. This result is of sig-

nificant importance since more accurate fuzzy models can be
obtained with a lesser number of rules on the RB by consid-

TABLE IV ering a learning approach different than the usual approach.
BEST RESULTS FOR THEMATHEMATICAL FUNCTION PROBLEM (P3)
method | granularity | # rul. | MSEy., | MSEs: | % tra | % tst V. CONCLUDING REMARKS
WM 999 81 | 0.70125 | 0.67637 | — — Thi h dith | icallv d
WMAT] 999 ST 013677 | 016381 | 503% | 57 _This paper has presented the usual ways to automatlc_a y de-
p 999 20| 004427 | 006641 | 93.6% | 00.1% sign the KB of a FRBS and has analyzed results that consider the
999 80 0.04656 | 0.04979 | 93.3% | 92.6% DB definition task in the FRBS design process. A new genetic
G+MF| 7 99 80 0.02407 | 0.02586 | 96.5% | 96.1% process has been proposed to automatically design the whole
7 7 7 | 80 | 002537 | 001712 [963% | 974% KB, the DB being evolved by a GA and the RB being generated

by a simple rule generation method.

Our genetic process may be applied to any RB learning
of labels, with all the variables having the same gramethod, having in mind its run time since the RB generation
ularity and uniform fuzzy partitions. method must be run many times within the DB learning process.
b) WM + T: Wang and Mendel's rule generation As a possible extension of the presented method, an input
method + tuning. A genetic tuning process [8] isselection can be developed. This process could be previous to

applied to the previous FRBS DB. the learning of the DB or integrated in the GA.
¢) FJ: Filipic and Juricic’s method [15]. This method

was briefly described in Section II. As the granularity
of each variable must be an odd number, the posible
values are{3,5,7,9}. All the variables will have the
same granularity. Thead-hocdata covering RB generation process proposed by
d) Gr + MF: The genetic learning process proposew/ang and Mendel in [39] has been widely known because of its
in this paper (granularity- membership functions).  simplicity and good performance. The generation of the RB is

APPENDIX A
THE WANG AND MENDEL LEARNING METHOD

Due to the non deterministic nature of the last threlut into effect by means of the following steps.
methods WM + T, FJ andGr + MF), four runs have 1) Consider a fuzzy partition of the input variable spadées

been developed for them. This is the reason why two  may be obtained from expert information (if available)
lines appear in the tables fayM + T, F'J andGr + MF'. or by a normalization process. If the latter is the case,
The first one shows the FRBS with bedBE,,, and the perform a fuzzy partition of the input variable spaces di-

other shows the FRBS with best average between the viding each universe of discourse into a number of equal
MSE,,, and the MSE over the test 8dSE;s; ). If these or unequal partitions, select a kind of membership func-
two FRBSs are equal, only one line appears in the table.  tion and assign one fuzzy set to each subspace.

2) Granularity: the number of labels for each problem vari- 2) Generate a preliminary linguistic rule sethis set will
able. be formed by the rule best covering each example (input-

3) Number rule: the number of rules of the FRBS RB. output data pair) contained in the input-output data set.

4) MSE;..: MSE over the training set. The structure of these rules is obtained by taking a specific

5) MSE,: MSE over the test set. example, i.e., an+1 dimensional real arrayyinput and
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3)

4)

The authors would like to thank the anonymous referees for
23] W. R. Hwang and W. E. Thompson, “Design of fuzzy logic controllers
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one output values) and setting each one of the variables fa5] B. Filipic and D. Juricic, “A genetic algorithm to support learning fuzzy

the linguistic label best covering every array component.
Give an importance degree to each nuleet R; = IFz;
is A; and. .. andz, is A,theny is B, be the linguistic
rule generated from the example = (x!,..., 2%, %%).

The importance degree associated to it will be obtaine(ilm

as follows:

(18]

G(R) = pa, (xi) Tt A, (9551) "HB (yl) .

(19]

Obtain a final RB from the preliminary fuzzy rule s€he

20
rule with the highestimportance degree is chosen for each ]
[21]

combination of antecedents.
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