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Abstract

This paper presents the use of genetic algorithms to develop smartly
tuned fuzzy logic controllers in multicriteria complex problems. This tun-
ing approach has some specific restrictions that make it very particular and
complex because of the large time requirements existing due to the need of
considering multiple criteria —which enlarges the solution search space—,
and to the long computation time models usually used for fitness assessment.
To solve these restrictions, two efficient genetic tuning strategies consider-
ing different multicriteria approaches have been developed and tested in a
real-world problem for fuzzy control of HVAC Systems.

Keywords: Genetic Tuning, Multiple Criteria, Multiple Objectives, Fuzzy
Logic Controllers.

1 Introduction

Fuzzy Logic Controllers (FLCs) [8, 22] are very robust tools which would enable
the implementation of control strategies incorporating expert knowledge. These
strategies typically define a nonlinear mapping from the system’s state space to
the control space. Thus, it is possible to consider the output of an FLC as a
nonlinear control surface reflecting the process of the operator’s prior knowledge.
Tuning approaches are usually based on the availability of a predefined Rule
Base (RB) and a preliminary set of membership functions associated to the fuzzy
partitions, Data Base (DB). Their main aim is to find a better set of parameters
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by only changing the DB components, thus making optimum the FLC behavior.

In this way, FLCs could be obtained from human experience or learning methods

to subsequently be tuned by the application of automatic tuning techniques.
However, many real-world problems involve two types of difficulties:

e The evaluation is based on multiple criteria. This fact adds complexity to the
search because we must obtain the best trade-off among the different criteria.

e The controller accuracy is assessed by means of simulations which usually
take a long time. This causes the run time of the algorithms to be extremely
long.

In this case, numerous factors have to be considered in order to address these
restrictions. It makes the system being controlled very complex and presents a
strong non linearity. Therefore, an efficient operation of the automatic tuning
techniques is a necessary condition in order to achieve good results.

Genetic Algorithms (GAs) are global search techniques that can represent any
type of fuzzy rules, present flexibility to work with different FL.C architectures and
have a good capability to include expert knowledge [5]. Furthermore, the ability to
handle complex problems, involving features such as discontinuities, multimodal-
ity, disjoint feasible spaces and noisy function evaluations, reinforces the potential
effectiveness of GAs in multicriteria search and optimization. For these reasons,
GAs have been recognized to be possibly well-suited to multicriteria optimization
[3, 6, 11, 28, 31].

Although there are many genetic tuning approaches [2, 4, 14, 16, 20], neither
of them can be used satisfactorily because they do not properly address the said
restrictions. Therefore, in order to solve these two problems, efficient genetic tuning
approaches considering both restrictions should be developed.

In this work, the use of GAs to develop smartly tuned FL.Cs in complex multi-
criteria problems is presented. Two efficient genetic tuning strategies, considering
different multicriteria approaches, have been proposed.

To do so, this contribution is arranged in the following way. Section 2 proposes
the use of multicriteria techniques together with some approaches that increase
the convergence speed of GAs for solving the said restrictions. Section 3 briefly
introduces the principles of the GAs and the different multicriteria genetic opti-
mization approaches. Section 4, combines the multicriteria optimization with the
efficient genetic tuning approaches proposing and presenting two particular genetic
tuning techniques. Finally, experimental results are shown in Section 5, whilst
some concluding remarks are pointed out in Section 6.

2 Tuning Restrictions
As we have indicated, the two important restrictions we want to solve are the need

of considering multiple criteria (which enlarges the solution search space) and the
long computation time models require to assess the accuracy of each individual.
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The first restriction will be solved by using multicriteria optimization tech-
niques that allow us to work with fitness functions comprised by competitive objec-
tives. In these cases, we could obtain not only an optimal solution, but a possible
solution set. Depending on the number of solutions obtained, we can distinguish
between two multicriteria approaches:

e Multicriteria aggregation-based methods: All classical methods scalarize the
objective vector reducing it to a scalar optimization problem. Probably, the
simplest of all these classical techniques is the method of objective weighting.
In this case, multiple criteria functions are combined into one overall objective
function by means of a vector of weights. This technique has much sensitiv-
ity and dependency toward weights. However, when trustworthy weights are
available, this approach reduce the search space providing the adequate di-
rection into the solution space and its use is highly recommended. Therefore,
the main question to consider this approach is: Have we trusted weights to
estimate the importance of each objective?

e Multicriteria non aggregation-based methods or multiobjective methods: In a
typical multicriteria optimization problem, there is a set of solutions that are
superior to the rest in the search space when all the objectives are considered.
These solutions are known as non-dominated solutions (pareto set), whilst the
remaining solutions are known as dominated solutions. None of the solutions
in the non-dominated set is absolutely better than the other ones.

Mathematically, the concept of Pareto-optimality or non-dominance is defined
as follows. Let us consider, without loss of generality, a multicriteria function
fx) = (filz), fo(x), ..., fu(x)) to be minimized with m parameters, z =
(z1,%2,-..,Tm) € X, and n objectives. A decision vector ¢ € X dominates
b e X (noted as a > b) if, and only if:

Vi€ {1,2,...,”}, fz(a) sz(b) A
dje{1,2,...,n} | fi(a) < f;(b) .

Any vector that is not dominated by any other is said to be pareto-optimal
or non-dominated.

In order to solve the second restriction, the use of efficient tuning methods is
necessary. There are some approaches that increase the convergence speed of GAs:

e An objective weighting technique would reduce the search space providing
the adequate direction into the pareto when trustworthy weights are used.

e A steady-state GA [29], that consists of selecting two of the best individuals
in the population and combining them to obtain new offspring. This ap-
proach improves the convergence and simultaneously decreases the number
of evaluations.
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e In order to reduce the GAs search space, an integer coding could be used.
This one uses discrete parameter domains forcing to take values from a finite
value set [13] (see Figure 1). The cardinality of this set must be rich enough
in order to allow the tuning process to achieve accurate results, but small
enough so that small changes provoke significant variations.

/7/. g 1
a b c

(O Possible positions of the parameter a

Figure 1: Integer coding to tune fuzzy sets

e Reducing the population size, the number of evaluations is significantly de-
creased. However, this size must be large enough in order to maintain the
diversity in the genetic population.

Several efficient tuning methods with different characteristics will be proposed
based on the combination of multicriteria techniques with these different approaches.

3 GAs and Multicriteria Optimization

3.1 Genetic Algorithms

GAs are general-purpose global search algorithms that use principles inspired by
natural population genetics to evolve solutions to problems. The basic principles
of the GAs were first laid down rigorously by Holland [19] and are well described
in many texts such as [23].

The basic idea is to maintain a population of knowledge structures that evolves
over time through a process of competition and controlled variation. Each structure
in the population represents a candidate solution to the specific problem and has
an associated fitness to determine which structures are used to form new ones in
the process of competition.

Hence, a subset of relatively good solutions are selected for reproduction to
give offspring that replace the relatively bad solutions which die. In the traditional
generational approach, offspring replace their parents for the next generation
[23]. These new individuals are created by using genetic operators such as crossover
and mutation. The crossover operator combines the information contained into the
parents increasing the average quality of the population (explotation), while the
mutation operator randomly changes the new individuals helping the algorithm to
avoid local optima (exploration).
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The steady-state approach [29] consists of selecting two of the best individu-
als in the population and combining them to obtain one or two offspring. Every new
individual is included in the population replacing the worst individual (usually) if
the former is better adapted than the latter.

An advantage of the steady-state approach with respect to the generational
one is that good solutions are used as soon as they are available. Therefore, the
convergence is accelerated while the number of evaluations is decreased. However, a
premature convergence could provoke the GA to get stuck in a local optima. Thus,
while the steady-state approach is quicker obtaining relatively good solutions, the
generational one is theoretically more robust and sure, and in most cases preferable
when the search speed is not important.

3.2 Multicriteria Genetic Optimization

Generally, multicriteria GAs only differ from the rest of GAs in the fitness function
and/or in the selection operator. The evolutionary approaches in multicriteria
optimization can be classified in three groups [11]: plain aggregating approaches,
population-based non-pareto approaches, and pareto-based approaches.

Plain Aggregating Approaches

As conventional GAs require scalar fitness information to work on, a scalarisation of
the objective vectors is always necessary. In most problems, where no global crite-
rion directly emerges from the problem formulation, objectives are often artificially
combined, or aggregated, into a scalar function according to some understanding of
the problem, and then the GA is applied. Practically, all the classical aggregation
approaches can be used with GAs. Some approach of this kind has been reported
in the literature: weighted sum [26], distance functions [30], etc.

Optimizing a combination of the objectives has the advantage of producing
a single compromise solution, requiring no further interaction with the decision-
maker. The problem is that, if the optimal solution can not be accepted, new runs
of the optimizer may be required until a suitable solution is found. However, in the
case of objective weighting, when trustworthy weights are available this problem
disappears.

Population-Based Non-Pareto Approaches

This approach allows to exploit the special characteristic of GAs. The use of an
population of individuals offers the possibility to treat non-commensurable objec-
tives separately and to search for multiple non-dominated solutions concurrently
in a single GA run.

Now, a non-dominated set of individuals is obtained instead of obtaining only
one of them. In order to do this, the selection operator is changed. Generally,
the best individuals according to each objective are selected (in many occasions,
an order according to its importance is followed) and then these partial results are
combined to obtain the new population.
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Different proposals based on this idea can be found in [12, 15, 21, 24].

Pareto-Based Approaches

The population-based non-pareto approaches attempt to promote the generation
of multiple non-dominated solutions. However, none makes direct use of the actual
definition of Pareto-optimality. As the best solution cannot be selected among
the non-dominated solutions set, the approaches should assign equal probability of
reproduction to all of them.

In GAs based on the concept of pareto-optimality, to calculate the probability
of reproduction of each individual, the solutions are compared by means of the
dominance relation (). Some approach of this kind can be found in [10, 25].

Although the Pareto-based ranking correctly assigns all non-dominated indi-
viduals the same fitness, it does not guarantee that the Pareto set be uniformly
sampled. When it is presented with multiple equivalent optima, finite populations
tend to converge to only one of them, due to stochastic errors in the selection
process. This phenomenon is known as genetic drift [7].

Since preservation of diversity is crucial in the field of multiobjective optimisa-
tion, several multiobjective GAs have incorporated the niche and specie concepts
for the purpose of favouring such behaviour [10, 25].

4 Proposal: Two Multicriteria Genetic Tuning
Strategies

Thinking on these three different multicriteria approaches, we must consider an
important aspect in the selection of the best techniques and methods to accom-
plish the tuning process: Have we trusted weights to estimate the importance of
each objective? Depending on whether we can obtain them or not, the recom-
mended strategy will be different. Nevertheless, we will be able to use several
tuning processes with and without weights if we want to compare the results or
if we are not sure of the weight reliability. In this way, combining the multicri-
teria and the said efficient tuning approaches, two strategies have been developed
(Table 1 shows a summary of the two developed methods):

e Taking into account the existence of trusted weights and in order to benefit
from them, we propose a simple steady-state GA with the classical real coding
[18] and with a fitness function based on objective weighting that considers
them. It will be called, Weighted Multi-Criterion Steady-State Genetic Al-
gorithm (WMC-SSGA). Furthermore, the use of fuzzy goals for dynamically
adapting the search direction in the space of solutions will be considered. It
will make the method robust and more independent from the weight selection
for the fitness function.

e If we do not have trustworthy weights, we must search for advanced multi-
objective techniques with adequate characteristics to obtain the desired con-
vergence, e.g., the use of the integer coding. In this way, a multiobjective
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approach based in the well-known algorithm presented in [10] is proposed.
The so called Multi-Objective Steady-State Genetic Algorithm (MO-SSGA)
presents likely premature convergence getting a quick search speed at the ex-
pense of decreasing the diversity. This algorithm is complemented with the
use of a steady-state approach.

Table 1: Summary on Tuning Strategies

Method When Multicriteria Characteristics
approach
One Trusted weights exist ~ Aggregation fitness SSGA + real coding
function
Two Trusted weights not  Pareto-based fitness SSGA + integer coding
exist function

There is an important aspect that the proposed methods address in the same
way, the definition of the variation intervals for each gene. In the following sub-
section, this common characteristic is introduced. After this, the two proposed
methods will be widely explained.

4.1 Dynamic Variation intervals

In order to be meaningful, each chromosome (a complete DB) must maintain their
genes (the DB definition points) within their respective variation intervals. These
intervals are usually computed and fixed from the initial solution —DB provided
by experts—. However, in our case, these intervals are dynamically adapted from
the best individual for each GA iteration, avoiding the restrictions of fixing them
from the beginning of the GA run. Thus, once these intervals have been calculated,
the genes out of range are randomly generated within them.

Let (aé, b;-, c;) be the definition points of the j-th membership function label of
the i-th variable. In a strong fuzzy partition (those in which the membership degree
within the variable domain is kept to 1.0) the vertex of each label (b%) coincides
with the nearest extreme points of its neighbor labels, c§-71 = bj» = aé» 41- In this
case, only the vertex of the labels has to be considered and the same variation
interval can be defined for coincident points. Thus, the variation intervals are
usually defined by the middle points between the correspondent vertex and the
vertex of the previous and the next label.

In our case, a more flexible approach is considered and the vertex of the labels
does not have to coincide with the nearest extreme points of its neighbor labels (see
Figure 2). However, considering these three points as a simple set for each label
B; = {c;'-_l, b;-,a;'- 41} and taking into account that they have the same variation
interval, the same approach can be followed. In this way, the middle point between
two sets can be computed considering the maximum point of the first set and the
minimum point of the second set. Therefore, to calculate the left extreme of the
variation interval for a concrete definition point z € B;, we should consider the
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maximum point of B;_1 (I1) and the minimum point of the corresponding set B;
(12). And for the corresponding right extreme, we should consider the maximum
point of B; (rl) and the minimum point of Bj1; (r2).

Finally, taking into account that a§- € Bj_1, b; € B; and c§- € Bj;1, the
variation intervals of each definition point of the j-th label membership function of
the i-th variable, (a;, bz, %), are calculated from the initial or best individual as,

{l}l;,lij} = {max(ct s,b! »,a% 1), min(ci >, 0% 1,al)}

{rclbj,rij} = {max(c} »,bi 1,al), min(ct 1,b%,al1)}
2 1 2 1
e TS — T

a al )
[La;vRaj]:[li;ﬂ* > 9 J’Ti§_+ . 9 J] )

{l;; ) ll%;} = {maX(C§*2 » bjfl ’ Cl;;‘), min(cj,l ’ b; 5 a§+1)}

{T;;'_ ) 7“13;‘_} = {max(cf-,l ) bﬁ‘ ) a§+1), min(cﬁ- ) b§+1 ) a§+2)}
12_ _ ll_ 2 1
¢ t)

b T i Tpi = Ty
[Lb;?Rb;]:[lg;_ 2 9 J7r;§_+ Z ) J] 5
{li;alzj} = {max(cﬁ-,l,bﬁ-,aﬁ-ﬂ), min(cﬁ,b§+1,a§+2)}
{7'% ) 7"3;} = {max(cj- s b§‘+1 ) a§+2), min(Cjﬂ ) b§‘+2’ a§+3 )}
l2_ o ll_ ,,,2_ o 7,,1_
ct ct ct ct
[Lc;aRc;]:[lgz_ > 2 Jyrcl;i_+ 2 D) J] )

Notice that the associated variation intervals of the corresponding extreme val-
ues, a§- and cé-, are calculated exactly as the intervals for b§;1 and b;- |1, respectively.

Figure 2 graphically depicts the variation intervals for the i-th variable following
the proposed approach. We have considered that the vertex of the labels at the
edges of the variables’ domain must coincide with the extreme points. These labels
will be symmetrical with respect to their vertexes.

Label 1 Label 2 Label 3 Label 4 Label 5 Label 6
(- | H | [ |
By « \B,/ . 3 ' B, LB ' Be
1 1 1 VAl | 1 L | 1
! . . . ' I r !
Variation ] | [ P | [N | (N | i i | i
intervals a, ' a; b, c;' a, bsc, ag, by, cy ag, bg, cy Cg
for

Figure 2: Variation intervals of the i-th variable.
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4.2 Weighted Multi-Criterion Steady-State Genetic Algo-
rithm

WMC-SSGA consists of a GA based on the well-known steady-state approach [29)].
Its fitness function is based on objective weighting. However, in order to make
the method robust and more independent from the weight selection for the fitness
function, the use of fuzzy goals for dynamically adapting the search direction in
the space of solutions will be considered.

Coding scheme: WMC-SSGA uses a real coding scheme [18]. A solution is
directly encoded in a chromosome by joining the definition points (aé-, b;, c;) of the
l; labels of each one of the m variables composing the DB. For example:

Ci = (al, b8, ¢, a0 b ¢ ), i=1,....m,

C=0CCy...Cp .

Initial gene pool: To make use of the existing knowledge, the DB previously
obtained from expert knowledge is included in the population as an initial solution.
The remaining individuals are randomly generated maintaining their genes within
their respective variation intervals. These intervals are computed from the initial
solution (see Section 4.1).

Evaluating the chromosome: The fitness function is based on objective weight-
ing. However, it has been modified in order to consider the use of fuzzy goals for
dynamically adapting the search direction in the space of solutions, decreasing
the improvement possibility of those objectives which approach their goals in the
first place. Thus, a function modifier parameter, §;(z), is used to penalize each
objective (taking values over 1.0) whenever its value gets worse with respect to
the initial solution or to decrement the importance of each individual fitness value
whenever it comes to its respective goal (taking values close to 0.0). Moreover, a
penalization rate has been included in 6;(x), allowing the user to set up priorities
in the objectives. This penalization rate, p;, for each objective is a real number
from 0.7 to practically 1, although the user specifies this penalization from 0 to 1
(less and more priority, respectively), which is more interpretable. Therefore, the
global fitness is evaluated as:

F= iwi 6;(C) - G
i=1

with C; being the considered criteria (objectives) for each specific problem and w;
being the corresponding weighting coeflicients.

Two cases can be presented in the corresponding individual according to the
value of the goal, g;, and the value of the initial solution, 4;. Depending on these
values, two different ¢ functions will be applied.

e The first case is when the value of g; is lesser than the value of i;, presenting
the following behavior (see Figure 3),
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0, ifae<g
I — a
Ji. if g; <z < i
2 gi
TN it <a
T — T p;

Figure 3: §;(z) when g; <4;

In this case, the objective is not considered if the goal is met and penalized
if the initial results are worsen.

e The second case happens when the initial value, i;, is lesser than the goal
value, g; (see Figure 4),

0, ife<g

;Jrl, ifg; <z

Figure 4: §;(x) when g; > 4;

Now, the initial results can be worsen while the goal is met, and it is penalized
otherwise.

Notice that the penalization function allows the search to slightly worsen the
goal, improving other objectives to subsequently met the goal again.

Genetic operators: The selection is based on the Baker’s stochastic universal
sampling [1] (by only selecting two individuals). WMC-SSGA also follows the
interval adapting scheme explained in Section 4.1.

Since WMC-SSGA uses the real coding scheme, the crossover and mutation
operators have been selected according to this aspect: the Max-Min-Arithmetical
crossover [17] and Michalewicz’s non-uniform mutation [23].

Using the max-min-arithmetical crossover, if C}, = (¢1,...,¢,...,cq) and
Ct = (c},...,¢,...,c) are going to be crossed, the next four offspring are ob-
tained:
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CH = aCl + (1 —a)Ct,
Cyt =aCt + (1 - a)Ct,
Ci™ with ¢t = min{ey, ¢}, }

O with ¢t = max{cx, ¢, }

with a being a constant parameter chosen by experts, and H being the number of
genes.

In the case of the Michalewicz’s non-uniform mutation, a gene cg, with a
variation interval [L.,, R.,], can be mutated as ¢, = cx + A(t, Re, — &) with
probability 0.5, or as ¢}, = ¢y — A(t, ¢k — L, ), in other case. With ¢ being the
current generation, function §(t,y) returns a value in the range [0,y] such that
the probability of §(t,y) being close to 0 increases as the number of generations
increases. This function is formulated as d(¢t,y) = y(1 — r(lf%)b), with r being a
random number in [0, 1], T' the total number of generations, and b being selected
by the user to determine the dependency with ¢.

Thus, once the mutation operator is applied over the four offspring obtained
from the crossover operator, the resulting descendents are the two best of these
four individuals.

Restart approach: Finally, to get away from local optima, this algorithm uses
a restart approach [9]. Thus, when the population of solutions converges to very
similar results (practically the same fitness value in the population), the entire
population but the best individual is randomly generated within the variation in-
tervals. It allows the algorithm to perform a better exploration in the search space
and to avoid getting stuck at local optima.

4.3 Multi-Objective Steady-State Genetic Algorithm

MO-SSGA consist on an integer coded steady-state GA for multiobjective optimiza-
tion. This algorithm presents likely premature convergence getting a quick search
speed at the expense of decreasing the diversity. Its fitness function is based on the
multiobjective approach presented in [10]. However a new scheme to accommodate
goal attainment have been proposed.

Coding scheme: Once again, a solution is encoded in a chromosome by joining
the representation (definition points) of the I; labels of each one of the m variables
composing the DB. However, in this case, an integer coding scheme is used to
represent the possible solutions. This one uses discrete parameter domains for each
one of the m variables, forcing to take values from a finite value set. The cardinality
of these domains, GG;, is determined by the global granularity parameter G —chosen
by experts— and directly depends on the corresponding number of labels [;:

Gi=Gxl;+1, i=1,...,m.
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Let L and R’ be the left and right extremes of the i-th variable domain. The
corresponding possible values for this variable are uniformly distributed from L* to
R*. Therefore, the distance between a point and the next one will be,

R - Lt

di = ——.
Gi—1

In this way, a mapping between an integer ordered set (from 0 to G; — 1) and
the set B; of the corresponding real discrete values could be established as follows:

D:{O,l,...,Gifl}*)Bi,
D(z®) =L+ zt xd;, V' €{0,1,...,G; —1}.

The integer coding scheme consists on coding the possible solutions by us-
ing these integer ordered sets to represent the corresponding real discrete values
—which can be easily obtained by using D(x)—. This representation eases the
application of the genetic operators.

Initial gene pool: The initial pool is comprised of one individual containing the
DB previously obtained from expert knowledge and the remaining ones generated
at random maintaining their genes within their respective variation intervals. The
intervals in which will switch around each gene are established from the initial
solution as explained in Section 4.1. However, since this method is based on integer
coding, once the variation intervals are computed as in the real coding, the upper
and lower limits defining these intervals and the initial solution values must be
encoded by rounding to the closer corresponding integer in the coding scheme as
follows:

C:[L, R —{0,1,...,G; — 1},

RT_L?
G;—1

C(z%) = round <””L) , Vz' e [LY, RY.

After this, the initial gene pool can be generated within these variation intervals
following the integer coding.

Evaluating the chromosome: A rank-based fitness assignment method for
Multiple Objective GA (MOGA) was developed by Fonseca and Fleming in [10].
With this purpose, a rank is assigned to each individual of the population. These
individuals are sorted to be selected according to rank. MO-SSGA is based on this
approach. Thus, the position in the individuals’ ranking can be given by:

If non-dominated then rank(x;) =1
Else rank(xz;) = 1 + (dominants of x;)

The traditional assignment of fitness according to rank may be extended as
follows:

1. Sort population according to rank.



A Multicriteria Genetic Tuning for Fuzzy Logic Controllers 191

2. Assign fitness to individuals interpolating from the best (rank 1) to the worst
(rank n* < N) in the usual way, according to some function, usually linear
but not necessarily.

3. Average the fitness of individuals with the same rank, so that all of them
will be sampled at the same rate. Note that this procedure keeps the global
population fitness constant while maintaining appropriate selective pressure,
as defined by the function used.

A scheme to accommodate goal attainment was proposed in [10]. It consists on
modifying the ranking scheme for selection. In this way, the ranking in MO-SSGA
was extended to accommodate goal information by altering the way in which indi-
viduals are compared with one another. However, considering the original approach
interesting individuals were lost. Therefore, a new scheme has been implemented
replacing the concept of dominance by the concept of preferable. Following this
new scheme, individuals that meet more goals are more important than indi-
viduals that meet less even if they do not dominate to these latter ones. Thus,

Yo = (Ya,1- - -1 Ya,q) is preferable to yp = (Yp,1,- -, Yb,g):
e If y, meets more number of goals than y;, or,

o If y, meets exactly the same goals than y;,, £+ 1,...,¢, and y, dominates to
yp in k+1,...,q objectives.

Genetic operators: The chromosome selection is based in the Baker’s stochas-
tic universal sampling [1]. However, in this case only two individuals are selected.
These two individuals replace the to worst in the population.

The genetic operators are a two points crossover and a mix mutation. Using the
two points crossover, two points are randomly generated and the genes between
these points are exchanged to obtain two offsprings. After this, the mix muta-
tion is applied over these two offspring. It consists on randomly using one of the
following mutation operators:

e A random mutation, by randomly selecting an integer value within the vari-
ation interval of the corresponding gene.

e The Thrift mutation [27], by changing the gene one level either up or down.

In the same way that WMC-SSGA, this method follows the same interval adapt-
ing scheme explained in Section 4.1. However, since the integer coding is considered,
the best solution in each iteration must be decoded —by using D(z)— to compute
the variation intervals as in the real coding scheme. After this, the upper and lower
limits defining these intervals must be encoded by using C(z).
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5 Experiments and Results for Fuzzy Control of
HVAC Systems

5.1 HVAC Systems

In EU countries, primary energy consumption in buildings represents about 40%
of total energy consumption, and depending on the countries, more than a half of
this energy is used for indoor climate conditions. On a technological point of view,
it is estimated that the consideration of specific technologies like Building Energy
Management Systems (BEMSs) can save up to 20% of the energy consumption of
the building sector, i.e., 8% of the overall Community consumption. BEMSs are
generally applied only to the control of active systems, i.e., Heating, Ventilating,
and Air Conditioning (HVAC) systems.

HVAC Systems are equipments usually implemented for maintaining satisfac-
tory comfort conditions in buildings. The energy consumption as well as indoor
comfort aspects of ventilated and air conditioned buildings are highly dependent
on the design, performance and control of their HVAC systems and equipments.
Therefore, the use of appropriate automatic control strategies, as FLCs, for HVAC
systems control could result in important energy savings when compared to manual
control.

However, due to the complexity of the problem —many criteria have to be
considered—, a rational operation and improved performance of FLCs is required.
The use of smart setting and tuning techniques for these controllers could improve
the energy savings and the indoor comfort by fitting the DB parameters of previ-
ously obtained KBs provided by experts.

In this way, in order to evaluate the goodness of the proposed tuning techniques,
several experiments have been carried out within the framework of the JOULE-
THERMIE programme under the GENESYS ! project. A real test site (building)
provided by a French private enterprise —whose name must remain anonymous—
was available for the experiments. From now on, this site will be called ATC test site
—from Anonymous Test Cell—. The main objective was the energy performance
but maintaining the required indoor comfort levels.

5.2 ATC test site

Located in France, this test environment consists of two adjacent twin cells. Around
these test cells walls, an artificial climate can be created at any time (winter con-
ditions can be simulated in summer and vice-versa). These test cells are medium
weight constructions. The HVAC system tested is a fan coil unit supplied by a
reverse-cycle heat pump, and a variable fan speed mechanical extract for ventila-
tion.

To assess the proposed tuning techniques for fitness computation, accurate mod-
els of this controlled building (as well as the corresponding initial FLCs) were pro-

LGENESYS Project: Fuzzy controllers and smart tuning techniques for energy efficiency and
overall performance of HVAC systems in buildings, European Commission, Directorate-General
XII for Energy (contract JOE-CT98-0090).
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vided by experts for each season, considering fall and spring as the same kind of
season. These models require long computation times, which makes more complex
the tuning process. The results obtained were very satisfactory, specially for the
ATC summer-season model. However, due to the large number of results, we will
work only with a cross-section of the models, the ATC summer-season model.

A hierarchical FLC architecture considering the Predicted Mean Vote 2 (PMV),
COs concentration, previous HVAC system status and outdoor temperature was
proposed for this site. The ATC summer-season FLC architecture and variables
are presented in Figure 5. Each module in the figure represents a simple fuzzy
controller. With respect to the fuzzy reasoning method used for each simple FLC of
this global architecture, we have selected the singleton fuzzification, the minimum
t-norm playing the role of the implication and conjunctive operators, and the mean
of maxima weighted by the matching degree as deffuzification strategy.

The initial KB was obtained from BEMS designers for this model. Figures 5
and 6 show the initial RB and DB of the ATC FLC for summer-season. This initial
RB is fixed for all the tuning process. As initial DB, we considered symmetrical
fuzzy partitions of triangular-shaped membership functions for each one of the
m variables. These membership functions were labeled from L1 to Ll;, with I;
being the number of membership functions of the i-th variable. The decision table
(initial RB) for each simple FLC (module) is represented in Figure 5 in terms of this
labels. Therefore, each cell of the table represents a fuzzy subspace and contains
its associated output consequent(s), i.e., the correspondent label(s).

In this case, the objective was to minimize the following five criteria:

(1 Upper thermal comfort limit: if PMV > 0.5,y = Cy + (PMV — 0.5).
C5 Lower thermal comfort limit: if PMV < —0.5,Cy = Co + (—PMV —0.5).

Cs5 Indoor air quality requirement: if COs conc. > 800ppm,Cs = C3 + (COq —
800).

C4 Energy consumption: Cy = C4+ Power at time t¢.
(5 System stability: Cs5 = Cs+ System change from time ¢ to (¢ — 1).

Therefore, the fitness function for WMC-SSGA was comprised of five criteria.
The main problem was then to assign appropriate weights to each criterion. The
basic idea in this weight definition was to find financial equivalents for all of them.
Such equivalences are difficult to define and there is a lack of confident data on
this topic. Whereas, energy consumption cost is easy to set, comfort criteria are
more difficult. Recent studies have shown that an 18% improvement in people’s
satisfaction about indoor climate corresponds to a 3% productivity improvement
for office workers. Based on typical salaries and due to the fact that PMV and
COy concentrations are related to people’s satisfaction, such equivalences can be
defined.

2The PMV global thermal comfort index selected by international standard ISO 7730 (incor-
porating relative humidity and mean radiant temperature).
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Figure 5: Initial rule base and generic structure of the ATC summer-season fuzzy
logic controller

The same strategy can be applied to the system stability criterion, life-cycle
of various systems being related to number of operations. Based on this, trusted
weights for this test site were obtained. The chosen values were: wy; = 0.0041511,
we = 0.0041511, w3 = 0.00000228333, w4 = 0.0000017832 and ws = 0.000761667.

The tuning strategies were assessed with simulations of 10 days with the cor-
responding climatic conditions. The results obtained by the tuning methods for
the ATC summer-season model are presented in the following subsection. These
results will be compared to the performance of the initial expert FLC and to a
classic control technique, an On-Off controller.

The intention from experts was to try to have 15% energy saving (Cy) together
with a global improvement of the system behavior compared to On-Off control.
Comfort parameters could be slightly increased if necessary (no more than 1.0 for
criteria C and Cs).
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5.3 Experiments

The results obtained by the proposed methods are shown in Table 2 together with
the goals values (g;) imposed to them, where % stands for the improvement rate
with respect to the On-Off controller for each criterion. The tuned DBs presented
in this table for the Summer ATC model correspond to three individuals from the
population at iteration 500 with WMC-SSGA. The remaining results were obtained
at iteration 500 with MO-SSGA.

Since the time required for each model run was 215 seconds approximately, the
estimated run times were, four days for 500 iterations in WMC-SSGA and two days
for 500 iterations in MO-SSGA (computed as product of the number of evaluations
per generation, the evaluation time and the number of generations).

Following the experts intention, the goal values imposed to WMC-SSGA and
MO-SSGA were the following ones:

e WMC-SSGA: g1 =1, g =1, g3 = 7, g4 = 2000000 and g5 = 1000, with
penalization rates of p1 = 1, po = 1, ps = 1, p, = 0.9, and ps = 0.97,
respectively.

e MO-SSGA: g1 =1, g0 = 1, g3 = 8, g4 = 2700000 and g5 = 1100, with
granularity G = 40.

Notice that these goals imposed to the algorithms are higher than the ones initially
required since the initial goals were easily met.

Table 2: Results obtained with the ATC Summer-Season model

ATC PMV>05 PMV<-0.5 COy Energy Stability
MODEL % Cs % Cs % Cy % Cs %
ON-OFF 0.0 — 0 — 0 — 3206400 — 1136 —
INIT. 0.0 — 0 — 0 — 2901686 9.50 1505 -32.48
WMC (g;) 1.0 — 1 — 7 — 2000000 — 1000 —
MO (g;) 1.0 — 1 — 8 — 2700000 — 1100 —
WMC-1 0.0 — 0 — 0 — 2575949 19.66 1115 1.85
WMC-2 0.0 — 0 — 0 — 2587326 19.31 1077 5.19
WMC-3 0.0 — 0 — 0 — 2596875 19.01 1051 7.48
MO-1 0.1 -10 0 — 0 — 2697449 15.87 1543 -35.83
MO-2 0.5 -5b1 0 — 0 — 2836160 11.55 1053 7.31

In this case, the expert goal has been easily met by WMC-SSGA. Moreover,
the solutions present a desirable diversity that allow us to select different and
interesting FLCs.

From the results in Table 2, experts selected the third DB from WMC-SSGA
as the most promising one. In this case, the solutions obtained from this method
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present improvement ratios of about 20% in energy and 5% in stability. The results
obtained with MO-SSGA were clearly worse than the ones obtained with WMC-
SSGA. However, in this case acceptable solutions could be quickly obtained.
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Figure 6: Initial and tuned DB of the ATC summer-season FLC

Figure 6 represents the initial and the final DBs for the ATC FLC taking as
final DB the third solution from WMC-SSGA in Table 2. It shows that small
variations in the membership function parameters provoke large improvements in
the FLC behavior.

5.4 Methods Analysis

All the proposed techniques have yielded much better results than the classical
On-Off controller, showing the good behavior FLCs can achieve on these kinds
of complex multicriteria problems. In this case, WMC-SSGA presented the best
results practically meeting all the requested goals. On the other hand, we also have
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seen as MO-SSGA generates acceptable solutions with less computation time than
WMC-SSGA. In any case, the computation time for WMC-SSGA is reasonable.

Therefore, from this experimental study, we could say that WMC-SSGA is the
best strategy for this problem. However, we must think that it is possible thanks
to properly guide the search by using trusted weights, while MO-SSGA perform a
robust search. Therefore, in the case in which trusted weights can not be provided
probably MO-SSGA would be the best strategy.

Therefore, the good results obtained by WMC-SSGA can be attributed to the
use of a method of objective weighting that can directly guide to the best solution,
to the use of fuzzy goals for dynamically adapting the search direction in the
space of solutions, and to the restart approach getting away from local optima. In

Figure 7 the way in which these factors affect to the fitness function can be easily
observed.
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Figure 7: Evolution of the WMC-SSGA in the ATC summer season model

This figure illustrates the evolution chart of the fitness (expression without con-
sidering fuzzy goals) and performance values (C;) obtained by the WMC-SSGA
method when tuning the ATC summer model (PMVsup, PMVinf, and COy im-
provements have been depicted with the same shade since they presents a very
similar behavior with values near of 0%). The chart has been generated obtain-
ing the values of the best individual (according to the fitness with fuzzy goals) in
each generation. The improvement attained by the tuning process with respect to
the On-Off controller solution is represented in vertical axis, where 0% stands for
no improvement, negative value for a worsened result, and positive value for an
improved result.

Analyzing the chart, we can observe how, after some initial generations where
the algorithm is being stabilized, the energy consumption is gradually decreased
until the generation 131 where almost 16% of improvement is achieved. Stability
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and hence fitness are also improved during this period. After that, a significant
improvement of the energy causes a worse stability to be obtained and the algorithm
lies in a local optimum where an improvement of 19.4% for energy is obtained at
the expense of stability, 11.5% worse than that of the On-Off controller. This
is kept until the generation 402 where making the energy slightly worse involves
finding a good stability result 12.1% better than the On-Off controller. This fact
is derived from the restart action performed some generations before and it allows
the algorithm to get away from the local optimum. From this generation to the
end of the run, the energy is gradually improved with an acceptable stability that
entails decreasing the fitness function value.

The obtained chart leads us to notice the restart influence and the convergence
degree of this algorithm, and analyze the tuning process from the efficiency (time-
consuming) point of view. From this angle, it is interesting to verify that a good
solution where the energy consumption is improved in a 15.9% with the rest of
performance values similar to the On-Off controller is obtained in less than 100
generations.

6 Concluding Remarks

In this paper, the use of GAs to develop smartly tuned FLCs dedicated to the
control of complex multicriteria systems is presented. Two efficient genetic tuning
strategies considering different multicriteria approaches have been proposed. Sev-
eral FLCs have been produced and tested in laboratory experiments in order to
check the adequacy of such tuning techniques.

From this experimental study, we could say that probably the objective weight-
ing method WMC-SSGA is the best option when trusted weights are available while
in the case in which trusted weights can not be provided probably a most robust
technique as MO-SSGA would be the best option. Moreover, the proposed tech-
niques have yielded much better results than the classical On-Off controller showing
the good behavior that FL.Cs can achieve on these kinds of complex multicriteria
problems.

The proposed tuning algorithms have an interesting advantage for industrial
application: the consideration of goals to perform the multicriteria optimization.
These goals significantly improve the tuning performance and it makes easier the
expert’s knowledge interpretation since the specification of goals, i.e., when each
objective has been properly improved, seems to be easy to give. Furthermore, the
use of fuzzy goals together with the penalization factor internally changes the initial
proposed weights during the evolution of the WMC-SSGA algorithm, dynamically
adapting the search direction in the space of solutions. It makes this method robust
and more independent from the weight selection for the fitness function.
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