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Abstract

The use of Mamdani-type fuzzy rule-based systems (FRBSs) allows us to deal
with the modeling of systems building a linguistic model clearly interpretable by
human beings. However, the accuracy obtained is not sometimes as good as desired.
This fact relates to the restriction imposed when using linguistic variables, which
forces the membership functions considered in each fuzzy linguistic rule to belong to
a common set of them, i.e., to use a global grid.

To solve this problem, in the last few years a new variant has been proposed
working directly with fuzzy variables in the fuzzy rules instead of linguistic terms,
thus ignoring the said restriction. Therefore, these systems, which are totally equiv-
alent to fuzzy graphs (defined by Zadeh as granular representations of functional
dependencies and relations), do not consider a global grid and could be named non-
grid-oriented (NGO) FRBSs. Of course, the main objective of these models is the
accuracy of the system instead its interpretability.

Until now, NGO FRBSs have been little considered and developed in the litera-
ture. However, and due to their good accuracy, their use is increasing thus making
necessary a wide analysis on the features and associated learning methods in the
NGO domain. This contribution aims at analyzing the structure and framework of
NGO FRBSs, as well as making a taxonomy of learning methods considering the con-
strains imposed on the fuzzy sets in the generation process. Some automatic learning
techniques and methods proposed in the literature to build these fuzzy graphs will
be also reviewed and analyzed when solving several applications of different nature.
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1 Introduction

At present, one of the most important areas for the application of fuzzy set theory are fuzzy
rule-based systems (FRBSs). These kinds of systems constitute an extension of classical rule-
based systems, because they deal with fuzzy rules instead of classical logic rules. The most
usual application of FRBSs is system modeling [5, 76], which in this field may be considered as
an approach used to model a system making use of a descriptive language based on fuzzy logic
with fuzzy predicates [88].

There are basically two different kinds of FRBSs in the literature, the well-known Mamdani-
Assilian (MA) [70] and Takagi-Sugeno-Kang (TSK) [87, 89] ones, depending on the expression
of the consequent of the fuzzy rules. The main advantage of the MA FRBS is that it provides
a natural framework to include expert knowledge in the form of fuzzy rules. On the contrary,
though the TSK FRBS is easier to design, the form of the rule consequents causes the system
not to constitute a natural framework to represent expert knowledge.

Although the MA FRBS presents the maximum description level, sometimes it is not as
accurate as desired. To address this problem, a new variant of these kinds of systems has been
recently proposed where the system accuracy is more preferable than its interpretability [5, 7, 12,
19, 22, 24, 62, 86]. These systems, that could be named as non-grid-oriented (NGO) FRBSs due
to its structure, are characterized by working directly with fuzzy variables—instead of linguistic
ones—in the fuzzy rules, i.e., each rule has its own semantic instead of considering a set of
linguistic terms as MA FRBSs do.

Until now, NGO FRBSs have been little considered and developed in the literature. However,
due to their good accuracy, their use is increasing thus making necessary a wide analysis on the
features and associated learning methods in the NGO domain. With the purpose of formalizing
such aspects, this contribution aims at analyzing the NGO FRBS features. A taxonomy of
learning methods will be also performed considering different kinds of constrains imposed on
the fuzzy sets in the generation process. Some automatic learning methods and techniques
proposed in the specialized literature will be reviewed. Finally, their behavior will be tested
under different requirements.

To do so, the paper is organized as follows. Section 2 places the scope of the contribution by
introducing different approaches for modeling with FRBS and presenting the analyzed way to
improve the accuracy of the obtained models. Section 3 presents the justification, rule structure,
and the pros and cons of NGO FRBSs. Section 4 focuses on NGO FRBS learning approaches,
categorizing them in different kinds according to the constrains imposed on the fuzzy sets during
the generation process. Section 5 presents and analyzes results obtained when applying the
said methods to some problems with different characteristics. Finally, Section 6 shows several
concluding remarks.

2 From Interpretability to Accuracy: From Linguistic Rules to
Fuzzy Rules

Fuzzy modeling (FM) (i.e., system modeling with FRBSs) usually comes with two contradictory
requirements to the obtained model: the interpretability, capability to express the behavior of
the real system in an understandable way, and the accuracy, capability to faithfully represent
the real system.

Of course, the ideal thing would be to satisfy both criteria to a high degree but, since they
are contradictory issues, it is generally not possible. In this case, more priority is given to one
of them (defined by the problem nature), leaving the other one in the background.

This section introduces an extreme situation where the accuracy of fuzzy models is mainly
considered. Firstly, several approaches to find different interpretability and accuracy degrees
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Figure 1: Improvements of interpretability and accuracy in fuzzy modeling

are shown. Then, a different, more flexible rule structure is presented as a way to improve the
accuracy.

2.1 From Interpretability to Accuracy

Two FM approaches arise depending on the main objective to be considered:

• Linguistic FM, mainly developed by MA FRBSs [69, 70], is focused on the interpretability.

• Precise FM, mainly developed by TSK FRBSs [87, 89], is focused on the accuracy

Regardless of the approach, a common scheme is found in the existing literature to perform
the FM:

1. Firstly, the main objective (interpretability or accuracy) is tackled defining a specific model
structure to be used, thus setting the FM approach.

2. Then, the modeling components (model structure and/or modeling process) are improved
by means of different mechanisms to define the desired ratio interpretability-accuracy.

As Figure 1 shows, this procedure results in four different possibilities:

1. Linguistic FM with improved interpretability — To achieve this approach, different meth-
ods for selecting input variables [13, 42, 54, 59, 64, 68, 84], reducing the fuzzy rule
set [26, 55, 56, 58, 63, 92], using more descriptive rule expressions [18, 40, 67], or per-
forming linguistic approximation [35, 71, 88] have been proposed.

2. Linguistic FM with improved accuracy — This approach has been performed by learn-
ing/tuning the membership functions by defining their shapes [11, 24, 47, 53, 59, 60, 61,
65, 66, 74], their types [83], or their context [29, 44, 45, 67, 77], learning the granularity of
the fuzzy partitions [32, 36, 78, 79], or extending the model structure by using linguistic
modifiers [14, 20, 41], weights [1, 17, 57, 75, 81, 96], or hierarchical architectures [33, 58],
among others.

3. Precise FM with improved interpretability — This approach is usually developed by reduc-
ing the fuzzy rule set [73, 93, 94], reducing the number of fuzzy sets (with the subsequent
merging of rules) [37, 80, 82], or exploiting the local description of the rules [9, 38, 95].
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4. Precise FM with improved accuracy — This approach involves the use of mechanisms that
allow the fuzzy model to be more accurate by making more flexible its structure.

As we can notice, recent research works are being focused on the three first approaches as an
attempt to find a better balance between interpretability and accuracy [15]. On the contrary,
the fourth possibility is not sufficiently considered by the current literature.

However, this approach seems to have a significant relevance in FM since it exploits the
accuracy capability preserving a minimum of interpretability derived by the use of rules and fuzzy
logic to express the behavior of the model. That point differs from other modeling techniques
such as neural networks.

The following subsection shows a way of improving the accuracy of FM within this four
possibility.

2.2 From Linguistic Rules to Fuzzy Rules

MA FRBSs are formed by a set of fuzzy rules, which in MISO (multiple-input single-output)
systems take the following form:

Ri = IF X is Ai THEN Y is Bi

with X = (X1, . . . , Xn) and Y being the input and output linguistic variables [100], and with
Ai = Ai1× . . .×Ain and Bi being respectively the cartesian product of the input linguistic labels
and the output linguistic label involved in the rule Ri. Therefore, with the use of linguistic
variables, each linguistic label has associated a fuzzy set defining its meaning.

This structure is simply a representation of imprecisely defined functional dependencies and
relations that tries to model the behavior of a system. Therefore, as a set of fuzzy rules, it may
be represented by the concept of fuzzy graphs introduced by Zadeh in [97] and developed by
himself in [99, 101] or, more recently, in [103].

A fuzzy graph is built by a collection of fuzzy points—which may be interpreted as the said
fuzzy rules—that represents a functional dependency f∗ of Y on X and it is defined as follows:

f∗ = A1 ×B1 + . . . +Ar ×Br, or, more compactly, f∗ =
r∑

i=1

Ai ×Bi.

Nevertheless, the rule structure used in MA FRBSs has an important restriction that makes
them be only a subset of the collection of possible functional dependencies covered by fuzzy
graphs because of the use of linguistic variables, which forces the membership functions consid-
ered in each fuzzy rule to belong to a global set of them, i.e., a global grid is used. However,
in a fuzzy graph, the individual fuzzy points (or fuzzy rules) do not depend on a common set
of membership functions, instead, each fuzzy point is described through an individual set of
membership functions Aij . This makes fuzzy graphs without restrictions have the ability of
approaching in a higher degree to the relational representation modeling the problem. Figure 2
illustrates this difference.

Therefore, basing on the fourth FM trend mentioned in the previous section, the accuracy
of the models can be improved by regarding this second more flexible structure. To facilitate a
clear distinction between both concepts, in this contribution we will note as linguistic rule those
rules that are composed of linguistic variable with a set of associated global linguistic terms and
as fuzzy rule those rules that directly contains fuzzy variables with associated independent fuzzy
sets. Figure 3 clarifies this distinction.
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Set of Fuzzy Linguistic Rules Fuzzy Graph

(a) (b)

Figure 2: Approximate representation of relations: (a) considering a set of fuzzy linguistic rules,
(b) considering a fuzzy graph without restrictions

IF X is small THEN Y is big

Linguistic rule

IF X is            THEN Y is     

Fuzzy rule

(a) (b)

Figure 3: (a) While in a linguistic rule the variables take linguistic terms as values, (b) in a
fuzzy rule the variables take fuzzy sets as values

3 Non-Grid-Oriented FRBSs

This section is devoted to justify the use of NGO FRBSs to solve the drawbacks presented by
MA FRBSs. After that, the structure and the pros and cons of these new kinds of FRBSs will
be introduced.

3.1 Why Non-Grid-Oriented FRBSs?

As Zadeh pointed out in his Principle of Incompatibility [98], “as the complexity of a system
increases, our ability to make precise and yet significant statements about its behavior diminishes
[. . . ].” Therefore, although the use of MA FRBSs allows us to deal with the modeling of systems
in which a certain degree of imprecision is involved, building models clearly interpretable by
human beings, the accuracy obtained is not sometimes as good as desired. This lack of accuracy
is due to some problems related to the structure of the linguistic rules considered [6, 12]:

1. There is a lack of flexibility in the FRBS because of the rigid partitioning of the input and
output spaces.

2. When the system input variables are dependent themselves, it is very hard to fuzzy par-
tition the input spaces.

3. The homogeneous partitioning of the input and output spaces when the input-output
mapping varies in complexity within the space is inefficient and does not scale to high-
dimensional spaces.
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4. The size (complexity) of the model directly depends on the number of variables and lin-
guistic terms in the system. The obtaining of an accurate FRBS requires a significant
granularity amount, i.e., it needs of the creation of new linguistic terms. This granularity
increase causes the number of rules to rise significantly, which may make the system lose
the capability of being interpretable by human beings. Moreover, in the great majority of
the cases, it would be possible to obtain an equivalent FRBS having a very lesser number
of rules if there would not exist that input space rigid partitioning.

To address these problems, a new variant of these kinds of systems has been recently pro-
posed [5, 7, 12, 19, 22, 24, 62, 86]. These systems, based on the fuzzy graph concept without the
consideration of global-grid restrictions, could be named as NGO (non-grid-oriented) FRBSs and
they are characterized by working directly with fuzzy variables—instead of linguistic ones—in
the fuzzy rules. Of course, in these systems the accuracy is preferred to their interpretability.
Opposite to them, MA FRBSs could be named linguistic FRBSs since linguistic variables are
considered. In Figure 4, we may observe the existing parallelism between linguistic and NGO
FRBSs.

Set of Fuzzy Linguistic Rules Fuzzy Graph

Fuzzy Linguistic Rule Fuzzy Point

Linguistic FRBS

Knowledge Base =
Data Base + Rule Base

Interpretability

Non-Grid-Oriented FRBS

Fuzzy Rule Base

Accuracy

Concept

Basic element

Knowledge
component

Main objective

System type

Application to Fuzzy
Control / Modeling

Concept

Basic element

Knowledge
component

Main objective

System type

Fuzzy Set Theory

Figure 4: Parallelism between linguistic FRBS (obtained from a set of fuzzy linguistic rules)
and NGO FRBS (obtained from a fuzzy graph without restrictions)

Other equivalent designations have been proposed by different authors to differentiate be-
tween these two kinds of FRBSs. Among other, for NGO or linguistic FRBSs we can respectively
find

• approximate or descriptive FRBSs [22, 24] because the main objective of NGO FRBSs is
the approximation while the one of linguistic FRBSs is the interpretability,

• FRBSs with local or global fuzzy sets [12] because the semantic (i.e., the definitions of mem-
bership functions) considered in NGO FRBSs is particular for each rule while a common
semantic for the whole set of rules is considered by linguistic FRBSs,

• rule-based or domain-based FRBSs [19] because the membership functions are defined for
each rule in NGO FRBSs while a common domain and fuzzy partition are defined in
linguistic FRBSs, or
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• scatter-partitioning or grid-partitioning FRBSs [39] because no homogeneous partition of
the space is considered by NGO FRBSs while a partition following a grid is considered by
linguistic FRBSs.

3.2 Non-Grid-Oriented FRBSs Structure

The structure of a fuzzy rule (or fuzzy point) considered in an NGO FRBS is the following:

Ri = IF X is Âi THEN Y is B̂i

with Âi = Âi1×. . .×Âin and where the only change with respect to the rule structure considered
in linguistic FRBSs is the fact that the inputs (Xi) and output (Y ) are fuzzy variables instead
of linguistic ones and, therefore, Âij and B̂i are fuzzy sets—without a direct interpretation—
instead of linguistic labels.

In contrast to linguistic FBRSs, where the knowledge is stored in the data base (definitions
of the fuzzy sets associated to the linguistic terms) and the rule base (formed by the fuzzy
linguistic IF-THEN rules themselves), NGO FRBSs have a single fuzzy rule base (FRB) formed
by a set of rules presenting the said structure, where each individual rule directly contains the
meaning describing it. Figure 5 graphically shows this.

(a) Linguistic FRBSs: Data and Rule Bases

Data Base

S M L VLVS

Rule Base

R  : IF X is VS1

2

3

4

5R  : IF X is VL THEN Y is VL

THEN Y is S

R  : IF X is  S

R  : IF X is  M

R  : IF X is  L

THEN Y is M

THEN Y is M

THEN Y is L

S M L VLVS

(b) NGO FRBSs: Fuzzy Rule Base

1R  : IF X is THEN Y is

2R  : IF X is THEN Y is

3
R  : IF X is THEN Y is

4R  : IF X is THEN Y is

5
R  : IF X is THEN Y is

6R  : IF X is THEN Y is

7
R  : IF X is THEN Y is

Figure 5: Graphical comparison between the structures used in a linguistic and an NGO FRBS
to store the knowledge

3.3 Advantages and Drawbacks of Non-Grid-Oriented FRBSs

NGO FRBSs have some interesting advantages that make them be very suitable in many cases.

• The main advantage of the NGO approach is its expressive power to take in rules that
present their own specificity in terms of the fuzzy sets involved in them, introducing thus
additional degrees of freedom in the system [12].

• Another important advantage is the fact that the number of rules is adapted to the com-
plexity of the problem, needing less rules in simple problems, and being able to use more
rules when it is necessary. This is likely to be of benefit in tackling the curse of dimen-
sionality when scaling to multi-dimensional systems [12, 103].

These facts allow NGO FRBSs to be more accurate than linguistic ones in complex problems.
Nevertheless, they have some drawbacks:

7



• Its main drawback with respect to the linguistic FRBS is the loss of FRB readability since
there is not a global interpretation of the variables considered. However, NGO FRBSs
can locally describe the system behavior, unlike other kinds of less descriptive models
like neural networks (which are difficult to analyze—what makes difficult to improve their
capacity—because the acquired knowledge is implicitly expressed). Therefore, we can
consider that NGO FRBSs are halfway between the clear interpretability of linguistic
FRBSs and the hidden reasoning of non descriptive models.

• The capability to approximate can cause an excessive specificity with bad generalization,
thus obtaining an undesired overlearning.

While linguistic FRBSs are appropriated for linguistic fuzzy modeling [88], due to the fact
that each rule constitutes a description of a condition-action statement that may be clearly
interpreted by human beings, the main application of NGO FRBSs is the area of precise fuzzy
modeling [5], where the model accuracy is the main requirement instead of its description ability.

According to this, we can assert that linguistic and NGO FRBSs are not incompatible but
complementary. Therefore, depending on the problem characteristics and our intentions, we
should use one or another. NGO FRBSs are recommended when we rather lose interpretability
in exchange for improving the accuracy.

4 Learning Non-Grid-Oriented FRBSs

In order to design an NGO FRBS (i.e., to build a fuzzy graph) for a specific application, the
main task that has to be performed is to derive an appropriate FRB about the problem being
solved. The accuracy of the FRBS in solving the problem will directly depend on this task. Due
to the complexity of the FRB learning, some automatic techniques have been proposed to put
it into effect.

Many of these techniques are collected under the name of Soft Computing [10, 102]. Soft
Computing is a new field of Computer Science that deals with the integration of problem-solving
techniques such as Fuzzy Logic, Neural Networks, or GAs, among many others. Each of these
techniques provides us with complementary reasoning and search methods to solve complex
problems. Among all the possible combinations, we are interested on how they can help us to
design an NGO FRBS by defining the FRB.

4.1 Taxonomy of the Learning Process

A taxonomy of the learning process and a brief description of the considered techniques and
analyzed methods will be presented in the following.

Depending on whether the learning process imposes restrictions on the fuzzy sets in the gen-
eration of each fuzzy rule or not, we can distinguish between methods that perform a constrained
learning (CL) and those that perform an unconstrained learning (UL):

• A learning process is constrained when there are restrictions that compel the fuzzy sets
to lie in some concrete intervals during the learning stage. Within this kind, we can
distinguish between hard constrained learning (HCL) and soft constrained learning (SCL).

– In the former, the hard one, there are variation intervals that determine the region
in which each point defining the membership functions may take value during the
learning process.

– In the latter, the soft one, the only restriction imposed on the membership function
locations and shapes is to lie in a concrete interval and to be meaningful.
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• On the contrary, when the are not restrictions imposed on the fuzzy sets, but they can lie
in any region of the corresponding variable domain, the learning process is called uncon-
strained.

Intuitively, we can observe that the said learning kinds are related, and we can consider UL
as the most extreme case of CL where the interval of performance associated to each fuzzy set
corresponds to the whole domain of the system variable. In the same way, SCL can be considered
a particular case of HCL where the variation intervals of the membership function points are an
only common interval. To avoid confusing these terms, from now on the learning process will
be classified according to the most specific definition.

Usually, the restriction information is obtained from preliminary fuzzy partitions of the
problem variables. In this way, the variation intervals (for CL) can be calculated from the initial
membership function parameters.

The said classification, constrained and unconstrained learning, is graphically shown in Fig-
ure 6.
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Figure 6: Constrained and unconstrained learning

The degree of freedom is the main feature that characterizes the different learning kinds
introduced. While UL is totally free to determine the fuzzy sets along the whole universe of
discourse, HCL generates them in confined spaces. Clearly, there is another aspect related to this
property, the search space. The higher the degree of freedom is, the higher the search space is. A
greater freedom allows the obtained FRBS to benefit from the high approximation capability of
NGO FRBSs, however, the complexity for accomplishing the learning process grows due to the
huge search space tackled. The SCL approach performs the best balance between both aspects:
generation of fuzzy sets with a high degree of freedom and reduction of the search space. This
trade-off could provide better accuracy degree. Figure 7 shows the different model flexibility
and learning simplicity degrees attained by the linguistic FRBS and each learning approach in
the NGO FRBS and the hypothetical accuracy obtained depending on them.
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Figure 7: Hypothetical accuracy obtained by the different approaches depending on the model
flexibility and learning simplicity

4.2 Learning Techniques and Methods for Non-Grid-Oriented FRBSs

This section focuses on the different approaches to the learning of NGO FRBSs considering
the main techniques used and some specific methods with different characteristics. Table 1
summarizes them classified according to the said aspects.

Table 1: Analyzed Learning Methods
Ref. Author(s) Method Technique Learning
[5] Bárdossy, Duckstein WCA AHDD HCL/Ant – UL/Cons

[34, 8] Dunn, extended by Bezdek FCM Clustering UL
[16] Chiu CEB Clustering UL
[12] Carse, Fogarty, Munro P-FCS1 GA UL
[49] Herrera, Lozano, Verdegay MOGUL-GLP GA UL
[24] Cordón, Herrera MOGUL-SCL GA SCL
[27] Cordón, Herrera MOGUL-HCL GA HCL

A HDD = Ad Hoc Data-Driven, GA = Genetic Algorithm, HCL = Hard Constrained Learning, SCL = Soft Constrained
Learning, UL = Unconstrained Learning, Ant = Antecedent, Cons = Consequent

A brief description of the considered techniques and the analyzed methods will be introduced
in the following subsections.

4.2.1 Ad Hoc Data-Driven Methods

Under this name, ad hoc data-driven methods, we are collecting those methods based on processes
where the learning of the fuzzy rules is guided by covering criteria of the data in the example set.
The way to address this process can not be included in any well-known optimization or searching
technique but it is specifically developed for this purpose. Usually, they are characterized by
being methods based on a short time-consuming iterative procedure. A specific method for NGO
FRBS included in this family is introduced in the following subsection.

4.2.1.1 Bárdossy and Duckstein’s Method (WCA)

The Weighted Counting Algorithm (WCA) [5] is based on the principle of firstly generating
the antecedents of the rule and then obtaining the consequents taking the examples in the
training data set matching the antecedents of the rule to any degree as a base.

A previous definition of the antecedent fuzzy set supports for each rule, as well as the number
of rules, is required. This information can be obtained from preliminary fuzzy partitions of the
antecedents. Thus, the supports used in the rule antecedents are defined by the combination of
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the fuzzy partition terms. Only those rules whose subspace formed by these supports contains
examples will be considered.

Supposing that the universes of discourse associated to the system variables are continuous,
the algorithm generates the fuzzy set shapes used for the antecedents, Aik—i = 1, . . . , N ; k =
1, . . . , n; with N being the number of rules and n being the number of input variables—, and
subsequently identifies the corresponding consequents. The algorithm is the following:

1. The supports (a−ik, a
+
ik) of the fuzzy sets Aik belonging to the antecedents of the rules in the

FRB are defined previously.

2. Each rule Ri = IF x1 is Ai1 and . . . and xn is Ain THEN y is Bi is generated as follows:

(a) The shape of the k antecedent fuzzy sets Aik—which are triangular fuzzy sets defined
respectively by the parameters (a−ik, a

1
ik, a

+
ik)—is calculated with a1

ik being:

a1
ik =

1
| Ei |

∑
ej∈Ei

exj
k,

where Ei = {ej = (exj
1, . . . , ex

j
n, eyj) ∈ Ep | exj

k ∈ (a−ik, a
+
ik),∀k ∈ {1, . . . , n}}.

(b) The matching degree of the example ej ∈ Ei, j = 1, . . . , | Ei |, with the antecedent
of the rule Ri is computed as h(ej , Ri) = T (µAi1(ex

j
1), . . . , µAin(exj

n)), with T being
a t-norm and µAik

(exj
k) being the membership degree of the value exj

k to the fuzzy set
Aik.

(c) The shape of the rule consequent, Bi, is determined using the examples contained in a
new subset Eφi

formed by the examples of Ei that match the antecedents of the rule Ri

to a degree greater or equal to φ ∈ (0, 1], i.e., Eφi
= {ej ∈ Ei | h(ej , Ri) ≥ φ}. Such

a consequent is a triangular fuzzy set defined by (b−i , b1
i , b

+
i ):

b−i = min
el∈Eφi

eyl , b1
i =

∑
el∈Eφi

h(el, Ri) · eyl

∑
el∈Eφi

h(el, Ri)
, b+

i = max
el∈Eφi

eyl,

The value of φ has to be selected so that for each rule a sufficient number of elements of the
training set is considered. The higher φ is, the fewer elements are used to define the consequents,
and the crisper the assessed rules are.

Since the left and right points of the triangular fuzzy sets of the rule antecedent are previously
defined, with the central points being calculated between both extremes, WCA follows the HCL
approach in the antecedent. It is a particular case, even more strict, where a−ik ∈ [a−ik, a

−
ik],

a+
ik ∈ [a+

ik, a
+
ik], and a1

ik ∈ [a−ik, a
+
ik]. However, the way to learn the consequent is different, since

it does not depend on any prior definition but it is calculated from the example set. Therefore,
the algorithm learns the consequents according to the UL approach.

4.2.2 Clustering Fuzzy Rule-Based Systems

Fuzzy clustering is a technique used to group a set of data into clusters such that elements
within the same cluster have a high degree of similarity, while elements belonging to different
clusters have a high degree of dissimilarity. A good introduction to fuzzy clustering techniques
can be found in [2, 8].

Fuzzy clusters can be used to determine a partition of a space of an individual variable
or of a collection of them. In the first case, fuzzy sets are constructed whilst in the second
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one the clustering method yields fuzzy relations. In this sense, a cluster center represents a
characteristic behavior of the system. Therefore, rules that describe these behaviors can be
derived from cluster centers.

Hence, fuzzy clustering methods can design NGO FRBSs by directly deriving their FRB. To
do so, the process is clearly divided into two totally independent stages:

• Cluster generation: In the first stage, the cluster centers are obtained by means of a fuzzy
clustering method.

• NGO model identification: After that, an easier second process translates these cluster
centers into NGO fuzzy rules.

There is no doubt that the cluster generation is the most important and interesting stage from
the fuzzy modeling point of view, since the system description is accomplished here. Therefore,
this section is focused on the first stage introducing two concrete clustering methods. These
methods can be combined with any model identification algorithm.

The way to obtain NGO FRBS by clustering techniques is characterized by not imposing
constraints on the fuzzy sets involved in the fuzzy rules, so that these kinds of learning algorithms
follow the UL approach.

Since the second stage is common to all clustering FRBSs methods, before introducing the
two said cluster generation methods, a specific algorithm for the NGO model identification will
be proposed.

4.2.2.1 NGO Model Identification from Cluster Centers

Many different processes can be used as NGO model identification but perhaps the simplest
and most common one to obtain triangular fuzzy sets is the following:

Let n be the number of input and output variables, vc = (vc1, . . . , vcj , . . . , vcn) be the c-th cluster
center—with c ∈ {1, . . . , Nc}, and Nc being the number of clusters—, xi = (xi1, . . . , xij , . . . , xin)
be the i-th example—with i ∈ {1, . . . , Ne}, and Ne being the number of examples—, and µc(xi) be
the membership degree of the example xi to the cluster c.

1. Let Xc = {xc
i | µc(xc

i ) ≥ µk(xc
i ),∀k ∈ {1, . . . , Nc}} be the set of examples that belong to

the cluster represented by vc, i.e., those examples whose closer cluster center is vc.

2. Let lcj and rcj be the patterns of Xc ∪ {vc} with the least and greatest value in the variable
j respectively:

lcj =

{
vc if vcj < xc

kj

xc
i | xc

ij ≤ xc
kj otherwise

rcj =

{
vc if vcj > xc

kj

xc
i | xc

ij ≥ xc
kj otherwise

,

with j ∈ {1, . . . , n}, i ∈ {1, . . . , | Xc |}, and k = 1, . . . , | Xc |.

3. The triangular fuzzy set, (acj , bcj , dcj), corresponding to the j-th variable of the c-th rule is
obtained as follows:

acj =

 vcj if lcj = vc

lcjj −
µc(lcj)(vcj−lcj

j )

1−µc(lcj)
otherwise

bcj = vcj

dcj =

 vcj if rcj = vc

rcj
j +

µc(rcj)(rcj
j −vcj)

1−µc(rcj)
otherwise

,
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with lcjj and rcj
j being the values of the j-th variables of the patterns lcj and rcj respectively.

If acj = bcj = dcj for some j ∈ {1, . . . , n}, then reject the c-th rule.

We should remark that it is also possible to generate other types of fuzzy sets, for example
with trapezoidal membership functions, that perhaps fit better to the generated clusters. Nev-
ertheless, we have chosen triangular fuzzy sets to homogenize the clustering methods with the
rest of methods analyzed in this contribution.

4.2.2.2 Method developed by Dunn and extended by Bezdek (FCM)

Perhaps the best known and most widely used clustering algorithm is the Fuzzy C-Means
(FCM) one developed by Dunn [34] and extended by Bezdek [8]. The FCM algorithm is an
iterative optimization algorithm that minimizes the cost function

J =
Nc∑
c=1

Ne∑
i=1

(
µc(xi)

m · ‖xi − vc‖2
)
,

where Nc is the number of clusters, Ne is the number of data points, xi is the i-th data point,
vc is the c-th cluster center, µc(xi) is the membership degree of the i-th data to the c-th cluster,
and m > 1 is a constant (typically m = 2).

The degree of membership µc(xi) is defined by

µc(xi) =
1

Nc∑
k=1

( ‖xi − vc‖
‖xi − vk‖

)2/(m−1)
.

Given the desired number of clusters Nc, an initial guess for each cluster center vc (c =
1, . . . , Nc), and a value for m, the FCM algorithm iteratively recomputes new cluster centers vc

using the expression

vc =

Ne∑
i=1

(µc(xi)
m · xi)

Ne∑
i=1

µc(xi)
m

,

and subsequently updates the membership values from these cluster centers. The iterative
process stops when it has converged under some criterion, usually

max
c,i
| µc(xi)− µ́c(xi) |≤ ε,

where µ́c(xi) is the previous value and ε is a predefined accuracy level.
The FCM algorithm is based on iteratively minimizing the distance between the elements in

each of the clusters while maximizing the distance between the cluster prototypes. It has been
shown that the algorithm converges, even with bizarre initial classification assumptions [8].

4.2.2.3 Chiu’s Method (CEB)

The Cluster Estimation-Based (CEB) algorithm [16] determines the number of clusters and
does not need a previous initialization as the above presented FCM algorithm. Although the
original method was proposed to generate TSK FRBSs, we will adapt it to NGO FRBSs by
using the model identification method shown in Section 4.2.2.1.

Let us consider a collection of Ne data points—x1, . . . , xi, . . . , xNe—in an n-dimensional
space. Let us assume that the data points have been normalized in each dimension so that their
coordinate ranges in each dimension are equal, i.e, the data points are bounded by a hypercube.

The CEB algorithm works as follows:
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1. Compute the potential measure, Pi, of each data point, xi, by the formula

Pi =
Ne∑
j=1

e−α‖xi−xj‖2 ,

where α = 4
r2
a

and ra is a positive constant. A data point with many neighbor data points will

have a high potential value.

2. k ← 1. The data point with the highest potential is selected as the first cluster center. Let x∗k
be the location of the first cluster center and P ∗

k be its potential value. This point is deleted
from the data set.

3. Update the potential of the remaining points by the formula

Pi ← Pi − P ∗
k e−β‖xi−x∗k‖

2
,

where β = 4
r2
b

and rb is a positive constant.

4. k ← k + 1.

5. If (P ∗
k > ε̄ · P ∗

1 ) then accept x∗k as the center of the next cluster and go to 3.

Else, if (P ∗
k < ε · P ∗

1 ) then reject x∗k and end the algorithm.

Otherwise, let dmin be the shortest of the distances between x∗k and all the previously found

cluster centers. If
(

dmin
ra

+ P ∗
k

P ∗
1
≥ 1

)
then accept x∗k as a cluster center and go to 3. Else,

reject x∗k, set P ∗
k to zero, and select the data point with the next highest potential as the new

x∗k and go to 5.

The constant ra is the radius defining a neighborhood. Data points outside this radius have
a little influence on the potential. The constant rb is the radius defining the neighborhood
that will have measurable reductions in potential. To avoid obtaining closely spaced cluster
centers, rb should be greater than ra; Chiu proposes to set rb = 1.5 · ra. On the other hand, ε̄
specifies a threshold for the potential above which we will definitively accept the data point as a
cluster center; ε specifies a threshold below which we will definitively reject the data point. Chiu
proposes ε̄ = 0.5 and ε = 0.15. If the potential falls in the gray region, the algorithm checks if the
data point provides a good trade-off between having a sufficient potential and being sufficiently
far from existing cluster centers.

4.2.3 Genetic Fuzzy Rule-Based Systems

GAs are a family of computational models inspired by the evolution theory. These algorithms
encode potential solutions to a specific problem on simple chromosome-like data structures
forming a population. By means of crossover and mutation operators, the information is shared
and changed to explore and exploit solutions. Recombination operators are applied to these
structures so as to preserve critical information. Three points are the keys of a genetic process:
the population of potential solutions, the pair evolution operators/code, and the performance
index. For a wide introduction, refer to [72].

Although GAs are not learning algorithms, they may offer a powerful and domain-independent
search method for a variety of learning tasks. In fact, there has been a good deal of interest
in using GAs for machine learning problems [43]. Recently, numerous papers and applications
combining fuzzy concepts and GAs have appeared, and there is an increasing concern about
the integration of these two topics. In particular, a great number of publications explore the
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use of GAs for designing FRBSs. These approaches receive the general name of Genetic Fuzzy
Rule-Based Systems (GFRBSs) [22, 28].

The automatic design of FRBSs can be considered in many cases as an optimization or
search process on the space of potential solutions. GAs are the best known and most widely
used global search technique with an ability to explore and exploit a given operating space
using available performance measures. Moreover, the generic code structure and independent
performance features of GAs make them suitable candidates to incorporate prior knowledge
(fuzzy membership function parameters, fuzzy rules, number of rules, etc.). Over the last few
years, these advantages have extended the use of GAs in the development of a wide range of
approaches for designing FRBSs [12, 19, 24, 25, 27, 49].

Three alternative approaches have been proposed to apply GAs to learning processes: the
Michigan [52], the Pittsburgh [85], and the Iterative Rule Learning (IRL) [90] approaches. In the
first one, the chromosomes correspond to classifier rules that are evolved as a whole, whereas
in the Pittsburgh approach, each chromosome encodes a complete set of classifiers. In the
IRL approach each chromosome represents a single rule, but contrary to the first, only the best
individual is considered as the solution, discarding the remaining chromosomes in the population.

Different GFRBS proposals can be found in [28, 46, 50, 51]. Some specific approaches for
NGO FRBSs will be introduced in the following subsections.

3.2.3.1 Carse, Fogarty, and Munro’s Method (P-FCS1)

The P-FCS1 (Pittsburgh-style Fuzzy Classifier System #1), proposed in [12], is a novel
GFRBS characterized by a very interesting coding scheme and crossover operator. Its main
features are the following:

• Representation. The rule representation employed by this method is a set of terms
(xC

ik, x
W
ik ) that encode the centers and widths of fuzzy set membership functions over the

range of input and output variables using a real coding scheme. A chromosome is a variable
length concatenated string of such fuzzy rules. That is, r NGO fuzzy rules with n input
variables and m output variables will be encoded as

(xC
1,1, x

W
1,1) . . . (xC

1,n, xW
1,n)(xC

1,n+1, x
W
1,n+1) . . . (xC

1,n+m, xW
1,n+m)

...
(xC

r,1, x
W
r,1) . . . (xC

r,n, xW
r,n)(xC

r,n+1, x
W
r,n+1) . . . (xC

r,n+m, xW
r,n+m),

which involves r · (n + m) pairs center-width, i.e., fuzzy sets.

• Crossover operator. The crossover operator is similar to the classical two-point crossover
but with an n-dimensional consideration (being n the number of input variables). First,
the rules are sorted according to the centers of the input membership functions. Then,
two random numbers are selected for each input variable within its range. The parameters
for the i-th input variable are calculated as follows:

C1
i = MINi + (MAXi −MINi) · (R1)

1
n

C2
i = C1

i + (MAXi −MINi) · (R2)
1
n

,

with [MINi,MAXi] being the domain of the variable and with R1 and R2 being two
random numbers uniformly generated in [0, 1].

The first offspring will contain rules from the first parent such that

∀i,
((

xC
ik > C1

i

)
AND

(
xC

ik < C2
i

))
OR

((
xC

ik + MAXi −MINi

)
< C2

i

)
,
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as well as rules from the second parent that do not satisfy this condition, i.e.,

∃i,
((

xC
ik ≤ C1

i

)
OR

(
xC

ik ≥ C2
i

))
AND

((
xC

ik + MAXi −MINi

)
≥ C2

i

)
.

The second offspring will contain the remaining rules from both parents.

• Other operators. The authors propose a mutation operator that applies real-number
creep to fuzzy set membership function centers and widths. Therefore, the mutation is
used for fine tuning rather than for introducing radically different individuals into the
population. They also propose operators to create and delete rules, and to ensure that all
the input data is covered by at least a rule.

This method does not consider any restriction on the fuzzy set parameters since both the
gene pool initialization and the genetic operators freely generate these values. Therefore, P-FCS1
performs an UL process.

3.2.3.2 Herrera, Lozano, and Verdegay’s Method (MOGUL-GLP)

The Genetic Learning Process (GLP) proposed in [49] is based on the IRL approach and it
is composed by three stages following the MOGUL paradigm presented in [21]. The first stage is
a genetic generation process to obtain desirable fuzzy rules representing the complete knowledge
from the set of examples. The second one is a genetic simplification process to combine rules
and eliminate redundant rules, selecting the most cooperative set of rules. The third one is a
genetic tuning process to adjust the membership functions of the fuzzy rules. The three stages
will be briefly introduced in the following:

1. Genetic generation process: According to the IRL approach, this process finds the best rule
in every run over the set of examples as regards the fitness function. In each iteration, the
covering method runs the generating method, chooses the best chromosome (rule), assigns
the relative covering value to every example, and removes the examples with a covering
value greater than a previously specified threshold. The generating method is based on a
genetic algorithm (GA) whose main characteristics are as follows:

• Representation. Each chromosome contains a single fuzzy rule. To represent it,
the three parameters of each triangular membership function corresponding to each
variable are encoded in the chromosome (using real coding). That is, a rule with n
input variables and one output variable will be encoded in the r-th chromosome as

Cr = (ar1, br1, cr1) . . . (arn, brn, crn)(arn+1, brn+1, crn+1),

which involves 3 · (n + 1) floating point numbers.

• Fitness function. The fitness function is defined according to five criteria: high-
frequency value, high average covering degree over positive examples, small negative
examples set, small membership function width, and high symmetrical membership
functions. Their formulations are to be shown in [49].

• Genetic Operators. GLP uses the non-uniform mutation [72] to make a uniform
search in the initial space at the beginning, and a very local one at later stages. The
crossover operator, the max–min-arithmetical crossover [48], generates four offspring
with different search properties and selects the best two of them according to the
fitness function. Finally, the selection procedure considered is the stochastic universal
sampling [4] together with the elitist selection.
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The generating method obtains the fuzzy sets parameters in the corresponding variable
domain without considering any restriction, thus following the UL approach.

2. Genetic simplification process: Due to the iterative nature of the generation process, an
overlearning phenomenon may appear. This occurs when some examples are covered at a
higher degree than the desired one and it makes the FRB obtained perform worse. In order
to solve this problem and improve the NGO FRBS accuracy, it is necessary to simplify the
rule set obtained from the previous process, removing the redundant rules and selecting
the rule subset with best cooperation to derive the final FRB solving the problem.

The simplification process is based on a binary-coded GA with fixed-length chromosomes.
Considering the rules contained in the rule set derived from the previous step counted from
1 to m, an m-bit string C = (c1, ..., cm) represents a subset of candidate rules to form the
FRB finally obtained as this stage output, Bs, such that,

If ci = 1 then Ri ∈ Bs else Ri 6∈ Bs.

The selection of the individuals is developed using the stochastic universal sampling pro-
cedure proposed by Baker in [4] together with an elitist selection scheme, and the recombi-
nation is put into effect using the classical binary multipoint crossover (performed at two
points) and uniform mutation operators. The fitness function is composed of the mean
square error over the training data set (to reward the similarity between the model and
the data set) and a covering measure (to penalize the lack of the completeness property
obtained in the previous stage).

The initial population is generated by introducing a chromosome representing the complete
previously obtained rule set, that is, ci = 1, i = {1, . . . ,m}. The remaining chromosomes
are selected at random.

3. Genetic tuning process: The genetic tuning process [47] is based on a real coding GA that
adjusts the membership functions of the fuzzy rules. The fitness function is composed only
of the mean square criterion. An FRB is represented as a chromosome as follows:

A rule ri with n input variables is represented by a piece of chromosome Cri ,

Cri = (ai1, bi1, ci1, . . . , ain, bin, cin, ain+1, bin+1, cin+1),

and a base of t rules, R, is represented by the chromosome CR,

CR = Cr1Cr2 . . . Crt .

The GA uses the non-uniform mutation [72], the max–min-arithmetical crossover [48],
and the stochastic universal sampling [4] as selection procedure together with the elitist
selection.

The initial gene pool is created with the first chromosome encoding the provided FRB,
and the remaining chromosomes with each membership function parameter initiated at
random in a specific previously calculated interval.

3.2.3.3 Cordón and Herrera’s Soft Constrained Method (MOGUL-SCL)

As the previous method, the SCL method proposed in [24] is also composed of the three said
stages (generation, simplification, and tuning processes) according to the MOGUL paradigm
[21].

The difference between this method and the previous one exclusively lies in the generat-
ing method of the generation process. Therefore, in this section only this difference will be
introduced, considering the remaining aspects equal to the previously showed ones.
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1. Evolutionary generation process: Although the covering method is identical to the one
used in the previous method, the generating method—i.e., the way to obtain each rule—is
totally different.

A previously defined data base constituted by uniform fuzzy partitions—the number of
linguistic terms must be specified by the designer—with triangular membership functions
crossing at height 0.5 is considered (as shown Figure 8). Each time the generating method
is run, it produces a set of candidate fuzzy rules generating the linguistic rule best covering
every example from the training set. These rules are obtained taking the fuzzy partition
linguistic label that best matches the example component value for each variable. After
that, an (1+1)-Evolution Strategy (ES) [3] locally tunes the best linguistic rule found
making it get an NGO nature.

S M L VLVS

0.5

l r

Figure 8: Graphical representation of the proposed fuzzy partition with five linguistic terms

The method clearly follows the SCL approach in the generation stage since the (1+1)-
EE adjusts the membership function parameters allowing them to take any value in the
interval defined by the corresponding initial linguistic label. In this way, if Ci = (x0, x1, x2)
is the membership function currently adapted, the associated variation interval will be
[C l

i , C
r
i ] = [x0 − (x1 − x0)/2, x2 + (x2 − x1)/2].

The main features of this generating method are introduced in the following:

• Fitness function of the inductive algorithm. The accuracy of the candidates is
measured by a multicriterion fitness function. It is defined according to three features
with the objective of selecting fuzzy rules covering a large number of examples (two
first criteria) and verifying the consistency property. Their formulations are to be
shown in [24].

• (1+1)-ES. It is applied to optimize the best linguistic rule, selected from the candi-
date rule set, modifying the shapes of the concrete membership functions involved in
it. The three main aspects of this ES are the following:

– Representation. Each individual contains a fuzzy rule encoded into a real string
using the three parameters of each triangular membership function corresponding
to each variable.

– Fitness function of the ES. It is based on the same frequentistic criteria used
in the said inductive algorithm with the addition of a new one penalizing an
excessive interaction among the fuzzy rules generated. To put this into effect,
the ES makes use of the low niche interaction rate [23] criterion considering
the individual currently being optimized and the fuzzy rules already generated.
Therefore, the payoff associated to this individual will be lower when it is closer
to a previously generated rule, making the rules in the FRB finally obtained to
cooperate in a better way.
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– Mutation process. The mutation scheme has two main characteristics: the
definition of multiple step sizes (it must be considered the encoded membership
functions are defined over different universes and require different order muta-
tions) and the incremental optimization of the individual parameters (to obtain
meaningful fuzzy sets).

2. Genetic simplification process: This stage was explained in the previous section.

3. Genetic tuning process: The tuning process is the same introduced in the previous section.

3.2.3.4 Cordón and Herrera’s Hard Constrained Method (MOGUL-HCL)

This HCL method [27] is also based on the MOGUL paradigm [21] being composed of the
three stages: generation, simplification, and tuning. Although it also follows the CL approach,
this algorithm considers an interval where each point defining the membership functions may take
value in the generation process unlike the previous method, thus performing an HCL process.
It is accomplished thanks to the use of special genetic operators that maintain the constrains.

1. Genetic generation process: The covering method considered is again the one introduced
in previous sections but a new generating method is proposed. This method is based on a
GA including an (1+1)-ES as a genetic operator to locally tune the fuzzy rules and takes
a set of fuzzy partitions as a base to define the variation intervals. Its main characteristics
are the following:

• Representation. A chromosome C encoding a candidate rule is composed of two
different parts, C1 and C2, corresponding respectively to the composition of the fuzzy
rule and to the membership functions involved in it. This distinction is necessary to
maintain the constraints during the generation stage. The primary fuzzy sets be-
longing to each of the considered variable fuzzy partitions are numbered in order to
represent the C1 part. The C2 part adopts the representation introduced in Sec-
tion 3.2.3.2.

• Fitness function. The fitness function is the same one of the (1+1)-ES introduced
in the previous section.

• Mutation operator. Two different operators are used depending on the chromo-
some part. When the mutation acts on C1, the value of the chosen gene is randomly
increased or decreased by one (only one of them if the value is an extreme). This mod-
ification makes the C2 part change because the corresponding membership function
parameters are automatically updated to the default values in the corresponding pri-
mary fuzzy partition. When the mutation is to be performed on C2, the non-uniform
mutation [72] is applied.

• Crossover operator. Two different crossover operators are employed depending
on the two parents’ scope. If both parents encode the same rule (the C1 parts are
identical), the max–min-arithmetical crossover [48] is applied on the C2 parts to
exploit a promising space zone. Otherwise, the classical one-point crossover is applied
on the C1 parts and on the corresponding positions in the C2 parts. This second
crossover kind has higher exploration degree.

• (1+1)-ES operator. Each time a GA generation is performed, the ES is applied
over a percentage of the best different population individuals existing in the current
genetic population. In this way, it allows us to develop again a strong exploitation
over the promising space zones found in each generation by adjusting the C2 part
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values of the chromosomes located at them. This (1+1)-ES is characterized by a
mutation process with definition of multiple step sizes (to consider different universes
of discourse) and with an appropriate maintenance of the imposed constrains.

2. Genetic simplification process: It was showed in Section 3.2.3.2.

3. Genetic tuning process: It is the same presented in Section 3.2.3.2.

5 Experimental Study

To analyze the accuracy of the NGO FRBS learning methods presented, we are going to apply
them in some fuzzy modeling problems. The experiments will be split into two groups. The
first one is focused on comparing the linguistic and NGO FRBS modeling a relatively simple
problem. In the second group of experiments, the comparative behavior of the learning methods
introduced will be analyzed using two complex problems: the modeling of a three-dimensional
surface and a real-world problem. Moreover, in this second problem the results obtained will be
also compared with a classical approach, a neural network.

In both studies, two learning methods for linguistic FRBSs will be used to keep in mind
the linguistic behavior: the well-known ad hoc data driven method proposed by Wang and
Mendel [91] and the GA-based method proposed by Liska and Melsheimer [65] that simultane-
ously learn the data base and the rule base.

An initial data base constituted by a primary fuzzy partition for each variable is considered
for the Wang-Mendel, Liska-Melsheimer, WCA (only for the input variables), MOGUL-SCL,
and MOGUL-HCL methods. The partitions are formed by seven linguistic terms (for the first
study and the tree-dimensional surface of the second study) or five linguistic terms (for the real-
world problem of the second study) with triangular-shaped fuzzy sets giving meaning to them
(as shown in Figure 8), and the appropriate scaling factors to translate the generic universe of
discourse into the one associated with each problem variable.

The parameters considered by the analyzed methods have been selected in each problem to
obtain the best degree of accuracy. We will consider the mean square error (MSE) to evaluate
the quality of the results. We have defined MSE as

MSE =
1

2 ·N

N∑
i=1

(y′i − yi)2,

with N being the data set size, y′ being the output obtained from the FRBS, and y being the
known desired output. The closer to zero the measure, the greater the model accuracy.

Finally, as regards the FRBS reasoning method used, we have selected the minimum t-norm
playing the role of the implication and conjunctive operators, and the center of gravity weighted
by the matching strategy acting as defuzzification operator [30].

5.1 First Study: Non-Grid-Oriented FRBSs Behavior in Simple Problems

In the first study, the surface generated by a two-dimensional mathematical function with a low
complexity will be modeled. Its graphical representation, mathematical expression, and variable
universes of discourse are shown in Figure 9. This function, F1, is a smooth one presenting
discontinuities at (0, 0) and (1, 1), as can be observed in its graphical representation.

A training data set uniformly distributed in the two-dimensional input space has been ob-
tained experimentally. In this way, a set with 674 values has been generated for the function F1

taking 26 values for each one of the two input variables considered to be uniformly distributed
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F1(x1, x2) = 10 · x1 − x1x2
x1 − 2x1x2 + x2

x1, x2 ∈ [0, 1], F1(x1, x2) ∈ [0, 10]

Figure 9: Graphical representation, mathematical expression, and variable universes of discourse
of the simple two-dimensional function F1

in their intervals (is composed of 674 values instead of 676 because it is not defined in two space
points).

Another data set has been generated for its use as test set to evaluate the performance of
the learning method, avoiding any possible bias related to the data in the training set. The size
of this data set (67) is the ten percent of the training set one. The data is obtained generating
the input variable values at random in the concrete universes of discourse for each one of them,
and computing the associated output variable value.

The results obtained in this experiment are collected in Table 2, where #R stands for the
number of rules, #FS for the number of different fuzzy sets used in the model, and MSEtra

and MSEtst for the values obtained by the MSE measure over the training and test data sets
respectively.

Table 2: Results obtained modeling F1

Method #R #FS MSEtra MSEtst

Wang-Mendel 49 14 0.194386 0.044466
Liska-Melsheimer 43 14 0.105432 0.174930
WCA 49 147 0.288179 0.138663
FCM 80 240 0.125857 0.156120
CEB 63 189 2.156918 0.445424
P-FCS1 42 126 0.044838 0.038075
MOGUL-GLP 145 435 0.029210 0.034915
MOGUL-SCL 86 258 0.094095 0.092310
MOGUL-HCL 55 165 0.160458 0.111845

Analyzing these results, the good generalization degree (MSEtst) presented by the Wang-
Mendel linguistic method over the NGO ones may be observed. It does not drive at NGO
FRBSs can not obtain such a degree of accuracy in simple problems, since linguistic FRBSs may
be considered a particular case of NGO FRBSs, but the NGO learning methods do not work fine
in simple problems due to the fact that they process more complexity.

On the other hand, comparing the two linguistic methods, we may notice that the Liska-
Melsheimer one does not overcome to the Wang-Mendel one in spite of performing a deep design
by learning the membership functions. This fact leads us again to think that sophisticated
methods are not useful in simple problems.

Only two methods, P-FCS1 and MOGUL-GLP, achieve better results than Wang-Mendel.
However, this slight improvement is obtained at the expense of losing the high interpretability
provided by linguistic FRBSs. Moreover, MOGUL-GLP generates too many rules for a problem
as simple as this one. Therefore, we can conclude that linguistic FRBSs are preferable than
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NGO ones in these kinds of problems due to their good behavior and legibility.

5.2 Second Study: Non-Grid-Oriented FRBSs Behavior in Complex Prob-
lems

In this second study we will analyze the high approximation capability of NGO FRBSs in two
complex modeling problems: a very complex three-dimensional mathematical function and a
real-world electrical engineering problem. In the second problem, the results obtained by a
neural network will be also included to compare the NGO methods with a classical approach.

5.2.1 A Complex Three-Dimensional Surface

The generalized Rastrigin function, F2, a strongly multimodal function—whose graphical repre-
sentation, mathematical expression, and variable universes of discourse are shown in Figure 10—,
will be considered in this section.

F2(x1, x2) = x2
1 + x2

2 − cos(18x1)− cos(18x2)

x1, x2 ∈ [−1, 1], F2(x1, x2) ∈ [−2, 3.5231]

Figure 10: Graphical representation, mathematical expression, and variable universes of dis-
course of the complex two-dimensional function F2

The function data is obtained like the previous case. Training and test sets, with 1,681
(taking 41 values for each of the two input variables) and 168 (ten percent) values, respectively,
have been generated.

Table 3 collects the results obtained in this experiment.

Table 3: Results obtained modeling F2

Method #R #FS MSEtra MSEtst

Wang-Mendel 49 14 1.824250 2.099754
Liska-Melsheimer 49 14 0.330614 0.370192
WCA 49 147 0.494001 0.536226
FCM 48 144 0.494189 0.528513
CEB 298 894 0.426659 0.529424
P-FCS1 74 222 0.220314 0.222865
MOGUL-GLP 228 684 0.267306 0.289784
MOGUL-SCL 239 717 0.173270 0.168424
MOGUL-HCL 236 708 0.177442 0.183578

From an analysis of these results, we may note the good behavior of the NGO FRBSs
generated as contrasted with the linguistic Wang-Mendel method. Compared with the Liska-
Melsheimer method, only the NGO FRBS learning methods based on GA obtain better accuracy
results. In problems as complex as this one, the use of a local semantic introduce additional
degrees of freedom that allow the NGO FRBSs obtained to be more accurate.
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Within NGO FRBSs, we may also observe the clear superiority of the four GFRBSs over the
rest. The evolutionary techniques generate good NGO FRBSs owing to their ability to explore
and exploit given operating spaces using available performance measures.

It is also interesting to check between the two clustering methods that the automatic learning
of the optimal number of clusters in complex problems is not trivial, and CEB needs to use
numerous rules to obtain a similar accuracy to the NGO FRBSs designed by FCM.

Focusing on the GFRBSs, the algorithms that follow the CL approach (MOGUL-SCL and
MOGUL-HCL) clearly obtain NGO FRBSs more accurate than the ones obtained via UL-
based methods (P-FCS1 and MOGUL-GLP). Although the latter approach has more freedom
to generate the fuzzy rules, it deals with a bigger search space that make the learning process
difficult. Another important difference among the four GFRBSs is the way to apply GAs to the
learning process, while P-FCS1 follows the Pittsburgh approach, MOGUL-GLP, MOGUL-SCL,
and MOGUL-HCL are based on the IRL one. Following the former one, a more reduced number
of rules is obtained, however, since the NGO FRBSs are oriented to problems where the accuracy
is more preferable than the readability (fuzzy modeling), this aspect should not be taken into
account.

Finally, comparing MOGUL-SCL and MOGUL-HCL we may observe that the use of soft
restrictions obtains best results in hard problems like this, being further the FRBSs designed by
MOGUL-SCL the most accurate among all the generated FRBSs.

5.2.2 The Electrical Distribution Networks Problem

Sometimes, there is a need to measure the amount of electricity lines that an electric company
owns. This measurement may be useful for several aspects such as the estimation of the main-
tenance costs of the network, which was the main goal of the problem presented here in Spain
[31]. High and medium voltage lines can be easily measured, but low voltage line is contained
in cities and villages, and it would be very expensive to measure it. This kind of line used to be
very convoluted and, in some cases, one company may serve more than 10,000 small nuclei. An
indirect method for determining the length of line is needed.

The problem involves finding a model that relates the total length of low voltage line installed
in a rural town with the number of inhabitants in the town and the mean of the distances from
the center of the town to the three furthest clients in it [31]. This model will be used to estimate
the total length of line being maintained. We will limit ourselves to the estimation of the length
of line in a town, given the inputs mentioned before. Hence, our objective is to relate the first
variable (line length) with the other two ones (population and radius of village).

To compare the methods, we have randomly divided the sample, composed of 495 pieces of
real data obtained from direct measures in this number of villages, into two sets comprising 396
and 99 samples, labeled training and test.

The results obtained with the considered modeling methods and with a classical neural
network (whose number of neurons in the hidden layer was chosen to minimize the test error)
are shown in Table 4.

From the obtained results, we may again note the good behavior of NGO FRBSs. However,
not all the designed NGO FRBSs overcome to the linguistic ones. WCA and MOGUL-GLP
obtain worse generalization results than the Wang-Mendel and Liska-Melsheimer methods. The
results of WCA show the difficulty of designing an NGO FRBSs with ad hoc data-driven algo-
rithms in real-world problems like this. On the other hand, MOGUL-GLP designs an FRBS
with many rules that bring closer to the training data performing then very bad prediction.

The remaining NGO FRBSs present a good degree of accuracy. Focusing on the two clus-
tering methods, though FCM designs a more accurate NGO FRBS, CEB automatically learns
the number of clusters (rules) obtaining a simpler FRBS without losing meaningful accuracy.
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Table 4: Results obtained modeling the electrical application problem
Method #R #FS/Complexity MSEtra MSEtst

Wang-Mendel 13 10 298,450 282,029
Liska-Melsheimer 25 10 163,052 223,300
WCA 20 30 341,077 309,851
FCM 49 147 163,615 198,617
CEB 37 111 200,999 222,362
P-FCS1 71 213 141,023 197,941
MOGUL-GLP 50 150 115,768 365,692
MOGUL-SCL 20 60 142,109 166,579
MOGUL-HCL 13 39 152,684 168,254
Three layer perceptron 2-25-1 — 102 par. 169,399 167,092

Again, the genetic methods based on the CL approach obtain the best results. P-FCS1
obtains an excessive number of rules that causes a little overlearning. Both MOGUL-SCL and
MOGUL-HCL stand out against all designing the best NGO FRBSs with a short difference
between them.

Finally, analyzing the results obtained with the classical neural network, we may conclude
that it is possible to obtain a more accurate and more interpretable model (due to its capability
to locally describe the system behavior) by means of an NGO FRBS.

6 Concluding Remarks

In this paper, a study on NGO FRBSs has been accomplished. In contrast to linguistic FRBSs,
the NGO ones directly work with fuzzy variables in the fuzzy rules, thus being totally equivalent
to fuzzy graphs. They are suitable for problems where the accuracy of the system is preferred
to its interpretability.

Some specific methods to build fuzzy graphs have been analyzed considering several forms
of facing the learning process such as the used technique (ad hoc data-driven, clustering, and
GAs) and a taxonomy of them based on the constrains imposed on the fuzzy sets (constrained
and unconstrained learning) has been presented. Their behavior has been analyzed through the
application of the reviewed methods to three different problems.

In view of the obtained results, we should remark some important conclusions. NGO FRBSs
perform a good behavior in highly nonlinear and complex problems, obtaining accurate and
locally interpretable models. The results obtained by the methods that make use of GAs have
shown that this technique is very suitable for learning NGO FRBSs. With regard to the fact
of imposing constrains on the fuzzy sets during the learning process, it seems to obtain better
results. The use of soft constrains obtains NGO FRBSs very accurate thanks to perform a good
balance between generation of fuzzy sets with a high degree of freedom (model flexibility) and
reduction of the search space (learning simplicity).
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[3] T. Bäck, editor. Evolutionary algorithms in theory and practice. Oxford University Press,
UK, 1996.

[4] J.E. Baker. Reducing bias and inefficiency in the selection algorithm. In Proceedings of
the 2nd International Conference on Genetic Algorithms, pages 14–21, Hillsdale, NJ, USA,
1987. Lawrence Erlbaum.
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