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Analysis of the Best-Worst Ant System and itsVariants on the TSPOs
ar Cordón, Iñaki Fernández de Viana, Fran
is
o HerreraDept. of Computer S
ien
e and Arti�
ial Intelligen
eUniversity of Granada. 18071 - Granada. Spaine-mail: {o
ordon, herrera}�de
sai.ugr.es, ijfviana�teleline.esAbstra
tIn this 
ontribution, we will study the in�uen
e of the three main 
om-ponents of Best-Worst Ant System: the best-worst pheromone trail updaterule, the pheromone trail mutation and the restart. Both the importan
e ofea
h of them and the fa
t whether all of them are ne
essary will be analyzed.The performan
e of di�erent variants of this algorithm will be tested whensolving di�erent instan
es of the TSP.1 Introdu
tionIn the last few years, Ant Colony Optimization (ACO) [10℄ has be
ome a popularmetaheuristi
 for solving 
omplex optimization problems like the 
lassi
al travelingsalesman problem or the routing in tele
ommuni
ation networks. ACO algorithmsmimi
 the behavior of natural ant 
olonies, being based on the 
ooperation amongmultiple agents, ants, every one generating a possible solution to the problem inea
h algorithm iteration. To do so, ea
h ant travels a graph whi
h represents aspe
i�
 problem instan
e and makes use of two information types that are 
ommonto the whole 
olony and spe
ify the preferen
e of the graph edges/nodes at everymoment:� Heuristi
 information, whi
h depends on the spe
i�
 problem instan
e, is
omputed before running the algorithm and remains �xed at run time (instati
 optimization problems). The value asso
iated to ea
h edge (r; s) isdenoted by �rs.� Pheromone trail information, whi
h is modi�ed during the algorithm run anddepends on the number of ants that traveled ea
h edge in the past and onthe quality of the solutions they generated. It is usually represented in theform of a pheromone matrix, � = [�rs℄, whi
h mimi
s the real pheromonethat natural ants deposit while moving.1



2 Os
ar Cordón, Iñaki Fernández de Viana, Fran
is
o HerreraThere has been proposed a number of di�erent ACOmodels [10℄ like Ant System(AS) [8℄, Ant Colony System (ACS) [9℄, Rank-based Ant System (ASrank) [4℄, andMax-Min Ant System (MMAS) [15℄. In [5, 6℄, a new variant 
alled Best-WorstAnt System (BWAS) was introdu
ed. BWAS is 
hara
terized by integrating three
omponents from Evolutionary Computation [1℄: the best-worst pheromone trailupdate rule, the pheromone trail mutation and the restart.In this paper, we extend the preliminary study of the BWAS 
omponents thatwas developed in [7℄ by applying the BWAS algorithm and its variants to a largenumber of TSP instan
es. Noti
e that when we use the term variants, we referto those algorithms obtained from the basi
 BWAS by removing one or two of itsthree distinguishing 
omponents. Hen
e, our aim is to demonstrate that BWAS isan algorithm as a whole, i.e., that a trade-o� exists among all its 
omponents, andto analyze the relative importan
e of ea
h of them.This paper is stru
tured as follows. In Se
tion 2, the basis of the BWAS al-gorithm are introdu
ed. In Se
tion 3, the di�erent BWAS variants studied arepresented. In Se
tion 4, we will 
onsider the appli
ation of the ACO algorithms tothe TSP and we will present the results obtained by the BWAS family of algorithmsfor several instan
es. We end by 
on
luding remarks and proposals for future workin Se
tion 5. Moreover, an appendix with the individual result tables is in
luded.2 Best-Worst Ant SystemAfter the large development of the ACO metaheuristi
, several authors re
ognizedthe similarities existing between ACO algorithms and a spe
i�
 family of evolu-tionary algorithms guided by probability distribution adaption [13℄. This was thestarting point of our BWAS proposal when we saw that the synergy obtainingfrom the hybridization of 
omponents of these algorithms 
ould result in signi�-
ant performan
e improvements. Hen
e, the BWAS model tries to improve ACOperforman
e using evolutionary algorithm 
on
epts [5, 6℄.As ASrank and MMAS, BWAS 
onstitutes another extension of AS sin
e ituses the AS transition rule and pheromone evaporation me
hanism [8℄.On the one hand, the transition rule is applied as follows:pk(r; s) = ( [�rs℄��[�rs℄�Pu2Jk(r) [�ru℄��[�ru℄� ; if s 2 Jk(r)0; otherwise ;with �rs being the pheromone trail of edge (r; s), �rs being the heuristi
 value,Jk(r) being the set of nodes that remain to be visited by ant k, and with � and� being parameters that weight the relative importan
e of pheromone trail andheuristi
 information.On the other hand, the evaporation me
hanism operates by applying the for-mula: �rs  (1� �) � �rs; 8 r; swith � 2 [0; 1℄ being the pheromone evaporation rate.



Analysis of the Best-Worst Ant System and its Variants on the TSP 3Besides, BWAS always 
onsiders the systemati
 exploitation of lo
al optimizersto improve the ants' solutions.Together with the previous elements, BWAS 
onsiders the three following dae-mon a
tions:Best-worst pheromone trail update ruleThis rule is based on the Population-Based In
remental Learning (PBIL) [2℄ prob-ability array update rule. The global best solution is 
onsidered to perform a pos-itive update of trails, while the pheromone trails asso
iated to the worst solutiongenerated in the 
urrent iteration are penalized to redu
e their desirability.To reinfor
e the edges 
ontained in good solutions, the daemon in BWAS �rsto�ine updates the pheromone trail by only 
onsidering the global best solution:�rs  �rs +��rs; where ��rs = � f(C(Sglobal�best)); if (r; s) 2 Sglobal�best0; otherwisewith f(C(Sglobal�best)) being the amount of pheromone to be deposited by theglobal-best ant, whi
h depends on the quality of its solution, C(Sglobal�best).Then, all the edges existing in the 
urrent worst solution, S
urrent�worst, thatare not present in the global best one, are penalized by another de
ay of thepheromone trail asso
iated �an additional evaporation� performed as follows:8(r; s) 2 S
urrent�worst and (r; s) 62 Sglobal�best ; �rs  (1� �) � �rsPheromone trail mutationThe pheromone trails su�er mutations to introdu
e diversity in the sear
h pro-
ess, as done in PBIL with the memoristi
 stru
ture. To do so, ea
h row of thepheromone matrix is mutated �with probability Pm� by adding or subtra
tingthe same amount of pheromone to the sele
ted trail (a value whi
h depends on the
urrent iteration) as follows:� 0rs = � �rs +mut(it; �threshold); if a = 0�rs �mut(it; �threshold); if a = 1with a being a random value in f0; 1g, it being the 
urrent iteration, �thresholdbeing the average of the pheromone trail on the edges 
omposing the global-bestsolution and with mut(�) being:mut(it; �threshold) = it� itrNit� itr � � � �thresholdwhere Nit is the maximum number of iterations of the algorithm and itr is the lastiteration where a restart was performed.Noti
e that the mutation range 
omes ba
k to its initial value ea
h time a restartis applied and the parameters � and �threshold spe
ify the maximum power of themutation.We should mention that the mut(�) fun
tion does not prevent pheromone valuesto be negative. Hen
e, there is a need to 
he
k that they are 
orre
t after ea
happli
ation of this 
omponent.
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o HerreraRestart of the sear
h pro
ess when it gets stu
kThis is a key 
hara
teristi
 of the CHC evolutionary algorithm [11℄ and is also
ommon in ACO, where it happens when the pheromone matrix has rea
hed thestagnation phase.Other ACO models �su
h usMMAS [15℄� have previously 
onsidered it as adaemon a
tion with di�erent approa
hes. In our 
ase, we will perform the restartby setting all the pheromone matrix 
omponents to �0, the initial pheromone value,when the global-best solution is not improved during a �xed number of iterations.A simpli�ed stru
ture of a generi
 BWAS algorithm is shown as follows:1. Give an initial pheromone value, �0, to ea
h edge.2. For k=1 to m do (in parallel)� Pla
e ant k on an initial node r.� In
lude r in Lk (tabu list of ant k keeping a re
ord of the visited nodes).� While (ant k not in a target node) do� Sele
t the next node to visit, s =2 Lk, a

ording to the AS transitionrule.� In
lude s in Lk.3. Pheromone evaporation.4. For k=1 to m do� Evaluate the solution generated by ant k, Sk.� Lo
al sear
h improvement.5. Sglobal�best  global best ant tour. S
urrent�worst  
urrent worst ant tour.6. Best-Worst pheromone update.7. Pheromone trail mutation.8. Restart if 
ondition is satis�ed.9. If (Termination Condition is satis�ed)Then give the global-best solution found as output and StopElse go to step 2.For more information on BWAS, we refer to [6℄.



Analysis of the Best-Worst Ant System and its Variants on the TSP 53 Analysis of the BWAS ComponentsAs we said, the main obje
tive of this paper is to study the in�uen
e of the three
omponents of BWAS on its appli
ation to the TSP. With this study, we want toknow if all of them are really important or some of them 
an be removed withoutnegatively a�e
ting the performan
e of the BWAS algorithm. Additionaly, we alsotry to establish a ranking of importan
e among 
omponents.This analysis will be made from a double perspe
tive:� Individualized analysis of 
omponents, i.e., we will run the BWAS algorithmusing only one of its 
omponents.� Cooperative analysis among pairs of 
omponents. In this 
ase, we will runvariants of the BWAS algorithm in
luding two of its 
omponents.It seems that a 
ertain interrelation exists among the three basi
 elements of BWAS.The update of pheromone trails by the worst ant allows the algorithm to qui
klydis
ard areas of the sear
h spa
e while the mutation and the restart avoid a stagna-tion of the algorithm. It may seem that the latter two 
omponents 
an be redundantsin
e they both have the same aim but we will see that a high 
ooperation arisesbetween both.In Table 1, all the algorithmi
 variants used in the study are summarized. As
an be seen, there are three di�erent groups of algorithms. The �rst one in
ludesthe basi
 models: our proposal, BWAS, and the 
lassi
al AS and ACS, whi
h are
onsidered for 
omparison purposes. The se
ond group 
omprises variants in
ludinga single 
omponent: restart, mutation or worst-update. The models AS+R andACS+R are in
luded in this group by adding the BWAS restart to AS and ACS,respe
tively. Finally, the third group 
omprises the variants in
luding a pair of the
omponents. The di�erent variants are denoted by BWAS�� where * stands forthe removed 
omponent (R, M or W)1.4 Experimental ResultsIn this se
tion, we will review the TSP and how we 
an apply an ACO model tosolve this problem. Then, we will present the experimental results.4.1 The Traveling Salesman ProblemThe traveling salesman problem [3℄, or TSP for short, 
an be des
ribed as: given a�nite number of �
ities� along with the 
ost of traveling between ea
h pair of them,�nd the 
heapest way of visiting all the 
ities and returning to the starting point.More formally, it 
an be represented by a 
omplete weighted graph, G = (N;A),with N being the set of 
ities and A the set of edges fully 
onne
ting the nodes N .1 Although the BWAS�M�W one-
omponent variant 
an seem to be the same algorithm thanACS with restart (ACS+R), they both are di�erent as: i) BWAS�M�W applies pheromoneevaporation to all edges, while ACS+R only evaporates the pheromone trails of the edges travelledby the global-best ant, and ii) both algorithms 
onsider di�erent transition rules.
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is
o HerreraTable 1: ACO models studied.Parameter MeaningAS Ant SystemACS Ant Colony SystemBWAS Best-Worst Ant SystemAS+R Ant System with BWAS restartACS+R Ant Colony System with BWAS restartBWAS�R�W BWAS without restart and worst ant pheromone updateBWAS�M�W BWAS without mutation and worst ant pheromone updateBWAS�R�M BWAS without restart and mutationBWAS�R BWAS without restartBWAS�W BWAS without worst ant pheromone updateBWAS�M BWAS without mutationTable 2: TSP instan
es used.TSP instan
esEil51 Lin318Berlin52 P
b442Brazil58 Att532Kroa100 Rat783Gr120 U1060D198 Fl1577Ea
h edge is assigned a value drs, whi
h is the length of edge (r; s) 2 A. The TSPis the problem of �nding a minimal length Hamiltonian 
ir
uit of the graph, wherea Hamiltonian 
ir
uit is a 
losed tour visiting exa
tly on
e ea
h of the n = jN j
ities of G.All the TSP instan
es used in our experimentation have been obtained fromTSPLIB [14℄. As shown in Table 2, we have 
hosen 12 instan
es of di�erent sizesin order to perform a fair 
omparative study.4.2 Appli
ation of the ACO Algorithms Considered to theTSPInitially, all the pheromone trails are set to �0 = 1C(SGreedy)�n , with C(SGreedy)being the 
ost of the solution obtained by a greedy algorithm for the TSP, andea
h of the m ants is pla
ed on a randomly 
hosen 
ity. An ant 
onstru
ts atour as follows. At a 
ity r, the ant 
hooses a unvisited 
ity s probabilisti
ally,biased by the pheromone trail strength �rs on the edge between 
ities r and s andon the heuristi
 information of that edge (whi
h is a fun
tion of the edge length,�rs = 1drs ). This way, ants prefer to move to a 
ity whi
h is 
lose to the 
urrent
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h is 
onne
ted by an edge of a high pheromone trail.After all ants have built their solutions, a lo
al sear
h te
hnique is used [12℄. Inthis paper we will use the 2-opt algorithm. This te
hnique pro
eeds by systemati-
ally testing if the 
urrent tour 
an be improved by repla
ing two edges. To redu
ethe run-time of 2-opt, we apply three di�erent te
hniques:� Restri
ting the set of movements whi
h are examined to those 
ontained inthe 
andidate list of the nearest neighbors ordered by distan
es.� Considering a �xed radius nearest neighbor sear
h: at least one newly intro-du
ed edge has to be shorter that any of the two removed edges.� Using don't look bits asso
iated with ea
h node. Initially, all don't look bitsare turned o�. If for a node no improving movement 
an be found, the don'tlook bit is turned on. In 
ase an edge in
ident to a node is 
hanged by amovement, the node don't look bit is turned o�.Finally, the pheromone trails are updated.4.3 Parameter SettingsThe ACO models shown in Table 1 have been used to solve the twelve TSP in-stan
es sele
ted. The parameter values 
onsidered are shown in Table 3, wherethe parameters of AS and ACS are taken from [9℄. For the BWAS model, param-eters Pm and � are taken from [6℄. The values of the latter two parameters andof the per
entage of iterations without improvement in the restart 
ondition havenot been obtained from any previous study, and a deep analysis of the in�uen
e ofappropriate values for the BWAS parameters is to be done in future work.Ea
h model has been run 10 times on a 1400 MHz. AMD Athlon pro
essor.The maximum run time depends on the TSP instan
e size. If n <500 then themaximum run time is 600 se
onds. If 500 � n < 1000 then the maximum runtime is 1200 se
onds. Finally, if n> 1000 the maximum run time is 3600 se
onds.It is noteworthy that the time intervals shown, 600�3600 se
onds, are a maximumthreshold, sin
e the algorithm will stop if the optimal solution is found before themaximum time wastes.4.4 Analysis of ResultsTables 4 and 5 
olle
t a summary of the obtained results, while the 
omplete tablesof results 
an be 
onsulted in the Appendix.Table 4 
ompares the algorithms two by two. Ea
h 
ell aij shows the per
entageof 
ases in whi
h algorithm i has outperformed algorithm j. We will say thatalgorithm i is better than algorithm j for a problem instan
e p if the error2 obtainedby i for p is smaller than the error obtained by j. Noti
e that the values in Table4 are symmetri
 (aij = 100� aji) in all 
ases but in those where there have been2 Error stands for the per
entage di�eren
e between the average 
ost obtained in the performedruns and the 
ost of the best solution known for the instan
e.
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o HerreraTable 3: Parameter values 
onsidered for the ACO models.Model MeaningNumber of ants m = 15Maximum run time Ntime = 600 to 3600 se
ondsNumber of runs of ea
h algorithm 10Pheromone update rules parameter � = 0:2AS o�ine pheromone rule update f(C(Sk)) = 1C(Sk)ACS o�ine pheromone rule update f(C(Sglobal�best)) = 1C(Sglobal�best)Transition rule parameters � = 1, � = 2ACS transition rule parameter q0 =0.98Initial pheromone amount �0 = 1C(SGreedy)�nCandidate list size 
l = 20BWAS parametersPheromone matrix mutation probability Pm = 0:3Mutation operator parameter � = 4Restart 
ondition Nit � 0:2Lo
al sear
h pro
edure parametersLo
al sear
h algorithm 2-optNumber of neighbors generated per iteration 40Neighbor 
hoi
e rule �rst improvementdraws between the two algorithms (i.e., both algorithms have obtained the sameerror in any of the twelve instan
es).A general 
lassi�
ation of the models is shown in Table 5 whi
h summarizesthe values of Table 4. While the �rst 
olumn 
ontains the name of the model,the se
ond and third 
olumns 
olle
t the number of algorithms 
ompared to whi
hthat model has obtained better or worse results, respe
tively. Noti
e that both themaximum possible value for ea
h 
olumn and the sum of ea
h row is 10, sin
e thereare eleven di�erent algorithms in our experimental 
omparison. To 
ompute theprevious values, we 
onsider that an algorithm presents better results than anotherwhen the former has outperformed the latter a higher per
entage of the times andvi
eversa.Let us �rst analyze the results of the BWAS variants. When we apply those vari-ants only in
luding one 
omponent (BWAS�W�R, BWAS�M�R and BWAS�M�W ),a very bad performan
e is obtained in almost all the instan
es. We 
an explainthis bad behavior as follows. One of the BWAS design goals is to a
hieve anappropriate balan
e between exploration and exploitation. Mutation and restartare exploration 
omponents, while worst ant update rule is 
learly an exploitation
omponent. Using only one of these 
omponents, we obtain an algorithm that onlyen
ourages either the exploration or the exploitation of the sear
h spa
e, thus nothaving a good balan
e between these two main aspe
ts. This bad trade-o� is the



Analysis of the Best-Worst Ant System and its Variants on the TSP 9Table 4: Pair 
omparisons between ACO models.
Model AS ACS BWAS AS +R ACS +R BWAS �R�W BWAS �M�W BWAS �R�M BWAS �R BWAS �M BWAS �WAS � 8 0 8 8 66 66 66 0 58 0ACS 66 � 0 50 33 75 83 75 8 58 8BWAS 75 75 � 75 75 83 83 91 41 83 50AS+R 66 25 0 � 25 66 66 66 0 58 0ACS+R 66 41 0 50 � 75 75 75 8 58 8BWAS�R�W 25 16 0 25 16 � 16 33 8 25 8BWAS�M�W 25 8 0 25 16 58 � 75 8 50 8BWAS�R�M 25 16 0 25 16 50 16 � 16 16 16BWAS�R 75 58 0 75 66 75 75 75 � 66 16BWAS�M 25 25 0 25 25 66 41 66 16 � 8BWAS�W 75 66 0 75 66 75 75 75 33 66 �reason of the poor performan
e. Anyway, among all one-
omponent BWAS vari-ants, BWAS�M�W , based on the use of the restart 
omponent, obtains the bestperforman
e in eight of the twelve 
ases. It is outperformed by BWAS�R�W in justtwo of them and by BWAS�R�M in another one, while the results are the samein the remaining instan
e. However, it is important to note that the three 
aseswhere BWAS�M�W does not get the best result 
orrespond to three of the fourlarger instan
es (att532, u1060 and �1577).On the other hand, it 
an be seen that 
ombining two 
omponents is enoughto a
hieve a good performan
e. The results obtained are better than those ofthe AS and ACS algorithms for all the BWAS two-
omponent variants in nine ofthe twelve instan
es, and the same performan
e is obtained in the remaining three.Analyzing the three two-
omponent variants, it 
an be found two di�erent behaviorsTable 5: ACO models standing.Model Better performan
e Worse performan
eBWAS 10 0BWAS�W 9 1BWAS�R 8 2ACS+R 7 3ACS 6 4AS+R 5 5AS 4 6BWAS�M�W 3 7BWAS�M 2 8BWAS�R�W 1 9BWAS�R�W 0 10
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o Herreraon them. On the one hand, BWAS�R and BWAS�W outperform AS and ACS ineight instan
es and only obtain worse results in one of them, the largest instan
e�1577. On the other hand, the remaining variant BWAS�M presents the oppositebehavior, as it only outperforms the 
lassi
 ACO algorithms in three 
ases (with oneof them being the �1577 instan
e) and looses in other seven 
ases. This 
an be dueto the fa
t that the latter variant does not have a good balan
e between explorationand exploitation be
ause it does not use the strongest exploration 
omponent: thepheromone trail mutation. This way, it presents a poor performan
e similar toone-
omponent BWAS variants. Besides, noti
e that the in
lusion of mutation ina two-
omponent variant make it more robust, what 
an be drawn in view of thesmaller standard deviations asso
iated to the two algorithms of this kind.As said, the most signi�
ant ex
eption to the previous generi
 behavior is thelargest instan
e, �1577, where it is better to remove the mutation 
omponent thanthe restart or the worst ant update. We think that this is a 
onsequen
e of the largeand spe
i�
 sear
h spa
e asso
iated to this instan
e, whi
h requires of a strong ande�e
tive exploitation in order to a
hieve good performan
e.On the other hand, the best overall results have been obtained using the BWASalgorithm with its three 
omponents. Thus, BWAS always a
hieves better or thesame performan
e than all its variants. Noti
e that for every problem instan
e,BWAS gets the best error. However, for the two largest ones, u1060 and �1577,the best individual solution is obtained by another BWAS variant, BWAS�M , andby ACS+R, respe
tively. This 
ould be solved by a better 
hoi
e of the BWASparameter values (we should remind that no previous experimental study was de-veloped to sele
t appropriate values for them). This task will be part of the furtherwork to be done in the future.In view of these results, we 
an 
on
lude that:� BWAS 
an improve the performan
e of 
lassi
al ACO algorithms like ACSand AS.� There exists an appropriate trade-o� among the three 
omponents of BWAS,i.e., the algorithm has a good balan
e between exploration and exploitation.If we remove one or more 
omponents, the performan
e worsens.� The order of importan
e among the 
omponents seems to be 
lear. Themutation is the 
omponent with the highest in�uen
e on the behavior of thealgorithm. Between the restart and the worst update, the di�eren
es aresmaller, and none of them is preferred to the other.5 Con
luding Remarks and Future WorksIn this 
ontribution, a study of all the 
omponents of BWAS has been done. Theperforman
e of the resulting algorithms and the importan
e of their 
omponentshas been analyzed when solving twelve TSP instan
es of di�erent sizes. It hasbeen shown that the best performan
e is obtained when using the full version ofthe BWAS algorithm.



Analysis of the Best-Worst Ant System and its Variants on the TSP 11Two main ideas for future developments arise: (i) study the in�uen
e of pa-rameter settings on BWAS behavior, and (ii) analyze the 
onsideration of otherEvolutionary Computation aspe
ts su
h us the use of a number of the best andworst ants to positively and negatively update the pheromone trails �as done inPBIL [2℄� or the weighting of the pheromone amount ea
h ant deposits dependingon the ranked quality of its solution �as done in ASrank [4℄�.Appendix: Tables of ResultsThe overall results obtained are shown in Tables 6 to 9, where ea
h 
olumn namestands for the following: Best means the 
ost of the best solution found in the 10runs, Average 
olle
ts the average of the 
osts of the 10 solutions generated, Dev:shows the standard deviations, Error stands for the per
entage di�eren
e betweenthe average and the 
ost of the best solution known (whi
h is shown in bra
ketsafter the instan
e name). Finally, the last 
olumn named #R 
ontains the averagenumber of restarts performed by the algorithm in the 10 runs developed.Referen
es[1℄ T. Bä
k, D. Fogel, Z. Mi
halewi
z (Eds.). Handbook of Evolutionary Compu-tation, Institute of Physi
s Publishing, Bristol, 1997.[2℄ S. Baluja, R. Caruana. Removing the Geneti
s from the Standard Geneti
Algorithm. In A. Prieditis, S. Rusell (Eds.), Ma
hine Learning: Pro
eedingsof the Twelfth International Conferen
e, Morgan Kaufmann Publishers, pp.38-46, 1995.[3℄ J.L. Bentley. Fast Algorithms for Geometri
 Travelling Salesman Problem.ORSA Journal on Computing, 4(4), pp. 387-411, 1992.[4℄ B. Bullnheimer, R.F. Hartl, C. Strauss. A New Rank Based Version of the AntSystem: A Computational Study. Central European Journal for OpperationsResear
h and E
onomi
s, 7(1), pp. 25-38, 1999.[5℄ O. Cordón, F. Herrera, L. Moreno. Integra
ión de Con
eptos de Computa
iónEvolutiva en un Nuevo Modelo de Colonias de Hormigas (in Spanish). A
-tas de la CAEPIA'99. Seminario Espe
ializado sobre Computa
ión Evolutiva,Mur
ia, Spain, Vol. II, pp. 98-105, 1999.[6℄ O. Cordón, F. Herrera, I. Fernández de Viana, L. Moreno. A New ACO ModelIntegrating Evolutionary Computation Con
epts: The Best-Worst Ant Sys-tem. Pro
. of ANTS'2000. From Ant Colonies to Arti�
ial Ants: Se
ond In-ternational Workshop on Ant Algorithms, Brussels, Belgium, September 7-9,pp. 22-29, 2000.[7℄ O. Cordón, I. Fernández de Viana, F. Herrera. Análisis de las tres 
ompo-nentes que distinguen al Sistema de la Mejor-Peor Hormiga (in Spanish). A
tas
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Table 6: Results obtained in the di�erent instan
es (I).Eil51 (426)Model Best Average Dev: Error #RAS 427 427,5 0,53 0,53 0ACS 426 426,7 0,48 0,48 0BWAS 426 426 0 0 1AS+R 426 426,2 0,42 0,05 3,9ACS+R 426 426,5 0,53 0,12 2,4BWAS�R�W 429 436,5 4,27 2,40 0BWAS�M�W 426 429,3 2,75 0,76 5,5BWAS�R�M 428 433,8 4,15 1,79 0BWAS�R 426 426 0 0 0BWAS�M 426 429,9 2,37 0,90 5,4BWAS�W 426 426 0 0 1Berlin52 (7542)Model Best Average Dev: Error #RAS 7542 7542 0 0 0ACS 7542 7542 0 0 0BWAS 7542 7542 0 0 0AS+R 7542 7542 0 0 0ACS+R 7542 7542 0 0 0BWAS�R�W 7542 7684,3 87,34 1,85 0BWAS�M�W 7542 7560,9 44,18 0,24 2,8BWAS�R�M 7542 7668,4 98,80 1,64 0BWAS�R 7542 7542 0 0 0BWAS�M 7542 7542 0 0 2,4BWAS�W 7542 7542 0 0 0Brazil58 (25395)Model Best Average Dev: Error #RAS 25395 25395 0 0 0ACS 25395 25395 0 0 0BWAS 25395 25395 0 0 0AS+R 25395 25395 0 0 0ACS+R 25395 25395 0 0 0BWAS�R�W 25395 25395 0 0 0BWAS�M�W 25395 25395 0 0 0BWAS�R�M 25395 25395 0 0 0BWAS�R 25395 25395 0 0 0BWAS�M 25395 25395 0 0 0BWAS�W 25395 25395 0 0 0
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Table 7: Results obtained in the di�erent instan
es (II).Kroa100 (21282)Model Best Average Dev: Error #RAS 21282 21282 0 0 0ACS 21282 21282 0 0 0BWAS 21282 21282 0 0 0AS+R 21282 21282 0 0 0ACS+R 21282 21282 0 0 0BWAS�R�W 21282 21617,1 212,50 1,55 0BWAS�M�W 21282 21395,8 134,73 0,53 4,5BWAS�R�M 21282 21667,1 256,84 1,77 0BWAS�R 21282 21282 0 0 0BWAS�M 21282 21426,2 139,67 0,67 5,1BWAS�W 21282 21282 0 0 0Gr120 (6942)Model Best Average Dev: Error #RAS 6944 6954,1 6,06 0,17 0ACS 6942 6946,1 5,49 0,06 0BWAS 6942 6942 0 0 0,7AS+R 6944 6948,9 3,75 0,1 6,9ACS+R 6942 6943,8 3,79 0,03 1,1BWAS�R�W 6942 7143,1 164,93 2,81 0BWAS�M�W 6942 7030,3 106,50 1,25 5,9BWAS�R�M 6957 7126,2 128,38 2,58 0,4BWAS�R 6942 6942 0 0 0BWAS�M 6942 6997,1 46,17 0,78 4,8BWAS�W 6942 6942 0 0 0,5D198 (15780)Model Best Average Dev: Error #RAS 15796 15811,9 9,50 0,2 0ACS 15780 15784,9 5,67 0,03 0BWAS 15780 15780,4 0,51 0 3,3AS+R 15796 15806,2 8,73 0,17 3,5ACS+R 15780 15782,9 4,31 0,02 2,3BWAS�R�W 15780 15781,1 1,10 0 0BWAS�M�W 15780 15781,2 1,03 0 5,1BWAS�R�M 15780 15781,7 2,31 0,01 0BWAS�R 15780 15780,4 0,51 0 0BWAS�M 15780 15782,2 4,87 0,01 6,2BWAS�W 15780 15780,3 0,48 0 3
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Table 8: Results obtained in the di�erent instan
es (III).Lin318 (42029)Model Best Average Dev: Error #RAS 42205 42348,4 122,43 0,75 0ACS 42029 42230 148,48 0,48 0BWAS 42029 42090,2 57,79 0,14 5AS+R 42189 42238,4 45,45 0,50 6,5ACS+R 42029 42182,4 118,12 0,36 5BWAS�R�W 42072 42545,2 408,30 1,21 0BWAS�M�W 42143 42421,1 181,99 0,92 8,6BWAS�R�M 42143 42525,1 176,18 1,16 0BWAS�R 42029 42138,7 81,73 0,26 0BWAS�M 42155 42583,2 277,80 1,30 8,1BWAS�W 42029 42129,2 44,84 0,23 7,4P
b442 (50778)Model Best Average Dev: Error #RAS 51213 51284,1 53,04 0,99 0ACS 50919 51048 75,29 0,53 0BWAS 50785 50889,5 79,32 0,21 7,9AS+R 51148 51209,5 41,16 0,84 5,6ACS+R 50860 51147,5 173,11 0,72 8BWAS�R�W 51069 51604 379,20 1,60 0BWAS�M�W 51065 51293,8 176,12 1,00 9,4BWAS�R�M 51069 51604 379,20 1,60 0BWAS�R 50795 51017 107,80 0,46 0BWAS�M 51024 51545,1 366,20 1,48 10,1BWAS�W 50809 50943,1 88,39 0,32 7,3Att532 (27686)Model Best Average Dev: Error #RAS 27796 27843,5 23,83 0,87 0ACS 27705 27810,3 64,44 0,45 0BWAS 27686 27713 16 0,09 8,2AS+R 27755 27786 14,78 0,36 8,7ACS+R 27745 27835 57,56 0,54 7BWAS�R�W 27830 27953 88 0,95 0BWAS�M�W 27860 28010 87 1,15 8BWAS�R�M 27879 28093 118 1,44 0BWAS�R 27703 27734 27 0,17 0BWAS�M 27854 27982 73 1,05 10,9BWAS�W 27698 27744 26 0,20 8,1
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Table 9: Results obtained in the di�erent instan
es (IV).Rat783 (8806)Model Best Average Dev: Error #RAS 8873 8886 13,11 0,90 0ACS 8857 8892,7 20,93 0,97 0BWAS 8816 8837,9 19,23 0,36 9,1AS+R 8850 8863,1 8,33 0,64 7,1ACS+R 8875 8899,5 22,33 1,05 7,6BWAS�R�W 8922 9185,6 253,42 4,13 0BWAS�M�W 8942 8986,3 38,80 2,10 13,1BWAS�R�M 8958 9063,1 170,44 2,83 0BWAS�R 8817 8838 12,46 0,36 0BWAS�M 8922 9042,4 159,62 2,61 10,7BWAS�W 8816 8844,4 17,90 0,43 8,9U1060 (224094)Model Best Average Dev: Error #RAS 227413 228732 789,05 2,03 0ACS 225675 226387,8 668,90 1,01 0BWAS 225219 225713 337 0,71 7,2AS+R 228422 229032,2 381,06 2,16 4ACS+R 225243 226501 1059,57 1,06 2BWAS�R�W 225767 226415 481 1,02 0BWAS�M�W 226045 226426 285 1,02 7,75BWAS�R�M 225826 226223 428 0,94 0BWAS�R 225533 226394 507 1,01 0BWAS�M 225202 226321 833 0,98 7,9BWAS�W 225275 226315 619 0,98 7,5Fl1577 (22249)Model Best Average Dev: Error #RAS 22732 23213,9 221,09 4,16 0ACS 22313 22480,8 129,78 1,03 0BWAS 22290 22389,9 81,43 0,62 9,1AS+R 22722 23107,75 191,53 3,72 7,63ACS+R 22282 22454,4 147,85 0,91 4,8BWAS�R�W 22375 22480,2 71,96 1,02 0BWAS�M�W 22354 22546,2 86,33 1,31 8,8BWAS�R�M 22356 22505,1 91,35 1,13 0BWAS�R 22516 22775,1 143,62 2,31 0BWAS�M 22291 22442,2 104,67 0,86 9,1BWAS�W 22452 22613,2 93,73 1,61 9,1
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