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Abstract

In this contribution, we will study the influence of the three main com-
ponents of Best-Worst Ant System: the best-worst pheromone trail update
rule, the pheromone trail mutation and the restart. Both the importance of
each of them and the fact whether all of them are necessary will be analyzed.
The performance of different variants of this algorithm will be tested when
solving different instances of the TSP.

1 Introduction

In the last few years, Ant Colony Optimization (ACO) [10] has become a popular
metaheuristic for solving complex optimization problems like the classical traveling
salesman problem or the routing in telecommunication networks. ACO algorithms
mimic the behavior of natural ant colonies, being based on the cooperation among
multiple agents, ants, every one generating a possible solution to the problem in
each algorithm iteration. To do so, each ant travels a graph which represents a
specific problem instance and makes use of two information types that are common
to the whole colony and specify the preference of the graph edges/nodes at every
moment:

e Heuristic information, which depends on the specific problem instance, is
computed before running the algorithm and remains fixed at run time (in
static optimization problems). The value associated to each edge (r,s) is
denoted by 7;s.

e Pheromone trail information, which is modified during the algorithm run and
depends on the number of ants that traveled each edge in the past and on
the quality of the solutions they generated. It is usually represented in the
form of a pheromone matrix, 7 = [7;s], which mimics the real pheromone
that natural ants deposit while moving.
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There has been proposed a number of different ACO models [10] like Ant System
(AS) [8], Ant Colony System (ACS) [9], Rank-based Ant System (ASyqnk) [4], and
Max-Min Ant System (MMAS) [15]. In [5, 6], a new variant called Best-Worst
Ant System (BWAS) was introduced. BWAS is characterized by integrating three
components from Evolutionary Computation [1]: the best-worst pheromone trail
update rule, the pheromone trail mutation and the restart.

In this paper, we extend the preliminary study of the BWAS components that
was developed in [7] by applying the BWAS algorithm and its variants to a large
number of TSP instances. Notice that when we use the term variants, we refer
to those algorithms obtained from the basic BWAS by removing one or two of its
three distinguishing components. Hence, our aim is to demonstrate that BWAS is
an algorithm as a whole, i.e., that a trade-off exists among all its components, and
to analyze the relative importance of each of them.

This paper is structured as follows. In Section 2, the basis of the BWAS al-
gorithm are introduced. In Section 3, the different BWAS variants studied are
presented. In Section 4, we will consider the application of the ACO algorithms to
the TSP and we will present the results obtained by the BWAS family of algorithms
for several instances. We end by concluding remarks and proposals for future work
in Section 5. Moreover, an appendix with the individual result tables is included.

2 Best-Worst Ant System

After the large development of the ACO metaheuristic, several authors recognized
the similarities existing between ACO algorithms and a specific family of evolu-
tionary algorithms guided by probability distribution adaption [13]. This was the
starting point of our BWAS proposal when we saw that the synergy obtaining
from the hybridization of components of these algorithms could result in signifi-
cant performance improvements. Hence, the BWAS model tries to improve ACO
performance using evolutionary algorithm concepts [5, 6].

As AS,qnr and MMAS, BWAS constitutes another extension of AS since it
uses the AS transition rule and pheromone evaporation mechanism [8].

On the one hand, the transition rule is applied as follows:

rs] - [0rs]° :
pu(rys) = { e s € S
, otherwise
with 7,5 being the pheromone trail of edge (r,s), n.s being the heuristic value,
Ji(r) being the set of nodes that remain to be visited by ant k, and with a and
B being parameters that weight the relative importance of pheromone trail and
heuristic information.
On the other hand, the evaporation mechanism operates by applying the for-
mula:

Trs & (L—p) - 7Trs, V1,8

with p € [0, 1] being the pheromone evaporation rate.
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Besides, BWAS always considers the systematic exploitation of local optimizers
to improve the ants’ solutions.

Together with the previous elements, BWAS considers the three following dae-
mon actions:

Best-worst pheromone trail update rule

This rule is based on the Population-Based Incremental Learning (PBIL) [2] prob-
ability array update rule. The global best solution is considered to perform a pos-
itive update of trails, while the pheromone trails associated to the worst solution
generated in the current iteration are penalized to reduce their desirability.

To reinforce the edges contained in good solutions, the daemon in BWAS first
offline updates the pheromone trail by only considering the global best solution:

f(C(Sglobal—best)): Zf (’I‘,S) € Sglobal—best

Trs < Trs + AT, where AT, = .
e e e e 0, otherwise

with f(C(Sgiobai—best)) being the amount of pheromone to be deposited by the
global-best ant, which depends on the quality of its solution, C(Sgiopai—pest)-
Then, all the edges existing in the current worst solution, Scyrrent—worst, that
are not present in the global best one, are penalized by another decay of the
pheromone trail associated —an additional evaporation— performed as follows:

V(T: 5) € Scurrent—worst and (T: 5) € Sglobal—best: Trs (]- - P) *Trs

Pheromone trail mutation

The pheromone trails suffer mutations to introduce diversity in the search pro-
cess, as done in PBIL with the memoristic structure. To do so, each row of the
pheromone matrix is mutated —with probability P, — by adding or subtracting
the same amount of pheromone to the selected trail (a value which depends on the
current iteration) as follows:

T, _ Trs + mUt(Zt; Tthreshold); Zf a=0
rs Trs — m’ut(lt,Tthreshold): Zf a=1

with a being a random value in {0, 1}, it being the current iteration, T¢nreshold
being the average of the pheromone trail on the edges composing the global-best
solution and with mut(-) being:
. it — ity
mUt(lta Tthreshold) = m * 0 * Tthreshold
where Nit is the maximum number of iterations of the algorithm and ¢, is the last
iteration where a restart was performed.

Notice that the mutation range comes back to its initial value each time a restart
is applied and the parameters o and Tipreshota Specify the maximum power of the
mutation.

We should mention that the mut(-) function does not prevent pheromone values
to be negative. Hence, there is a need to check that they are correct after each
application of this component.
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Restart of the search process when it gets stuck

This is a key characteristic of the CHC evolutionary algorithm [11] and is also
common in ACO, where it happens when the pheromone matrix has reached the
stagnation phase.

Other ACO models —such us MM AS [15]— have previously considered it as a
daemon action with different approaches. In our case, we will perform the restart
by setting all the pheromone matrix components to 7y, the initial pheromone value,
when the global-best solution is not improved during a fixed number of iterations.

A simplified structure of a generic BWAS algorithm is shown as follows:

1. Give an initial pheromone value, 19, to each edge.

2. For k=1 to m do (in parallel)

e Place ant k on an initial node r.
e Include r in Ly, (tabu list of ant k keeping a record of the visited nodes).
e While (ant k not in a target node) do

— Select the next node to visit, s ¢ Ly, according to the AS transition
rule.

— Include s in Ly,.

3. Pheromone evaporation.
4. For k=1 tom do

e Fwaluate the solution generated by ant k, S

e Local search improvement.
5. Sgiobal—best < global best ant tour. Scyrrent—worst < current worst ant tour.
6. Best- Worst pheromone update.
7. Pheromone trail mutation.
8. Restart if condition is satisfied.
9. If (Termination Condition is satisfied)

Then give the global-best solution found as output and Stop
Else go to step 2.

For more information on BWAS, we refer to [6].
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3 Analysis of the BWAS Components

As we said, the main objective of this paper is to study the influence of the three
components of BWAS on its application to the TSP. With this study, we want to
know if all of them are really important or some of them can be removed without
negatively affecting the performance of the BWAS algorithm. Additionaly, we also
try to establish a ranking of importance among components.

This analysis will be made from a double perspective:

e Individualized analysis of components, i.e., we will run the BWAS algorithm
using only one of its components.

e Cooperative analysis among pairs of components. In this case, we will run
variants of the BWAS algorithm including two of its components.

It seems that a certain interrelation exists among the three basic elements of BWAS.
The update of pheromone trails by the worst ant allows the algorithm to quickly
discard areas of the search space while the mutation and the restart avoid a stagna-
tion of the algorithm. It may seem that the latter two components can be redundant
since they both have the same aim but we will see that a high cooperation arises
between both.

In Table 1, all the algorithmic variants used in the study are summarized. As
can be seen, there are three different groups of algorithms. The first one includes
the basic models: our proposal, BWAS, and the classical AS and ACS, which are
considered for comparison purposes. The second group comprises variants including
a single component: restart, mutation or worst-update. The models AS;r and
ACS ;g are included in this group by adding the BWAS restart to AS and ACS,
respectively. Finally, the third group comprises the variants including a pair of the
components. The different variants are denoted by BWAS . where * stands for
the removed component (R, M or W)!.

4 Experimental Results

In this section, we will review the TSP and how we can apply an ACO model to
solve this problem. Then, we will present the experimental results.

4.1 The Traveling Salesman Problem

The traveling salesman problem [3], or TSP for short, can be described as: given a
finite number of “cities” along with the cost of traveling between each pair of them,
find the cheapest way of visiting all the cities and returning to the starting point.

More formally, it can be represented by a complete weighted graph, G = (N, 4),
with N being the set of cities and A the set of edges fully connecting the nodes V.

L Although the BWAS_ /_y one-component variant can seem to be the same algorithm than
ACS with restart (ACStRr), they both are different as: i) BWAS_j;_w applies pheromone
evaporation to all edges, while AC'S r only evaporates the pheromone trails of the edges travelled
by the global-best ant, and ii) both algorithms consider different transition rules.
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Table 1: ACO models studied.

Parameter Meaning
AS Ant System
ACS Ant Colony System
BWAS Best-Worst Ant System
ASir Ant System with BWAS restart
ACS+gr Ant Colony System with BWAS restart

BWAS g-w BWAS without restart and worst ant pheromone update
BWAS_p—w  BWAS without mutation and worst ant pheromone update

BWAS _r_m BWAS without restart and mutation
BWAS_gr BWAS without restart
BWAS_w BWAS without worst ant pheromone update
BWAS_ BWAS without mutation

Table 2: TSP instances used.

[ TSP instances |

Eil51 Lin318
Berlin52 Pcb442
Brazil58 Att532
Kroal00 Rat783

Grl120 U1060

D198 Fl11577

Each edge is assigned a value d,.s, which is the length of edge (r,s) € A. The TSP
is the problem of finding a minimal length Hamiltonian circuit of the graph, where
a Hamiltonian circuit is a closed tour visiting exactly once each of the n = |N|
cities of G.

All the TSP instances used in our experimentation have been obtained from
TSPLIB [14]. As shown in Table 2, we have chosen 12 instances of different sizes
in order to perform a fair comparative study.

4.2 Application of the ACO Algorithms Considered to the
TSP

Initially, all the pheromone trails are set to 75 = m, with C(Sareedy)
being the cost of the solution obtained by a greedy algorithm for the TSP, and
each of the m ants is placed on a randomly chosen city. An ant constructs a
tour as follows. At a city r, the ant chooses a unvisited city s probabilistically,
biased by the pheromone trail strength 7,.; on the edge between cities  and s and
on the heuristic information of that edge (which is a function of the edge length,

Nrs = f) This way, ants prefer to move to a city which is close to the current
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one and which is connected by an edge of a high pheromone trail.

After all ants have built their solutions, a local search technique is used [12]. In
this paper we will use the 2-opt algorithm. This technique proceeds by systemati-
cally testing if the current tour can be improved by replacing two edges. To reduce
the run-time of 2-opt, we apply three different techniques:

e Restricting the set of movements which are examined to those contained in
the candidate list of the nearest neighbors ordered by distances.

e Considering a fixed radius nearest neighbor search: at least one newly intro-
duced edge has to be shorter that any of the two removed edges.

e Using don’t look bits associated with each node. Initially, all don’t look bits
are turned off. If for a node no improving movement can be found, the don’t
look bit is turned on. In case an edge incident to a node is changed by a
movement, the node don’t look bit is turned off.

Finally, the pheromone trails are updated.

4.3 Parameter Settings

The ACO models shown in Table 1 have been used to solve the twelve TSP in-
stances selected. The parameter values considered are shown in Table 3, where
the parameters of AS and ACS are taken from [9]. For the BWAS model, param-
eters P, and o are taken from [6]. The values of the latter two parameters and
of the percentage of iterations without improvement in the restart condition have
not been obtained from any previous study, and a deep analysis of the influence of
appropriate values for the BWAS parameters is to be done in future work.

Each model has been run 10 times on a 1400 MHz. AMD Athlon processor.
The maximum run time depends on the TSP instance size. If n <500 then the
maximum run time is 600 seconds. If 500 < n < 1000 then the maximum run
time is 1200 seconds. Finally, if n> 1000 the maximum run time is 3600 seconds.
It is noteworthy that the time intervals shown, 600-3600 seconds, are a maximum
threshold, since the algorithm will stop if the optimal solution is found before the
maximum time wastes.

4.4 Analysis of Results

Tables 4 and 5 collect a summary of the obtained results, while the complete tables
of results can be consulted in the Appendix.

Table 4 compares the algorithms two by two. Each cell a;; shows the percentage
of cases in which algorithm ¢ has outperformed algorithm j. We will say that
algorithm i is better than algorithm j for a problem instance p if the error? obtained
by ¢ for p is smaller than the error obtained by j. Notice that the values in Table
4 are symmetric (a;; = 100 — aj;) in all cases but in those where there have been

2 Error stands for the percentage difference between the average cost obtained in the performed
runs and the cost of the best solution known for the instance.
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Table 3: Parameter values considered for the ACO models.

Model Meaning
Number of ants m =15
Maximum run time Ntime = 600 to 3600 seconds
Number of runs of each algorithm 10
Pheromone update rules parameter p=02
AS offline pheromone rule update f(C(Sk)) = C(lsk)
ACS offline pheromone rule update F(C(Sgtobat—best)) = crsmmeirs)
Transition rule parameters a=1,6=2
AC'S transition rule parameter qo =0.98
Initial pheromone amount To = m
Candidate list size cl =20
BWAS parameters
Pheromone matrix mutation probability P, =03
Mutation operator parameter oc=4
Restart condition N - 0.2
Local search procedure parameters
Local search algorithm 2-opt
Number of neighbors generated per iteration 40
Neighbor choice rule first improvement

draws between the two algorithms (i.e., both algorithms have obtained the same
error in any of the twelve instances).

A general classification of the models is shown in Table 5 which summarizes
the values of Table 4. While the first column contains the name of the model,
the second and third columns collect the number of algorithms compared to which
that model has obtained better or worse results, respectively. Notice that both the
maximum possible value for each column and the sum of each row is 10, since there
are eleven different algorithms in our experimental comparison. To compute the
previous values, we consider that an algorithm presents better results than another
when the former has outperformed the latter a higher percentage of the times and
viceversa.

Let us first analyze the results of the BWAS variants. When we apply those vari-
ants only including one component (BWAS_w _gr, BWAS_jy—g and BWAS_p—w),
a very bad performance is obtained in almost all the instances. We can explain
this bad behavior as follows. One of the BWAS design goals is to achieve an
appropriate balance between exploration and exploitation. Mutation and restart
are exploration components, while worst ant update rule is clearly an exploitation
component. Using only one of these components, we obtain an algorithm that only
encourages either the exploration or the exploitation of the search space, thus not
having a good balance between these two main aspects. This bad trade-off is the



alysis or the pbest-Vvorst Ant oystem and 1tS variants on tine 1ol J

Table 4: Pair comparisons between ACO models.

x B3
= S &|la 3 =
? s 4 o4 o4 oo o
w S| 4 T O | =T o=
w O = |w L =T B 2|2 = =
Model < < | <= ™ ™ @_/lw 8w}
AS - 8 0|8 8 66 66 66| 0 58 0
ACS 66 - 0|50 33 75 8 75| 8 58 8
BWAS 75 75 - |75 75 83 83 91|41 83 50
ASir 66 25 0| - 25 66 66 66| 0 58 0
ACSyg 66 41 0|5 - 75 75 75| 8 58 8
BWAS_gp_w |25 16 0|25 16 - 16 33| 8 25 8
BWAS yp—w |25 8 0|25 16 58 - 75| 8 50 8
BWAS_p_a |25 16 0|25 16 50 16 - |16 16 16
BWAS_pg 7 58 0 |7 66 75 75 75| - 66 16
BWAS_ 25 25 0|25 25 66 41 66|16 - 8
BWAS_w 75 66 0|75 66 75 75 75|33 66 -

reason of the poor performance. Anyway, among all one-component BWAS vari-
ants, BWAS_j;_w, based on the use of the restart component, obtains the best
performance in eight of the twelve cases. It is outperformed by BWAS g _w in just
two of them and by BWAS_g_ s in another one, while the results are the same
in the remaining instance. However, it is important to note that the three cases
where BWAS_j;_w does not get the best result correspond to three of the four
larger instances (att532, ul060 and f11577).

On the other hand, it can be seen that combining two components is enough
to achieve a good performance. The results obtained are better than those of
the AS and ACS algorithms for all the BWAS two-component variants in nine of
the twelve instances, and the same performance is obtained in the remaining three.
Analyzing the three two-component variants, it can be found two different behaviors

Table 5: ACO models standing.

Model Better performance Worse performance
BWAS 10 0
BWAS_w
BWAS_g
ACSir
ACS
ASigr
AS
BWAS_py_—w
BWAS_
BWAS_p_-w
BWAS_p_w

©

© 0 O U [Ww N

S =N W L

—
(=)
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on them. On the one hand, BWAS_g and BWAS_yw outperform AS and ACS in
eight instances and only obtain worse results in one of them, the largest instance
fl1577. On the other hand, the remaining variant BWAS_j; presents the opposite
behavior, as it only outperforms the classic ACO algorithms in three cases (with one
of them being the 11577 instance) and looses in other seven cases. This can be due
to the fact that the latter variant does not have a good balance between exploration
and exploitation because it does not use the strongest exploration component: the
pheromone trail mutation. This way, it presents a poor performance similar to
one-component BWAS variants. Besides, notice that the inclusion of mutation in
a two-component variant make it more robust, what can be drawn in view of the
smaller standard deviations associated to the two algorithms of this kind.

As said, the most significant exception to the previous generic behavior is the
largest instance, fl1577, where it is better to remove the mutation component than
the restart or the worst ant update. We think that this is a consequence of the large
and specific search space associated to this instance, which requires of a strong and
effective exploitation in order to achieve good performance.

On the other hand, the best overall results have been obtained using the BWAS
algorithm with its three components. Thus, BWAS always achieves better or the
same performance than all its variants. Notice that for every problem instance,
BWAS gets the best error. However, for the two largest ones, ul060 and 11577,
the best individual solution is obtained by another BWAS variant, BWAS_ s, and
by ACSy R, respectively. This could be solved by a better choice of the BWAS
parameter values (we should remind that no previous experimental study was de-
veloped to select appropriate values for them). This task will be part of the further
work to be done in the future.

In view of these results, we can conclude that:

e BWAS can improve the performance of classical ACO algorithms like ACS
and AS.

e There exists an appropriate trade-off among the three components of BWAS,
i.e., the algorithm has a good balance between exploration and exploitation.
If we remove one or more components, the performance worsens.

e The order of importance among the components seems to be clear. The
mutation is the component with the highest influence on the behavior of the
algorithm. Between the restart and the worst update, the differences are
smaller, and none of them is preferred to the other.

5 Concluding Remarks and Future Works

In this contribution, a study of all the components of BWAS has been done. The
performance of the resulting algorithms and the importance of their components
has been analyzed when solving twelve TSP instances of different sizes. It has
been shown that the best performance is obtained when using the full version of
the BWAS algorithm.
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Two main ideas for future developments arise: (i) study the influence of pa-
rameter settings on BWAS behavior, and (ii) analyze the consideration of other
Evolutionary Computation aspects such us the use of a number of the best and
worst ants to positively and negatively update the pheromone trails —as done in
PBIL [2]— or the weighting of the pheromone amount each ant deposits depending
on the ranked quality of its solution —as done in AS,qnk [4]—.

Appendix: Tables of Results

The overall results obtained are shown in Tables 6 to 9, where each column name
stands for the following: Best means the cost of the best solution found in the 10
runs, Average collects the average of the costs of the 10 solutions generated, Dev.
shows the standard deviations, Error stands for the percentage difference between
the average and the cost of the best solution known (which is shown in brackets
after the instance name). Finally, the last column named #R contains the average
number of restarts performed by the algorithm in the 10 runs developed.
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Table 6: Results obtained in the different instances (I).

Eil51 (426)

Model Best Average  Dev. Error #R
AS 427 427,5 0,53 0,53 0
ACS 426 426,7 0,48 0,48 0
BWAS 426 426 0 0 1
ASyr 426 426,2 0,42 0,05 3,9
ACS g 426 426.,5 053 0,12 24
BWAS p_ w 429 436,5 4,27 2,40 0
BWAS _y_w 426 429,3 2,75 0,76 5,5
BWAS_R_um 498 433,8 4,15 1,79 0
BWAS g 426 426 0 0 0
BWAS_ 426 429,9 2,37 0,90 5,4
BWAS _w 426 426 0 0 1
Berlinb2 (7542)
Model Best Average Dev. Error #R
AS 7542 7542 0 0 0
ACS 7542 7542 0 0 0
BWAS 7542 7542 0 0 0
ASyr 7542 7542 0 0 0
ACSyRr 7542 7542 0 0 0
BWAS_p_w 7542 7684,3 87,34 1,85 0

BWAS_y_w | 7542  7560,9 44,18 024 28
BWAS_gp_n | 7542 76684 98,80 1,64 0

BWAS_g 7542 7542 0 0 0
BWAS_ 7542 7542 0 0 2,4
BWAS _w 7542 7542 0 0 0
Brazil58 (25395)
Model Best Average Dev. Error #R
AS 25395 25395 0 0 0
ACS 25395 25395 0 0 0
BWAS 25395 25395 0 0 0
ASyr 25395 25395 0 0 0
ACS4Rr 25395 25395 0 0 0
BWAS_p_w 25395 25395 0 0 0
BWAS_py_—w | 25395 25395 0 0 0
BWAS_r_m 25395 25395 0 0 0
BWAS_g 25395 25395 0 0 0
BWAS_ 25395 25395 0 0 0
BWAS _w 25395 25395 0 0 0
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Table 7: Results obtained in the different instances (II).

Kroal0O0 (21282)

Model Best Average Dev. Error #R
AS 21282 21282 0 0 0
ACS 21282 21282 0 0 0
BWAS 21282 21282 0 0 0
AStr 21282 21282 0 0 0
ACSyr 21282 21282 0 0 0
BWAS_p_w | 21282 21617,1 212,50 1,55 0

BWAS_y_w | 21282 213958 134,73 0,553 4,5
BWAS_gp_n | 21282  21667,1 256,84 1,77 0

BWAS_gr 21282 21282 0 0 0
BWAS_ 21282  21426,2 139,67 0,67 5,1
BWAS _w 21282 21282 0 0 0
Gri20 (6942)
Model Best Average Dev. Error #R
AS 6944 6954,1 6,06 0,17 0
ACS 6942 6946,1 5,49 0,06 0
BWAS 6942 6942 0 0 0,7
ASyr 6944 6948,9 3,75 0,1 6,9
ACSig 6942 6943,8 3,79 0,03 1,1

BWAS_p_w | 6942 71431 164,93 2,81 0
BWAS_p_w | 6942  7030,3 106,50 1,25 5,9
BWAS_gp_m | 6957 7126,2 128,38 2,58 0,4

BWAS_g 6942 6942 0 0 0
BWAS_ 6942 6997,1 46,17 0,78 4,8
BWAS_w 6942 6942 0 0 0,5

D198 (15780)

Model Best Average Dev. Error #R

AS 15796 15811,9 9,50 0,2 0

ACS 15780  15784,9 5,67 0,03 0
BWAS 15780 15780,4 0,51 0 3,3
ASyr 15796 15806,2 8,73 0,17 3,5
ACSig 15780  15782,9 4,31 0,02 2,3

BWAS_pr_w | 15780 157811 1,10 0 0
BWAS_p—w | 15780  15781,2 1,03 0 5,1

BWAS_gr_n | 15780  15781,7 2,31 0,01 0

BWAS_g 15780  15780,4 0,51 0 0

BWAS_ 15780  15782,2 4,87 0,01 62
BWAS_w 15780 15780,3 0,48 0 3
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Table 8: Results obtained in the different instances (III).

Lin318 (42029)

Model Best Average Dev. Error #R
AS 42205 42348,4 122,43 0,75 0
ACS 42029 42230 148,48 0,48 0
BWAS 42029  42090,2 57,79 0,14 5

ASyr 42189 42238,4 45,45 0,50 6,5
ACS g 42029 421824 118,12 0,36 5
BWAS_p_w 42072 42545,2 408,30 1,21 0

BWAS_y_w | 42143  42421,1 181,99 0,92 8,6
BWAS_g_n | 42143 425251 176,18 1,16 0
BWAS_pg 42029  42138,7 81,73 0,26 0
BWAS_ 42155  42583,2 277,80 1,30 8,1
BWAS_w 42029 42129,2 4484 023 74
Pcba42 (50778)

Model Best Average Dev. Error #R
AS 51213 51284,1 53,04 0,99 0
ACS 50919 51048 75,29 0,53 0

BWAS 50785  50889,5 79,32 0,21 7,9

ASyr 51148 51209,5 41,16 0,84 5,6
ACS, g 50860  51147,5 173,11 0,72 8

BWAS_g_w | 51069 51604 379,20 1,60 0
BWAS_p_w | 51065 512938 176,12 1,00 9,4
BWAS_g_m | 51069 51604 379,20 1,60 0
BWAS_g 50795 51017 107,80 0,46 0
BWAS_ 51024 515451 366,20 1,48 10,1
BWAS_w 50809  50943,1 88,39 032 73
Att532 (27686)

Model Best Average Dev. Error #R
AS 27796 27843,5 23,83 0,87 0
ACS 27705  27810,3 64,44 0,45 0
BWAS 27686 27713 16 0,09 8,2
ASyr 27755 27786 14,78 0,36 8,7
ACS, g 27745 27835 57,56 0,54 7
BWAS_pr_w | 27830 27953 88 0,95 0
BWAS_p—w | 27860 28010 87 1,15 8
BWAS_r_m 27879 28093 118 1,44 0
BWAS_pg 27703 27734 27 0,17 0
BWAS_ 27854 27982 73 1,05 10,9

BWAS_w 27698 27744 26 0,20 8,
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Table 9: Results obtained in the different instances (IV).

Rat783 (8806)

Model Best Average Dev. Error #R

AS 8873 8886 13,11 0,90 0

ACS 8857 8892,7 20,93 0,97 0
BWAS 8816 8837,9 19,23 0,36 9,1
ASyr 8850 8863,1 8,33 0,64 7,1
ACS g 8875 8899,5 22,33 1,05 7,6

BWAS_p_w 8922 9185,6 253,42 4,13 0
BWAS_py-—w 8942 8986,3 38,80 2,10 13,1

BWAS_R_um 8958 9063,1 170,44 2,83 0

BWAS_g 8817 8838 12,46 0,36 0
BWAS_ 8922 9042,4 159,62 2,61 10,7
BWAS_w 8816 8844,4 17,90 0,43 8,9

U1060 (224094)

Model Best Average Dev. Error #R

AS 227413 228732 789,05 2,03 0

ACS 225675 226387,8 668,90 1,01 0
BWAS 225219 225713 337 0,71 7,2

ASigr 228422 229032,2 381,06 2,16 4

ACSyRr 225243 226501 1059,57 1,06 2

BWAS_p_w 225767 226415 481 1,02 0
BWAS _y_w 226045 226426 285 1,02 7,75

BWAS_r_m 225826 226223 428 0,94 0

BWAS_gr 225533 226394 507 1,01 0
BWAS_ 225202 226321 833 0,98 7,9
BWAS_w 225275 226315 619 0,98 7,5

FI1577 (22249)

Model Best Average Dev. Error #R

AS 22732 23213,9 221,09 4,16 0

ACS 22313 224808 129,78 1,03 0
BWAS 22290 22389,9 81,43 0,62 9,1
ASyr 22722 23107,75 191,53 3,72 7,63
ACS g 22282 224544 147,85 0,91 48

BWAS_r_w | 22375 22480,2 71,96 1,02 0
BWAS _y_w 22354 22546,2 86,33 1,31 8,8

BWAS_pr_nm | 22356 22505,1 91,35 1,13 0

BWAS_g 22516 22775,1 143,62 2,31 0
BWAS_ 22291 224422 104,67 0,86 9,1
BWAS_w 22452 22613,2 93,73 1,61 9,1
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