
Fuzzy adaptive genetic algorithms: design, taxonomy,
and future directions

F. Herrera, M. Lozano

Abstract The genetic algorithm behaviour is determined
by the exploitation and exploration relationship kept
throughout the run. Adaptive genetic algorithms, that
dynamically adjust selected control parameters or genetic
operators during the evolution have been built. Their
objective is to offer the most appropriate exploration and
exploitation behaviour to avoid the premature conver-
gence problem and improve the final results. One of the
adaptive approaches are the adaptive parameter setting
techniques based on the use of fuzzy logic controllers, the
fuzzy adaptive genetic algorithms (FAGAs). In this paper,
we analyse the FAGAs in depth. First, we describe the steps
for their design and present an instance, which is studied
from an empirical point of view. Then, we propose a
taxonomy for FAGAs, attending on the combination of two
aspects: the level where the adaptation takes place and the
way the Rule-Bases are obtained. Furthermore, FAGAs
belonging to different groups of the taxonomy are
reviewed. Finally, we identify some open issues, and
summarise a few new promising research directions on
the topic. From the results provided by the approaches
presented in the literature and the experimental results
achieved in this paper, an important conclusion is ob-
tained: the use of fuzzy logic controllers to adapt genetic
algorithm parameters may really improve the genetic
algorithm performance.

Keywords Adaptive genetic algorithms, Fuzzy logic
controllers

1
Introduction
The behaviour of the genetic algorithms (GAs) [25] is
strongly determined by the balance between exploration
(to investigate new and unknown areas in a search space)
and exploitation (to make use of knowledge acquired by
exploration to reach better positions on the search space).
The GA control parameter settings, such as mutation
probability, crossover probability, and population size, are
key factors in the determination of the exploitation versus
exploration tradeoff. It has long been acknowledged that

they have a significant impact on GA performance [28]. If
poor settings are used, the exploration/exploitation
balance may not be reached in a profitable way; the
GA performance shall be severely affected due to the
possibility of premature convergence.

Finding robust control parameter settings is not a trivial
task, since their interaction with GA performance is a
complex relationship and the optimal ones are problem-
dependent [4]. Furthermore, different control parameter
values may be necessary during the course of a run to
induce an optimal exploration/exploitation balance. For
these reasons, adaptive GAs (AGAs) have been built that
dynamically adjust selected control parameters or genetic
operators during the course of evolving a problem solu-
tion. Their objective is to offer the most appropriate ex-
ploration and exploitation behaviour [1, 19, 22, 31, 47, 53].

Fuzzy logic controllers (FLCs) [17] provide a tool which
can convert the linguistic control strategy based on expert
knowledge into an automatic control strategy. They are
particularly suited to model the relationship between
variables in environments that are either ill-defined or
very complex.

The adaptation of GA parameters is one such complex
problem that may benefit from the use of FLCs, getting the
called fuzzy AGAs (FAGAs). The Rule-Bases of FLCs fa-
cilitate the capture and representation of a broad range of
adaptive strategies for GAs (so, they may be the support for
the automatic learning of such strategies). The main idea of
FAGAs is to use an FLC whose inputs are any combination
of GA performance measures or current control parame-
ters and whose outputs are GA control parameters. Current
performance measures of the GA are sent to the FLC,
which computes new control parameter values that shall be
used by the GA. Figure 1 shows this process.

The goal of this paper is to report on an extensive study
of FAGAs, according to the following three points of view:

� First, we describe the steps for their design, which are
then applied to build an instance of FAGA proposed in
[32]. It adapts the mutation probability during the run
using an FLC. We have considered the adaptation
for this particular parameter since it can determine
directly the degree of population diversity, which is the
main factor to avoid the premature convergence prob-
lem. We carry out an empirical study of the instance,
where we compare its results with the ones for other
(non fuzzy) methods to control the mutation proba-
bility. The analysis of the results give us an excellent
knowledge on the FAGA behaviour.

Original paper Soft Computing 7 (2003) 545–562 � Springer-Verlag 2003

DOI 10.1007/s00500-002-0238-y

Published online: 14 July 2003

F. Herrera (&), M. Lozano
Department of Computer Science
and A.I. University of Granada, 18071 – Granada, Spain
e-mail: herrera@decsai.ugr.es

This research has been supported by DGICYT PB98-1319.

545

� Second, we present a taxonomy that groups FAGAs in
different categories, attending on the level where the
adaptation takes place (population-level and individual-
level) and the way the Rule-Bases are derived (through
the knowledge of GA experts, using an Offline learning
mechanism, or by means of an Online learning meth-
od). Furthermore, we review some representative ap-
proaches that belong to the different categories of
FAGAs.

� Finally, we attempt to identify some open issues, and
summarise a few new promising research directions on
the topic.

The paper is set up as follows. In Sect. 2, we introduce
the main features of FLCs. In Sect. 3, we explain the
design steps of FAGAs and outline the instance of

FAGA. In Sect. 4, we present a taxonomy for FAGAs and
review some representative approaches presented in the
literature (Appendix C includes an additional descrip-
tion of other FAGA instances). In Sect. 5, we attempt to
identify some open issues and summarise a few new
promising research directions for this type of GA
adaptation. Finally, in Sect. 6, we point out some
concluding remarks.

2
Preliminaries: fuzzy logic controllers
The essential part of the FLCs is a set of IF-THEN lin-
guistic control rules, whose antecedents and consequents
are composed of fuzzy statements, related by the dual
concepts of fuzzy implication and the compositional rule
of inference. The methodology of the FLCs appears very
useful when the processes are too complex for analysis by
conventional quantitative techniques or when the available

sources of information are interpreted qualitatively,
inexactly, or uncertainly.

An FLC is composed by a Knowledge Base, that includes
the information given by the expert in the form of lin-
guistic control fuzzy rules, a Fuzzification Interface, which
has the effect of transforming crisp data into fuzzy sets, an
Inference System, that uses them together with the
Knowledge Base to make inference by means of a
reasoning method, and a Defuzzification Interface, that
translates the fuzzy control action thus obtained to a real
control action using a defuzzification method. The generic
structure of an FLC is shown in Fig. 2.

The Knowledge Base encodes the expert knowledge by
means of a set of IF-THEN rules, which are a conditional
statement with the form:

in which the antecedent is a condition in its application
domain, the consequent is a control action to be applied in
the controlled system and both antecedent and consequent
are associated with fuzzy concepts, that is, linguistic terms
(notion of fuzzy rule).

The Knowledge Base is composed of two components:

� A Data Base, containing the linguistic term sets con-
sidered in the linguistic rules and the membership
functions defining the semantics of the linguistic labels.
Each linguistic variable involved in the problem will
have associated a fuzzy partition of its domain repre-
senting the fuzzy set associated with each of its lin-
guistic terms.

� A Rule-Base, comprised of a collection of linguistic
rules that are joined by the also operator. In other
words, multiple rules can fire simultaneously for the
same input.

Fig. 1. FAGA model

Fig. 2. Generic structure of an FLC

If a set of conditions are satisfied Then a set of consequences can be inferred

546

For more information about fuzzy systems and FLC, the
following books may be consulted: [13] and [17].

3
Designing FAGAs
In this section, we shortly describe the issues that should
be tackled in order to build the FLC used by an FAGA.
They include the choice of the inputs and outputs, the
definition of the Data Base associated with them (Sect. 3.1),
and the specification of the Rule-Base (Sect. 3.2) [31].
Furthermore, we define and study empirically an FAGA
instance (Sect. 3.3).

3.1
Inputs, outputs, and Data Base

Inputs. They should be robust measures that describe GA
behaviour and the effects of the genetic setting parameters
and genetic operators. Some possible inputs may be:
diversity measures, maximum, average, and minimum
fitness, etc. The current control parameters may also be
considered as inputs.

Outputs. They indicate values of control parameters or
changes in these parameters. In [58], the following outputs
were reported: mutation probability, crossover probabili-
ty, population size, selective pressure, the time the
controller must spend in a target state in order to be
considered successful, the degree to which a satisfactory
solution has been obtained, etc.

Data Base. Each input and output should have an asso-
ciated set of linguistic labels. The meaning of these labels
is specified through membership functions of fuzzy sets,
the fuzzy partition, contained in the Data Base. Thus, it is
necessary that every input and output have a bounded
range of values in order to define these membership
functions over it.

3.2
Rule-Base
After selecting the inputs and outputs and defining the Data
Base, the fuzzy rules describing the relations between them
should be defined. They facilitate the capture and repre-
sentation of a broad range of adaptive strategies for GAs.

Although, the experience and the knowledge of GA
experts may be used to derive Rule-Bases, many authors
have found difficulties to do this. In this sense, the fol-
lowing three reflections were quoted by different authors:

‘‘Although much literature on the subject of GA con-
trol has appeared, our initial attempts at using this
information to manually construct a fuzzy system for
genetic control were unfruitful’’ [40].

‘‘Statistics and parameters are in part universal to any
evolutionary algorithm and in part specific to a par-
ticular application. Therefore it is hard to state general
fuzzy rules to control the evolutionary process’’ [58].

‘‘The behaviour of GAs and the interrelations between
the genetic operators are very complex. Although there

are many possible inputs and outputs for the FLCs,
frequently fuzzy rule-bases are not easily available:
finding good fuzzy rule bases is not an easy task’’ [31].

Automatic learning mechanisms to obtain Rule-Bases
have been introduced to avoid this problem. By using
these mechanisms, relevant relations and membership
functions may be automatically determined and may offer
insight to understand the complex interaction between GA
control parameters and GA performance [40]. Two types
of Rule-Base learning techniques have been presented: the
Offline learning technique [40, 41] and the Online learning
technique [33]:

� The Offline learning mechanism is an evolutionary al-
gorithm that is executed once, before the operation of
the FAGA, however it has associated a high computa-
tional cost. It works considering a fixed set of test
functions, following the same idea as the meta-GA of
Grefenstette [28]. Unfortunately, the test functions may
have nothing to do with the particular problem to be
solved, which may limit the robustness of the Rule-
Bases returned.

� In the Online learning technique, the Rule-Bases used
by the FLCs come from an evolutionary process that
interacts concurrently with the GA to be adapted. The
learning technique underlying this approach only takes
into account the problem to be solved (in contrast to the
previous one, which never considers it). In this way, the
Rule-Bases obtained shall specify adaptation strategies
particularly appropriate for this problem.

3.3
An instance of FAGA: the fuzzy adaptive mutation
probability
The objective of this section is to show, by means of a
simple and descriptive example, that the use of FLCs may
really improve GA performance. We describe an FAGA
instance that integrates an FLC to adapt the mutation
probability (pm) during the run [32]. This system is called
fuzzy adaptive mutation probability and denoted as GA-
FAMP in the experiments. We tackled the issue of adapting
this parameter since it determines directly the operation of
the mutation operator, which is responsible for the gen-
eration of the population diversity, arising as an important
element to solve the premature convergence problem.

3.3.1
Main ideas
The FLC is fired every G generations and pm is fixed over
the generations in these time intervals. It takes into ac-
count the pm value used during the last G generations and
the improvement achieved on fb (fitness for the best ele-
ment found so far). Then, it computes a new value for pm,
which shall be used during the next G generations. Its goal
is to observe the effects of a pm value on the GA perfor-
mance during G generations, and produce a new pm value
that properly replies against a possible poor rate of
convergence, or allows performance to be improved even
more (in the case of past suitable progress). The FLC uses
fuzzy rules capturing adaptive strategies that attempt to
accomplish this task (an example is: use a higher value for

547

pm when observing no progress on fb, with the aim of
introducing diversity).

3.3.2
Inputs, output, and Data Base
The FLC proposed has two inputs:

� The current mutation probability, po
m, which shall be

kept in the interval ½0:001; 0:01�. This interval was
chosen since it contains a wide spectrum of pm values
that were considered frequently in the GA literature
(e.g. pm ¼ 0:001 [15] and pm ¼ 0:01 [28]).

� A convergence measure (minimization is as-
sumed):CM ¼ f c

b=f o
b , where f c

b is the fitness of the cur-
rent best element found so far and f o

b is the fitness of the
best element found before the last G generations. If an
elitist strategy is used, CM shall belong to ½0; 1�. If CM is
high, then convergence is high, i.e. no progress was
made during the last G generations, whereas if it is low,
the GA found a new best element, which consistently
outperforms the previous one.

The set of linguistic labels associated with po
m is

fLow;Medium;Highg. The meanings of these labels are
depicted in Fig. 3b. The set of linguistic labels for CM is
fLow;Highg. Their meanings are shown in Fig. 3a.

The output of the FLC is the new pm value,
pn

m 2 ½0:001; 0:01�, which shall be considered during the
following G generations. The set of linguistic labels asso-
ciated with pn

m is fLow;Medium;Highg. Their meanings
are in Fig. 3c.

3.3.3
Rule-Base
Fuzzy rules describe the relation between the inputs and
output. Table 1 shows the Rule-Base used by the FLC
presented.

There are two heuristics associated with this Rule-Base:

� The heuristic of fuzzy rules 1,2, and 4-6 is: ‘‘decrease pm

when progress is made, increase it when there are no
improvements’’. If a stationary state is detected (CM
high), there is a possible cause: po

m is too low, which
induces a premature convergence, with the search
process being trapped in a local optimum. With the
previous heuristic, this problem would be suitably
tackled, since pm would be greater and so, more diver-
sity is introduced with the possibility of escaping from
the local optimum.

� Another possible cause of a poor performance may be
the use of a too high value for po

m, which does not allow
the convergence to be produced to obtain better indi-

viduals. Fuzzy rule 3 was included to deal with this
circumstance, since it proposes the use of a low pm

value when CM is high and po
m is high.

3.3.4
Experiments and analysis of the results
Minimisation experiments on the test suite, described in
Appendix A and summarised in Table 2, have been carried
out in order to study the behaviour of the fuzzy adaptive
mutation probability. We compare its results with the ones
for other (non fuzzy) methods appeared in the GA litera-
ture to control pm, which are reviewed in Appendix B.

For experiments, we have considered a generational GA
model that applies a simple crossover operator and a
mutation clock operator. The selection probability
calculation follows linear ranking (gmin ¼ 0:5) [7] and the
sampling algorithm is the stochastic universal sampling
[8]. The elitist strategy [15] is considered as well.
The features of all of the algorithms compared in the
experiments are shown in Table 3.

Since we attempt to compare GA-FAMP with other
techniques for controlling the mutation probability (GA-
DET, GA-IL, and GA-SELF, see Table 3 and appendix B for
a short description), we have considered that these tech-
niques should handle the same range of possible pm values
(½0:001; 0:01�). In order to do this, for the deterministic
control of pm, we constrain pmðtÞ so that pmð0Þ ¼ 0:01 and
pmðTÞ ¼ 0:001. For the adaptive control at individual-level
of pm, a transformation was made from the interval con-

Fig. 3. Meaning of the
linguistic terms associated
with the inputs and output

Table 1. Rule-Base for the control of pm

Rule CM po
m pn

m

1 High Low Medium
2 High Medium High
3 High High Low
4 Low Low Low
5 Low Medium Low
6 Low High Medium

Table 2. Test suite

Test function Fitness of the opt.

Sphere model (fSph) 0
Generalized Rosenbrock’s function (fRos) 0
Generalized Rastrigin’s function (fRas) 0
One-max function (fOne) 0
Fully deceptive order-3 function (fDec) 0
Royal Road (fRR) 0

548

sidered by this technique (½0; 1�) into ½0:001; 0:01�. Finally,
for the self-adaptive control of pm, we consider pl

m ¼ 0:001
and ph

m ¼ 0:01.
The parameters of the test functions fSph, fRos, and fRas

were encoded into bit strings using binary reflected Gray
coding, with a number of binary genes assigned to each one
of 20. The population size is 60 individuals and the crossover
probability pc ¼ 0:6. We run all the algorithms 30 times,
each one with a maximum of 100, 000 evaluations.

The general features of the FLC used by GA-FAMP are
the following:

� The min operator is used for conjunction of clauses in
the IF part of a rule.

� The min operator is used to fire each rule.
� The center of gravity weighted by matching strategy as

the defuzzification operator is considered.

This setting was chosen from [12], where the authors study
the combination of inference systems and defuzzification
methods using different applications and defining a degree
of behaviour. The previous combination was the most

effective one, in the sense that it obtained the best beha-
viour for all the applications.

Table 4 shows the results obtained. The performance
measures used are the following:

� A performance: average of the best fitness function
found at the end of each run.

� E performance: average of the number of evaluations
after which improvements in solution quality were no
longer obtained.

� B performance: number of runs in which the algorithm
achieved the best possible fitness value: 2.4e-10 for fSph,
1.5e-9 for fRos, 4.8e-8 for fRas (they are not zero due to
the use of the Gray coding), and zero for fOne, fDec,
and fRR.

Moreover, a two-sided t-test (Ho : means of the two groups
are equal, Ha: means of the two group are not equal) at
0.05 level of significance was applied in order to ascertain
if differences in the A and E performance measures for
GA-FAMP are significant when compared with the ones
for the other algorithms. The direction of any significant
differences is denoted either by:

� a plus sign ðþÞ for an improvement in the corre-
sponding performance, or

� a minus sign ð�Þ for a reduction, or
� an approximate sign (�) for non significant differences.

The places in Table 4 where these signs do not
appear correspond with the performance values for
GA-FAMP.

GA1, GA2, and GA3. With regards to the GA versions with
fixed pm values, we may underline a very reasonable fact:

Table 3. Algorithms for experiments

Algorithm Features

GA1 pm ¼ 0:001 fixed during the run
GA2 pm ¼ 0:005 fixed during the run
GA3 pm ¼ 0:01 fixed during the run

GA-RAN For each generation, pm is chosen, at random,
from ½0:001; 0:01�

GA-DET Deterministic control of pm

GA-IL Adaptive control at individual-level of pm

GA-SELF Self-adaptive control of pm (d ¼ 0:001)

GA-FAMP Fuzzy adaptive mutation probability (G ¼ 50)

Table 4. Results

Alg. fSph fRos fRas

A E B A E B A E B

GA1 2.4e-10 � 35261 � 30 1.1e-01 + 99761 + 0 5.9e + 00 + 71731 � 0
GA2 7.7e-08 + 97336 + 0 8.5e-03 � 86246 � 7 5.1e-05 + 98339 + 0
GA3 8.0e-06 + 98210 + 0 1.2e-05 � 50165) 28 6.0e-02 + 98872 + 0

GA-RAN 2.2e-07 + 98122 + 0 6.9e-04 � 81931 � 8 8.4e-05 + 98680 + 0

GA-DET 2.8e-10 � 97851 + 25 5.6e-05 � 49589) 11 3.3e-02 � 97781 + 20
GA-IL 2.4e-10 � 52542 + 30 4.3e-02 + 79328 � 0 1.2e + 00 + 84610 � 7
GA-SELF 2.5e-10 � 86178 + 28 3.2e-02 + 92529 + 1 7.0e-01 + 96046 + 5

GA-FAMP 2.4e-10 38273 30 6.4e-04 81508 15 6.1e-08 77990 27

fOne fDec fRR

Alg. A E B A E B A E B

GA1 0.0e + 00 � 20988 � 30 9.7e + 00 + 1950) 0 4.2e + 01 + 89118 + 0
GA2 8.7e + 00 + 91511 + 0 5.1e + 00 + 55417 � 3 3.3e + 01 � 76974 � 0
GA3 3.2e + 01 + 94845 + 0 0.0e + 00) 31289) 30 6.8e + 01 + 74819 � 0

GA-RAN 1.2e + 01 + 92156 + 0 3.3e + 00 + 63515 � 9 3.4e + 01 � 76784 � 0

GA-DET 6.7e-02 � 96342 + 28 1.4e + 00 + 30704) 13 3.0e + 01 � 86493 + 0
GA-IL 4.3e + 01 + 57891 + 0 8.6e + 00 + 27396) 0 5.2e + 01 + 77529 � 0
GA-SELF 3.3e-01 + 63370 + 21 9.4e + 00 + 28699) 1 2.1e + 01) 82022 � 1

GA-FAMP 0.0e + 00 21709 30 6.7e-01 68655 22 3.4e + 01 80097 0

549

the best A and B measures for each test function are
reached with different pm values.

GA-FAMP vs. GA1, GA2, and GA3. For most test func-
tions, GA-FAMP returns A results that are very similar (or
superior) to the ones for the most successful GAs with
fixed pm values (see the t-test results).

Therefore, we may consider that GA-FAMP achieves a
robust operation, in the sense that it obtains a significant
performance for each one of the test functions, which have
different difficulties. In fact, we may underline that none of
the remaining algorithms allows a better operation to be
achieved.

GA-FAMP vs. GA-DET, GA-IL, and GA-SELF. Now, we
compare the results for GA-FAMP with the ones for the
other techniques to control pm. In general, GA-FAMP
improves the A and B results for GA-IL and GA-SELF.
Only GA-DET offers a significant resistance against the
results for GA-FAMP. The t-test results for the A measure
indicate that no significant differences exist between
GA-DET and GA-FAMP, with regards to this performance
measure. However, the t-test results for the E measure
shows that GA-FAMP clearly outperforms GA-DET. This
means that although these algorithms reach the same so-
lution quality, GA-FAMP achieves a higher speed of search
than GA-DET. Furthermore, we may observe that
GA-FAMP obtains a better B measure than GA-DET for
most functions.

Adaptive Control of pm in GA-FAMP. In order to ascer-
tain whether GA-FAMP achieves its robust operation due
to the adaptive control of pm, and not to the application of
different pm values during the run, we compare its results
with the ones for GA-RAN. This algorithm works in this
way, since it selects, at random, a pm value for each
generation. We observe that GA-FAMP improves the A, E,
and B performances for GA-RAN on most functions. This
indicates that the adaptation ability of GA-FAMP is
responsible for the performance improvement.

Conclusions. The principal conclusions derived from this
empirical study are the following:

� The fuzzy adaptive mutation probability is the most
effective technique to control pm as compared with
other non fuzzy techniques proposed in the GA
literature, which have been considered for the
experiments.

� The adaptation ability of this technique allows suitable
pm values to be used to produce a robust operation for
test functions with different difficulties.

4
A taxonomy for FAGAs
In this section, we present a taxonomy for FAGAs,
attending on the combination of two aspects:

� The way in which the Rule-Bases are derived:

– Through the expertise, experience, and knowledge on
GAs, which have become available as a result of em-
pirical studies conducted over a number of years.

– Using an Offline learning mechanism, which finds
Rule-Bases that induce a suitable FAGA behaviour on
a fixed set of test functions. It is executed before the
application of the FAGA on any real problem.

– By means of an Online learning mechanism, which
learns Rule-Bases during the run of the FAGA on a real
problem.

A discussion about these methods was included in
Sect. 3.2.

� The level where the adaptation takes place in FAGAs:
– Population-level adaptations adjust control

parameters that apply for the entire population.
– Individual-level adaptations tune control

parameters that have an effect on the individual
members of the population.

Most FAGAs presented in the literature involve population-
level adaptation. However, adaptive mechanisms at the
individual level based on FLCs may be interesting to adjust
control parameters associated with genetic operators [31,
33, 69]. In this case, the control parameters will be defined
on individuals instead of on the whole population. Inputs
to the FLCs may be central measures and/or measures as-
sociated with particular chromosomes or sets of them, and
outputs may be control parameters associated with genetic
operators that are applied to those chromosomes.

A justification for this approach is that it allows for the
application of different search strategies in different parts
of the search space. This is based on the reasonable
assumption that, in general, the search space will not be
homogeneous, and that different strategies will be better
suited to different kinds of sublandscapes [1, 53].

The marked places in Table 5 show the four categories
of the taxonomy to which belong the particular cases of
FAGAs that were presented in the GA literature.

The next sections are devoted to review representative
instances of every category. In Appendix C, we describe
the remaining approaches presented in the literature.

4.1
Rule-Base derivation through expert knowledge
and population-level adaptation
Most FAGA instances presented in the GA literature
belong to this category. In this section, we describe the
approach of [52]. Other models of this type of FAGAs are
reviewed in Appendix C.

4.1.1
Main ideas
The authors claimed that from experience, we know when
the fitness is high, e.g., at the end of the run, low crossover
probability and high mutation probability are often pre-
ferred. Also, when the best fitness is stuck at one value for
a long time, the system is often stuck at a local minimum

Table 5. FAGA categories with instances in the literature

Expert
knowledge

Offline
learning

Online
learning

Population-level X X
Individual-level X X

550

in a local neighbourhood, so the system should probably
concentrate on exploring rather than exploiting; that is,
the crossover probability should be decreased and
mutation probability should be increased. A similar
situation exists for the variance of the fitness of the
population. When the variance is low, mutation should
be emphasised, while when variance is high, crossover
should be stressed.

4.1.2
Inputs, outputs, and Data Base
According to this kind of knowledge, in [52], an FLC was
developed to adjust the crossover and mutation proba-
bilities with best fitness (BF), number of generations for
unchanged best fitness (UN), and variance of fitness (VF)
as input variables.

The set of linguistic labels associated with the inputs
and outputs is L ¼ fLow;Medium;Highg. The meaning of
these labels are shown in Fig. 4.

4.1.3
Rule-Base
Eight fuzzy rules were used:

4.1.4
Results
A FAGA with this FLC was applied to design a fuzzy
classification system for the Iris data set. In particular, the
membership function shapes and types and the fuzzy rule

set including the number of rules inside it were evolved
using the FAGA. The experiments showed that using the
fuzzy expert system to adapt pm and pc significantly
fewer generations were required to get the same
performance compared to holding these parameters
constant.

4.2
Rule-Base derivation through expert knowledge
and individual-level adaptation
The FAGA presented in [69] is one of the first approaches
with individual-level adaptation. The authors used their
knowledge about GAs to obtain the Rule-Bases.

4.2.1
Main ideas
In this FAGA, the crossover probability and the mutation
probability are defined on specific individuals of the
population using several FLCs that take into account
fitness values of individuals and distances between
individuals. The next sections present the design of the
FLC that adapts the crossover probability, pc.

4.2.2
Inputs, outputs, and Data Base
The following measures were considered as inputs to the
FLC, where X and Y are two chromosomes to be crossed
(maximisation is assumed).

Fig. 4. Meaning of the linguistic terms
associated with the inputs and outputs

If BF is low then pm is low and pc is high:

If BF is medium and UN is low then pm is low and pc is high.

If BF is medium and UN is medium then pm is medium and pc is medium:

If UN is high and VF is medium then pm is high and pc is low:

If BF is high and UN is low then pm is low and pc is high:

If BF is high and UN is medium then pm is medium and pc is medium:

If UN is high and VF is low then pm is high and pc is low:

If UN is high and VF is high then pm is low and pc is low:

551

� Variance of fitness values: Var ¼ fmax � �ff
� �

=
(fmax � fmin), where �ff is the average of all fitness values,
and fmax and fmin the maximal and the minimal fitness
values, respectively.

� Distance between the fitness value of the best parent and
fmax: G ¼ ð fmax �maxf f ðXÞ; f ðYÞgÞ=ðfmax� fminÞ.

� Distance between X and Y : D ¼ dðX;YÞ.
� Normalised fitness values: f1 ¼ f ðXÞ=fmax and

f2 ¼ f ðYÞ=fmax.

Var is overall for the entire population, and G, f1, f2, and D
are measures defined on specific samples. All the measures
were included in ½0; 1�. Their set of linguistic labels is
L ¼ fSmall;Bigg. For each input, the membership
functions are defined in Figure 5a, where
input 2 fVar;G; f1; f2g is any input variable of the
controller and x is the corresponding parameter obtained
from the experience of the authors on GAs.

The output was pc. The set of linguistic labels for pc is
L ¼ fSmall;Bigg (their meanings are depicted in Fig. 5b).

4.2.3
Rule-Base
Next, we show the Rule-Base considered to obtain the pc

value for each pair of parents, ðX;YÞ.
If G is big then pc is big:

If Var is small and G is small then pc is small.

If D is small and f1 is big and f2 is big then pc is big:

If D is small and ðf1 or f2Þ is small then pc is small:

If D is big then pc is big:

These fuzzy rules attempt to implement the following
principles (where apparently there are some conflicts):

� Maintain the diversity in the population; two distant
samples have more chance to be selected for crossover.

� Enhance the searching in optimal regions; two near
samples with high fitness values have more chance to be
selected for crossover.

� Avoid convergence to local optima; crossover opera-
tions have to be enhanced if the variance of fitness
values is very small.

� Stabilise optimal populations; crossover operations
have to be reduced if the specific fitness values of the
samples to be selected are close enough to the maximal
fitness value of the current population.

The FLC proposed to adapt the mutation probability was
designed so that mutation operations can be enhanced
when the GA tends to a local optimum. Furthermore, they

can reduce when the current population is in strong
variations or the globally optimal population is obtained.

4.2.4
Results
The results of the FAGA proposed on a multimodal test
function were compared with the ones for a simple GA. On
the one hand, populations in the FAGA were more diver-
sified than those in the simple GA, on the other, it was
easier for the FAGA to lead to the global maximum and its
convergence behaviour was better than the simple GA.

4.3
Rule-Base derivation using offline learning
and population-level adaptation
In [40, 41], an automatic Offline learning process was
proposed to obtain suitable Rule-Bases along with their
Data Bases.

4.3.1
Main ideas
The mechanism is based on an additional GA whose
chromosomes code possible Rule-Bases together with their
corresponding Data Bases. The fitness function value for a
chromosome is calculated using the Online and Offline
measures [15] obtained from an FAGA that uses the Rule-
Base coded in such chromosome on each one of the five De
Jong’s test functions. After the meta-level GA completed
1000 fitness function evaluations, the best Rule-Base
reached is returned. The underlying idea is very similar to
the one of the meta-GA of Grefenstette [28].

4.3.2
Inputs and outputs
In order to study this mechanism, an FAGA was developed
using three FLCs. All consider the following three inputs:

� Two phenotypical diversity measures (minimisation is
assumed): PD1 ¼ fbest= �ff and PD2 ¼ �ff =fworst, where �ff ,
fbest, and fworst are the average, best, and the worst fit-
ness in the current population, respectively. PD1 and
PD2 belong to the interval ½0; 1�. If they are near to 1,
convergence has been reached, whereas if they are near
to 0, the population shows a high level of diversity.

� The change in the best fitness since the last control
action.

The outputs of the three FLCs are variables that control
variations in the current pm, pc, and N (population size),
respectively. For example, such output for the control of
N , represents the degree to which the current N should
vary. The new population size is computed by multiplying
the output value by the current N .

Fig. 5. Definition of membership function for input
and output variables

552

4.3.3
Results
The automatic learning mechanism was executed to obtain
both the Data Base and the Rule-Base for this example.
An FAGA using the resultant FLCs was applied to a
particular problem: the inverted pendulum control task.
The results obtained exhibited better performance than a
simple static GA. Other experiments aimed at isolating
the effects of the fuzzy adaptation of N , pc, and pm showed
that the adaptation of the mutation probability contributes
most to high performance [41].

In [56], FLCs are used for dynamic scheduling of
parameters (population size, crossover rate, and mutation
rate) of a GA applied on an agile manufacturing applica-
tion. A high-level GA was used as well to automatically
identify and tune the Knowledge Base.

4.4
Rule-Base derivation using online learning
and individual-level adaptation
In [33], it is proposed an Online learning mechanism to
obtain Rule-Bases for FAGAs that adapt control parame-
ters associated with the genetic operators. It is called
Coevolution with Fuzzy Behaviours.

4.4.1
Main ideas
The main ideas of this proposal are:

� It incorporates genetic operator adaptation at an
individual-level based on FLCs. Control parameter
values for a genetic operator are computed for each
set of parents that undergo it, using an FLC that
considers particular features associated with the parents
as inputs.

� The Rule-Bases of the FLCs applied are learnt implicitly
throughout the run by means of a separate GA (denoted
as FBs-GA) that coevolves with the one that applies the
genetic operator to be controlled (denoted as main-GA).
Both GAs have an influence on the other:

– On the one hand, Rule-Bases in FBs-GA induce pa-
rameter values for the genetic operator applied to
main-GA (FBs-GA ! main-GA).

– On the other, they evolve according to the perfor-
mance of the operator on the elements of main-GA
(main-GA ! FBs-GA).
The goal of FBs-GA is to obtain the Rule-Bases that
produce suitable control parameter values to allow the
genetic operator to show an adequate performance on
the particular problem to be solved.
FBs-GA does not handle Rule-Bases directly. Instead,
it uses structures, called Fuzzy Behaviours (FBs), to
represent them, which are more adequate to be
treated as chromosomes by a GA. FBs consists of
vectors with the linguistic values of the fuzzy rule
consequent.

Since the learning technique underlying this approach
only takes into account the problem to be solved
(in contrast to the approach in [40, 41]), the Rule-Bases

obtained shall specify adaptation strategies particularly
appropriate for this problem.

4.4.2
Inputs, output, and Data Base
An instance was implemented for the case of the adapta-
tion at individual-level of the d control parameter associ-
ated with fuzzy recombination (FR) [62], a crossover
operator that was presented to work with real-coded GAs
[38].

Let us assume that X ¼ ðx1; . . . ; xnÞ and Y ¼ ðy1; . . . ;
ynÞ (xi; yi 2 ½ai; bi� � <, i ¼ 1; . . . ; n) are two real-coded
chromosomes to be crossed, then FR generates an off-
spring, Z ¼ ðz1; . . . ; znÞ, where zi is obtained from a
distribution UðziÞ 2 f/xi

;/yi
g in which /xi

and /yi
are

triangular probability distributions having the following
features (xi � yi is assumed):

In particular, the range of d was constrained to the

interval ½0; 1�.
The features considered for each pair of parents, X and

Y , were their index in the population, IndexðXÞ,
IndexðYÞ 2 f1; . . . ;Ng (N is the population size). The in-
dex of the best chromosome is N , and the one of the worst
chromosome is 1 (the fitter elements have larger indexes).
The set of linguistic labels associated with IndexðXÞ and
IndexðYÞ is L ¼ fLow;Highg. The meanings of these labels
are depicted in Fig. 6a. The set of linguistic labels for d is
Ld ¼ fLow; Medium; Highg. Their meanings are shown in
Fig. 6b.

4.4.3
Rule-Bases
Each FB codes a Rule-Base having fuzzy rules whose in-
puts are IndexðXÞ and IndexðYÞ and whose output is d.

The fitness function associated with the FBs should take
into account the performance of FR when it is applied to
the parents with the d value obtained from them. But
according to what criterion should we judge this perfor-
mance? One possibility that has received attention is the
ability of an operator to produce children of improved
fitness [59]. Clearly, this is necessary for optimisation to
progress (the aim of a GA is, after all, to uncover new,

Fig. 6. Meanings for the linguistic labels considered

Triangular
prob. dist.

Minimum
value

Modal
value

Maximum
value

/xi
xi � d � jyi � xij xi xi þ d � jyi � xij

/yi
yi � d � jyi � xij yi yi þ d � jyi � xij

553

fitter, points in the search space). In fact, the overall
performance of a GA depends upon it maintaining an
acceptable level of productivity throughout the search.
However, this is not enough: an efficient crossover oper-
ator should introduce the right portion of variance into the
offspring population. If the variance is too large then the
GA does not converge at all, whereas if it is too small then
it converges prematurely [62].

Taking into account this two-fold objective, in [33], the
following fitness function was proposed for each FBi in the
population of FBs-GA (minimisation is assumed):

FitðFBiÞ ¼
0 if �ffO < f ðXÞ � f ðYÞ,
2� di if f ðXÞ � �ffO < f ðYÞ,
3 if f ðXÞ � f ðYÞ � �ffO ,

8
<

:

where �ffO is the average of the fitness of the two offspring
generated, f ðXÞ and f ðYÞ are the fitness function values of
the parents (f ðXÞ � f ðYÞ is assumed), and di is the d value
calculated from FBi and IndexðXÞ and IndexðYÞ.

4.4.4
Results
An empirical study of the adaptive FR based on
Coevolution with FBs was made using test functions with
different difficulties from two points of view, one of
performance and one of learning behaviour (based on
the distributions of FBs appearing during the runs). Its
results were compared with the ones from FR with fixed
d values (d ¼ 0, d ¼ 0:5, and d ¼ 1) and with the ones
from the adaptation of d, at individual-level, through an
FLC with a fixed Rule-Base (different ones were tried).
The main conclusion was that the learning ability
associated with adaptive FR allowed suitable distribu-
tions of FBs to be produced to introduce a robust
operation. This means that a significant performance was
obtained for each one of the test functions, which
achieved their best results through Rule-Bases or fixed d
values that might be different (as was observed in the
experiments).

5
Future directions
Despite the recent activity and the associated progress
in FAGA research [33, 52, 55], there remain many
directions in which they may be improved or extended. In
particular, we consider that the most promising future
research areas are the following:

� Study of the aspects that may allow the behaviour of
FAGAs to be improved, such as relevant inputs, the
feedback between genetic operators, the FLC
application frequency, and the Data Base refinement.

� Extensions for the adaptive model by Coevolution with
Fuzzy Behaviours (Sect. 4.4).

� Applications of FAGAs to solve particular problems,
such as constrained parameter optimisation problems
and multimodal optimisation problems.

� Design of fuzzy adaptation mechanisms to control other
types of evolutionary algorithms, such as distributed
GAs, genetic programming, etc.

� Implementation of FAGA instances belonging to
different categories of the taxonomy presented in
Sect. 4.

In the following sections, we analyse these issues in
deep.

5.1
Improvements for FAGAs
The future research may take into account the following
issues in order to produce effective FAGAs.

Relevant inputs. Research on determining relevant input
variables for the FLCs controlling GA behaviour should be
explored. These variables should describe either states of
the population or features of the chromosomes so that
control parameters may be adapted on the basis thereof to
introduce performance improvements.

Coevolution with FBs (Sect. 4.4) may be useful to
discover this type of variables (for the case of adaptation
at individual level). Different FBs, coding fuzzy rules with
distinct number and type of inputs, may evolve together in
the same population. The learning process associated with
this approach shall proportionate the most significant
inputs along with the fuzzy rules concerning them.

The nature of the possible input variables should be
studied as well, i.e., whether they are universal to any GA
or particular to a given problem. This would be useful to
determine the Rule-Base learning procedure that may be
applied: an Offline learning mechanism (Sect. 4.3), when
fuzzy rules involve universal inputs, and an Online
learning mechanism (Sect. 4.4), when they involve inputs
that are particular to the problem.

Feedback between genetic operators. It may be interest-
ing to design FLCs taking into account the action of each
genetic operator in relation to the behaviour of each one of
the remaining ones. The future action of an operator may
be tuned depending on the repercussions of the actions of
other operators (even itself). In this way, a feedback be-
tween operators must be established, allowing a suitable
balance between their actions to be reached throughout
the GA run.

ARGAF (Sect. C.2 in Appendix C) may be considered as
a first approximation to do this, since it complements the
role of the selection mechanism (either maintaining or
eliminating diversity) with the role of the crossover op-
erator (either creating or using diversity). Its significant
performance shows promise in this future research front.

FLC application frequency. Usually, a fixed scheduling to
fire the FLCs has been followed, i.e. every a fixed number
of generations. However, the choice of the time interval
between control actions is a parameter that has an influ-
ence on the final controller performance. If the controller
is fired with a low time interval, the effects of previous
control actions may not be achieved, whereas if the con-
troller is fired with a high time interval, the search process
may be misled by particular parameter values. A possible
solution is to fire the controller when certain conditions
relating to some performance measures are reached [44].

554

Data Base refinement. The behaviour of the FLC used by
an FAGA depends on the linguistic term set and the
membership functions that form the Data Base. Thus,
some approaches concerning this component may be
considered to improve FAGA performance. An example is
the automatic Offline learning process (presented in Sect.
4.3), that may be capable of offering a suitable Data Base
for the Rule-Base returned. Another possibility is to extend
the definition of Fuzzy Behaviour (Sect. 4.4), with the aim
of including the representation of the Data Bases along
with the one of the Rule-Bases. Finally, for FAGAs that
operate with Data Bases provided directly by GA experts,
an attempt involves the application of a tuning process for
the membership functions [13, 35].

5.2
Extensions for the adaptation model by coevolution
with FBs
Different types of parameter settings were associated with
genetic operators, which may be adapted by means of
Coevolution with FBs. They include the following:

� Operator probabilities. There is a type of GAs that do
not apply both crossover and mutation to the selected
solutions, as in the traditional ones. Instead, a set of
operators is available, each with a probability of being
used, and one is selected to produce offspring. Many
AGAs have been designed starting from this GA
approach, which adjust the operator probabilities
throughout the run [14, 59].

� Operator parameters. These parameters determine the
way in which genetic operators work. Examples in-
clude: (1) the step size of mutation operators for real-
coded GAs, which determines the strength in which
real genes are mutated [45], (2) parameters associated
with crossover operators for real-coded GAs, such as
FR [62], BLX-a-b-c [20], and dynamic FCB-crossovers
[36], (3) the number of parents involved in multi-
parent recombination operators [18], and (4) param-
eters associated with crossover operators for binary-
coded GAs, such as n-point crossover and uniform
crossover.
The adaptation at individual-level of operator proba-
bilities and operator parameters by Coevolution with
FBs may be carried out by considering these variables as
consequent of the fuzzy rules represented in the FBs.
Furthermore, the appropriate features of the parents
should be chosen, in the basis of which the adjustment
of these variable is expressed. On the other hand, hybrid
models may be built, in such a way that FBs include
information for both the adaptation of operator prob-
abilities and operator parameters. In this case, the
model shall detect the operators that should be applied
more frequently, along with favourable operator pa-
rameter values for them.

� Mate selection parameters. In mate selection mecha-
nisms [50], chromosomes carry out the choice of mate
for crossover on the basis of their own preferences
(which are formulated in terms of different chromo-
some characteristics, such as the phenotypical distance
between individuals).

Mate selection strategies may be expressed by means of
FBs. In particular, given two chromosomes, an FB may
induce a probability of mating depending on their char-
acteristics. This probability determines whether or not
they are crossed. Then, the process of Coevolution with
FBs shall discover FBs containing mate selection strategies
that encourage recombination between chromosomes that
have useful information (characteristics) to exchange.
The adaptive mechanism by Coevolution with FBs may be
used as well for problems where we intuit that particular
features of the parents may be taken into account to allow
the crossover operator behaviour to be more effective, but
we do not know the precise fuzzy rules determining the
relation between these features and the appropriate con-
trol actions for the operator. In this fashion, this approach
allows particular knowledge about the problem to be
integrated in the GA in order to improve its behaviour.
Hence, this technique arises as a possible way to build
hybrid GAs [14].

5.3
Applications and extensions
FAGAs may be defined to tackle particular problems such
as constrained parameter optimisation problems and
multimodal optimisation problems, and be extended to
introduce fuzzy adaptation in other evolutionary compu-
tation models, such as distributed GAs and genetic pro-
gramming. Other extensions may be directed at designing
FAGA instances belonging to the categories presented in
Sect. 4 that do not have a representation in the literature.

Constrained parameter optimisation problems. Different
ways may be considered to apply FAGAs to these
problems: (1) modify the FAGA model presented in [64]
(Section C.4 in Appendix C), which deals with multiob-
jective optimisation problems, to solve constrained
problems (the problem of satisfying a number of violated
inequality constraints is clearly the multiobjective problem
of optimising the associated functions until given values
are reached), (2) build adaptive penalty methods based on
FLCs, which may consider, as inputs to the FLCs, some
measures that describe the difficulty of the constrained
problem (see [46]), and (3) design adaptive genetic oper-
ators by Coevolution with FBs to deal with these problems,
where the FBs take into account the degree of constraint
satisfaction of the parents.

We should point out that fuzzy logic-based techniques
have been used to allow evolutionary algorithms to solve
these problems. In particular, in [60, 61], a evolutionary
approach is presented based on the fuzzification of the
constrained optimisation problems. In this method, the
degrees of constraint satisfaction of the chromosomes are
used as weight factors to calculate their fitness.

Multimodal optimisation problems. Given a problem
with multiple solutions, a simple GA shall tend to converge
to a single solution. As a result, various mechanisms have
been proposed to stably maintain a diverse population
throughout the search, thereby allowing GAs to identify
multiple optima reliably. Many of these methods work by
encouraging artificial niche formation through sharing

555

[24] and crowding [43], but these methods introduce one
or more parameters that affect algorithm performance,
parameters such as the sharing radius in fitness sharing or
the crowding factor in crowding. In many problems, the
uniform specification of niche size is inadequate to capture
solutions of varying location and extent without also
increasing the population size beyond reasonable bounds.
Therefore, there remains a need to develop niching
methods that stably and economically find the best niches
regardless of their spacing and extent [27]. FLCs may be
useful for the adaptation of parameters associated with
sharing and crowding methods. Possible inputs may be:
diversity measures, number of niches that are currently in
the population, etc.

Fuzzy adaptive distributed GAs. The basic idea of the
distributed GAs lies in the partition of the population into
several subpopulations, each one of them being processed
by a GA, independently from the others. Furthermore, a
migration process produces a chromosome exchange
between the subpopulations. Two important control
parameters determine the operation of this process [11]:
the migration rate, that controls how many chromosomes
migrate and the migration interval, that specifies the
number of generations between each migration. FLCs may
be used to adapt these parameters, depending on the
diversity and the convergence of the subpopulations.
Furthermore, the application of Coevolution with FBs
would be suitable to learn Rule-Bases that determine
migration rates and migration intervals between pair of
subpopulations.

Fuzzy adaptation for genetic programming (GP) [39]. GP
basic distinction from GAs is the evolution of dynamic tree
structures, often interpreted as programs, rather than
fixed-length vectors. It would be interesting to design FLCs
to control diversity and convergence in a population of
genetic programs, and apply Coevolution with FBs to
adapt the genetic operators that work with trees (this may
be carried out by extending work appeared in [2, 29, 57]).

Design of FAGAs belonging to other categories. We may
observe in Table 5 that there are groups of the taxonomy
presented in Sect. 4 that have not instances in the litera-
ture. They include FAGAs with individual-level adapta-
tions and Rule-Bases derived from an Offline learning
mechanism and FAGAs that adapt parameters at popula-
tion-level with an Online learning mechanism. Future
research may be directed at offering FAGA instances of
these categories.

Furthermore, another possible extension involves the
use of FAGAs for adaptations at component-level, which
associate adaptive parameters with each component of an
evolving individual that determine how each component is
modified during reproduction.

6
Concluding remarks
In this paper, we reviewed different aspects of FAGAs,
from three points of view: design, taxonomy, and future
directions.

� First, we stressed the steps for the design of the FLCs
used by FAGAs. As an example, we described in depth
an instance of FAGA, the fuzzy adaptive mutation
probability. An FLC has been designed, which takes into
account the pm value used during the last generations
and a measure that quantifies the progress performed
by the GA during these generations. It returns a new pm

that shall be used as an attempt to gain a better evo-
lution quality during the next generations.
The principal conclusions derived from the empirical
study of the instance are the following:

– The fuzzy adaptive mutation probability is the most
effective technique to control pm (with regards to the
quality of the solutions returned and the speed of the
search, i.e., the number of fitness function evaluations
required to reach the best solutions) as compared
with other non fuzzy techniques proposed in the GA
literature, which were considered for the experiments.

– The adaptation ability of this technique allows suit-
able pm values to be used to produce a robust oper-
ation for test functions with different difficulties.

� Second, we categorised FAGAs according to the way in
which the Rule-Bases that they use are obtained and the
level where the adaptation takes place. Furthermore, we
introduced the main features of instances of the dif-
ferent categories.
The good performance of the approaches reviewed and
the suitable results shown by the fuzzy adaptive muta-
tion probability allow an important conclusion to be
pointed out: the use of FLCs to adapt GA parameters
may really improve GA performance. Clearly, this ar-
gument is based upon empirical results and is not be
extensible to all classes of problems given the non free
lunch theorems [66].

� Third, we discussed future directions and some
challenges for FAGA research, which show that there
remain many exciting research issues connected with
this topic. In particular, we should emphasise the wide
spectrum of possibilities that offer these algorithms to
be applied and extended.

At this point, an additional aspect that should be tackled is
the computational complexity of the FLCs used by FAGAs. It
is important to have an idea of the trade-off between
improvement in the FAGA performance versus increase in
computational cost. The time required by an FLC to offer the
output is relatively low. Mainly, it depends on the number of
fuzzy rules and the computation of the inputs. Most FAGAs
assume a small number of fuzzy rules and use inputs that are
easily obtained. Moreover, FLCs are usually fired few times
during the FAGA run, which means that they are not an
important time wasteful element. Thus, in conclusion, the
extra complexity of FAGAs becomes acceptable provided
the remarkable improvements obtained by them.

Finally, we highlight the position of FAGAs in relation
to an important topic of the soft computing: the integra-
tion of GAs and fuzzy logic. This integration has been
accomplished by following two different approaches [34]:
(1) the use of fuzzy logic-based techniques to improve GA
behaviour, and (2) the application of GAs in optimization

556

and search problems involving fuzzy systems [13, 35].
FAGAs are the most prolific representatives of the first
approach in the literature.

Appendix A. Test suite
For the experiments (Sect. 3.3.4), we have considered six
frequently used test functions:

Sphere model (fSph) [15]: fSphð~xxÞ ¼
Pn

i¼1 x2
i , where n ¼ 10

and �5:12 � xi � 5:12. The fitness of the optimum is
fSphðx�Þ ¼ 0. This test function is continuous, strictly
convex, and unimodal.
Generalized Rosenbrock’s function (fRos) [15]:

fRosð~xxÞ ¼
Pn�1

i¼1 ð100 � ðxiþ1 � x2
i Þ

2 þ ðxi � 1Þ2Þ, where
n ¼ 2 and �5:12 � xi � 5:12. The fitness of the optimum
is fRosðx�Þ ¼ 0. fRos is a continuous and unimodal function,
with the optimum located in a steep parabolic valley with a
flat bottom. This feature shall probably cause slow
progress in many algorithms since they must continually
change their search direction to reach the optimum.

Generalized Rastrigin’s function (fRas) [5]:

fRasð~xxÞ ¼ a � nþ
Pn

i¼1 x2
i � a � cosðx � xiÞ, where n ¼ 10,

a ¼ 10, and x ¼ 2p. The fitness of its global optimum is
fRasðx�Þ ¼ 0. This function is a scalable, continuous,
separable, and multimodal, which is produced from fSph

by modulating it with a � cosðx � xiÞ.
One-max function (fOne). For a string of binary digits, the
fitness of a given string is the number of ones the string
contains. The aim is to obtain a string containing all ones.
A string length of 400 was used for the purposes of this
study. To determine an individual’s fitness, the value of
this function is subtracted from 400 (maximum value), in
order to assign a fitness of zero to the optimum, and
handle the problem by means of minimisation.

Fully deceptive order-3 function (fDec) [26]. In deceptive
problems there are certain schemata that guide the search
toward some solution that is not globally competitive. It is
due since the schemata that have the global optimum do
not bear significance and so they may not proliferate
during the genetic process. The deceptive problem used
consists of the concatenation of 13 subproblems of length
3 (a 39-bit problem). The fitness for each 3-bit section of
the string is given in Table 6. The overall fitness is the sum
of the fitness of these deceptive subproblems. To obtain an
individual’s fitness, the value of this function is subtracted
from 390 (maximum value). Therefore, the optimum has a
fitness of zero.

Royal Road (fRR) [23]. This is a 200-bit problem that is
comprised of 25 contiguous blocks of eight bits, each of
which scores 8 if all of the bits are set to one. Although
there is no deception in this problem there is an amount of

epistasis. Again, an individual’s fitness is calculated by
subtracting the value of this function from 200 (maximum
value), being zero the fitness for the optimum.

Appendix B. Controlling the mutation probability
Next, we describe different adaptive mechanisms pre-
sented in the GA literature to control the mutation prob-
ability, used in Sect. 3.3.4 to compare the FAGA behaviour.

� Deterministic control of pm. A direction followed by GA
research for the variation of pm lies in the specification of
an externally specified schedule which modifies it de-
pending on the time, measured by the number of gener-
ations. One of the most considered schedules consists in
the decreasing of pm during the GA run [6, 21]. This
schedule follows the heuristic ‘‘to protect the exploration
in the initial stages and the exploitation later’’, which has
been considered to design other search techniques, such
as simulated annealing.
We consider a linear function to control the decrease of
pm, following the idea presented in [6]. It constrains
pmðtÞ so that pmð0Þ ¼ ph

m and pmðTÞ ¼ pl
m if a maxi-

mum of T generations are used:

pmðtÞ ¼ ph
m �

ph
m � pl

m

T
� t 0 � t � T :

The GA considered for the experiments (Sect. 3.3.4)
that applies this technique is called GA-DET
(Table 3).

� Adaptive control at individual level of pm. In [54], a
technique for the adaptive control at individual-level of
pm was proposed, in which pm is varied depending on
the fitness values of the solutions. Each chromosome Ci

has its own associated pm value, pi
m, which is calculated

as (maximization is assumed):

pi
m¼ k1 �

fmax� fi

fmax� �ff
if fi	 �ff ; and pi

m¼ k3 if fi < �ff ;

where fi is the chromosome’s fitness, fmax is the popu-
lation maximum fitness, �ff is the mean fitness, and k1

and k3 are 1. In this way, high-fitness solutions are
protected (pi

m ¼ 0), whilst solutions with subaverage
fitnesses are totally disrupted (pi

m ¼ 1). This technique
increases pm when the population tends to get stuck at a
local optimum and decreases it when the population is
scattered in the solution space.
GA-IL is the GA that uses this technique in Sect. 3.3.4
(Table 3).

� Self-adaptive control of pm. An extra gene, pi
m, is added

to the front of each bitstring, Ci, which represents the
mutation probability for all the genes in this bitstring.
This gene evolves with the solution [6, 59].
The values of pi

m are allowed to vary from pl
m to ph

m. The
following steps are considered to mutate the genes in a
chromosome Ci:
1. Apply a meta-mutation on pi

m obtaining qi
m. This is

carried out by choosing a randomly chosen number
from the interval ½pi

m � d; pi
m þ d�, where d is a

control parameter.
2. Mutate the genes in Ci according to the mutation

probability qi
m.

Table 6. Fully deceptive order-3 problem

Chromosomes 000 001 010 100 110 011 101 111
Fitness 28 26 22 14 0 0 0 30

557

3. Write the mutated genes (including qi
m value) back

to the chromosome.
Crossover is presently applied only to the binary vector
and has no impact on pi

m. Each offspring resulting
from crossover receives the pi

m value of one of its par-
ents. The initial pi

m values are generated at random from
½ pl

m; p
h
m�.

The GA based on the self-adaptive control of pm is
called GA-SELF (Table 3).

Appendix C. Other FAGA approaches
This appendix is the continuation of Sect. 4.1, since it
includes other FAGA approaches that use Rule-Bases
derived from the knowledge of GA experts and that
adapt parameters at population-level.

Furthermore, additional information about these
algorithms may be found in [9, 10, 30, 65].

C.1 Approach of Xu and Vukovich
In [67, 68], the use of FLCs to control GAs is considered to
solve two problems to which a standard GA may be
subjected: very slow search speed and premature conver-
gence. These problems are due to: (1) control parameters
not well chosen initially for a given task, (2) parameters

always being fixed even though the environment in which
the GA operates may be variable, and (3) difficulties re-
sulting from selection of other parameters such as popu-
lation size and in understanding their influence, both
individually and in combination, on the GA performance.
FLCs were proposed to control GAs in order to: (1) choose
control parameters before the GA run, (2) adjust the
control parameters on-line to dynamically adapt to new
situations, and (3) assist the user in accessing, designing,
implementing, and validating a GA for a given task.

Experiments were carried out with an FAGA that con-
trols pc and pm using two FLCs. Both of them had the same
inputs: generation and population size. The Rule-Bases
considered are shown in Table 7. It was claimed that part
of the mechanism to create fuzzy rules to adapt pm is that
it should increasingly diminish when the GA approaches
convergence to the best fitness.

The FAGA stood out as the most efficient algorithm
against a standard GA in solving the TSP and other
optimisation problems.

C.2 ARGAF
In [31], an fuzzy adaptive real-coded GA, called
ARGAF, was proposed. Its principal features are described
below.

Main ideas. ARGAF applies two different crossover op-
erators; one with exploitation properties and another with
exploration properties. A parameter, denoted as pe, defines
the frequency of application of the exploitative operator.
Its value strongly influences the exploration/exploitation
balance induced by the crossover operator: if pe is low,
ARGAF shall generate diversity, in this way, exploration
takes effect, whereas if it is high, the current diversity shall
be used to generate best elements, and so, exploitation
comes into force.

Different crossover operator types were considered to
build versions of ARGAF. For example, the FCB-crossover
operators [37] were used as follows:
The F-crossover and S-crossover operators show
exploration properties and the M-crossover operator has
exploitation properties.

ARGAF uses the linear ranking selection mechanism
[7]. In this selection mechanism the selective pressure is
determined by the parameter gmin 2 ½0; 1�. If gmin is low,
high pressure is achieved, whereas if it is high, the
pressure is low.

The pe and gmin parameters are adjusted using two
FLCs. Adapting the pe parameter, ARGAF controls the
effects of crossovers, i.e., either generating diversity or
using diversity, whereas adjusting the gmin parameter, it
controls the effects of selection, i.e., either keeping
diversity or eliminating diversity. The joint management
of these parameters allows ARGAF to administer the
diversity in a suitable way. For example, if useful diversity
is detected by ARGAF, then it sets selection to keep
diversity and crossover for using it. If the level of diversity
is high and its quality is not good, then ARGAF increases
the selective pressure and tries to obtain better elements

Table 7. Rule-Bases for the
control of pc and pm, respec-
tively

Generation Population size Population size

Small Medium Big Small Medium Big

Short Medium Small Small Large Medium Small
Medium Large Large Medium Medium Small Very small
Long Very large Very large Large Small Very small Very small

For each pair of chromosomes from a total of pc � N Do

If a random number r 2 ½0; 1� is lower than pe Then

Generate two offspring, the result of applying two M-crossovers.

Else

Generate two offspring, the result of applying an F-crossover and an S-crossover.

The two offspring substitute their parents in the population:

558

by increasing exploitation by means of crossover. All
these considerations are included in the Rule-Bases of
the FLCs used by ARGAF. Next, we discuss the different
steps in the design of these FLCs.

Inputs, outputs, and Data Base. Two diversity measures
were considered as inputs. One is a genotypical diversity
measure based on the Euclidean distances of the chro-
mosomes in the population from the best one. Its defini-
tion is GD ¼ ð�dd � dminÞ=ðdmax � dminÞ, where �dd, dmax, and
dmin are the average, maximum, and minimum distances
of the chromosomes in the population from the best one,
respectively. The range of GD is ½0; 1�. If GD is low, most
chromosomes in the population are concentrated around
the best chromosome and so convergence is achieved. If
GD is high, most chromosomes are not biased towards the
current best element.

The another input is a phenotypical diversity measure
[40] defined as (minimisation is assumed): PD ¼ fbest= �ff ,
where �ff and fbest are the average and best fitness in the
current population, respectively. PD belongs to the interval
½0; 1�. If it is near to 1, convergence has been reached,
whereas if they are near to 0, the population shows a high
level of diversity.

GD determines the quantity of diversity in the popula-
tion and PD the quality of this diversity. The linguistic
label set of these inputs is fLow;Medium;Highg.

The outputs are variables that control the variation on
the current pe and gmin parameters, which are kept within
the range ½0:25; 0:75�. These variables, noted as dpe and
dgmin, represent the degree to which the current pe and
gmin values should vary, respectively. The variations shall
be carried out by multiplying the dpe and dgmin values,
obtained by the FLCs, by the current pe and gmin values,
respectively. The action interval of dpe and dgmin is
½0:5; 1:5� and their associated linguistic labels are
fSmall;Medium;Bigg.

The Data Base is shown in Fig. 7. The meaning of the
linguistic terms associated with GD is depicted in (a), the
ones for PD in (b), and finally, the ones for dpe and dgmin

in (c).

Rule-Base. Table 8 shows the Rule-Bases used by the FLCs
of ARGAF.

Results. Experiments on different optimisation problems
of parameters with variables on continuous domains were
carried out in order to study the efficacy of ARGAF. Its
results were compared with the ones for other algorithms
like ARGAF, but with fixed pe and gmin values. Different
combinations for these parameters were considered. The
main conclusion was that ARGAF is a very robust GA since
it adapts the pe and gmin parameters to the settings that
return the best results (which were different from one
function to others).

C.3 Fuzzy government
In [3], it is claimed that GAs require human supervision
during their routine use as practical tools for the following
reasons: (1) detect the emergence of a solution, (2) tune
algorithm parameters, and (3) monitor the evolution
process in order to avoid undesirable behaviour such as
premature convergence. It is advised as well that any
attempt to develop artificial intelligence tools based on
GAs should take these issues into account. The authors
proposed FLCs for this task. They called fuzzy government
the collection of fuzzy rules and routines in charge of
controlling the evolution of the GA population.

Fuzzy government was applied to the symbolic infer-
ence of formulae problem. Genetic programming [39] was
used to solve the problem along with different FLCs, which
dynamically adjusted the maximum length for genotypes,
acted on the mutation probability, detected the emergence
of a solution, and stopped the process. The results showed
that the performance of the fuzzy governed GA was almost
impossible to distinguish from the performance of the
same algorithm operated directly with human supervision.

C.4 FAGAs for multiobjective optimization problems
In [63], an FAGA is presented for multiobjective optimi-
zation problems. In each generation, an FLC decides what
transformation of the cost components into an one-
dimensional fitness function is taken.

In [64], a more complex method, called Fuzzy Reduc-
tion GA, is proposed. It attempts to enable a uniform
approximation of the Pareto optimal solutions (those that
cannot be improved with respect to any cost function
without making the value of some other worse). The

Fig. 7. Meaning of the linguistic terms
associated with the inputs and the outputs

Table 8. Rule-Bases for the
control of pe and gmin,
respectively

GD PD PD

Low Medium High Small Medium Large

Low Medium Small Small Small Medium Big
Medium Big Big Medium Small Big Big
High Big Big Medium Small Small Big

559

authors started by explicitly formulating desirable goals
for the evolution of the population towards the target
Pareto optimal solutions (which could be expressed in
vague terms only). Then, they defined deviation measures
of a population from these goals, which were the inputs to
an FLC. Later, they fixed a set of possible actions that
could serve as countermeasures to decrease the deviations.
These actions are different selection mechanisms based on
classical ones proposed to tackle multiobjective optimi-
sation problems. The FLC determines activation rates for
the actions. The action that should actually be taken is
decided according to the activation rates found.

As an application, a timetable optimisation problem is
presented where the method was used to derive cost-
benefit curves for the investment into railway nets. The
results showed that the fuzzy adaptive approach avoids
most of the empirical shortcomings of other multiobjective
GAs by the adaptive nature of the procedure.

Other models of multiobjective GA based on the use of
FLCs are found in [16, 42].

C.5 Dynamic fuzzy control of GA parameter coding
In [55], an algorithm for adaptively controlling GA pa-
rameter coding using fuzzy rules is presented, which was
called fuzzy GAP. It uses an intermediate mapping be-
tween the genetic strings and the search space parameters.
In particular, each search parameter is specified by the
following equation:

ps ¼
pg

2l � 1

� �
� Rþ O ;

where ps is the search parameter, pg is the genetic pa-
rameter, l is the number of bits in the genetic parameter, R
is a specified parameter range, and O is a specified offset.
By controlling the offset and range, more accurate solu-
tions are obtained using the same number of binary bits.

Fuzzy GAP performs a standard genetic search until the
population of strings has converged. Convergence was
measured by evaluating the average number of bits which
differ between all the genetic strings. Each string is com-
pared to every other string and the number of different
bits are counted. If the average number of differing bits
per string pair is less than a threshold, the GA has con-
verged. After the genetic strings have converged, a new
range and offset for the search parameters are determined
by means of an FLC with an input that measures the
distance between the center of the current range and the
best solution found in the search, xb:

dðxb;O;RÞ ¼ 2 � xb � O

R

� �
� 1

����

���� :

This measure lies in ½0; 1�. It is 0 when the best solution is
exactly in the center of the range, and 1 when the best
solution is either at the lower limit or upper limit of the
range. According to this measure, the authors developed
different heuristic rules:

� If the best solution is near the center of the range, it
makes sense that the range should be reduced in size.
The best solution is the center of the range indicates

that previous range adjustments were correct and the
true solution is near the center.

� If the best solution is near one of the limits, the best
solution is moving and the search space should be ad-
justed to include more of the space about the best so-
lution. Thus, increasing the size and centering the range
is reasonable.

The use of fuzzy rules allowed easy and straightforward
implementation of this type of heuristic rules. After
applying the FLC, the GA is executed again with the
new values for the range and offset.

The performance of fuzzy GAP on a hydraulic brake
emulator parameter identification problem was investi-
gated. It was shown to be more reliable than other dy-
namic coding algorithms (such as the dynamic parameter
encoding algorithm [51]), providing more accurate
solutions in fewer generations.

C.6 Fuzzy cultural algorithms
Cultural algorithms (CAs) [48] are dual inheritance
systems that consist of a social population and a belief
space. The problem solving experience of individuals
selected from the population space by an acceptance
function is used to generate problem solving knowledge
that resides in the belief space. This knowledge can be
viewed as a set of beacons that can control the evolution of
the population component by means of an influence
function. The influence function can use the knowledge in
the belief space to modify any aspect of the population
component. Various evolutionary models have been used
for the population component of CAs, including GAs,
genetic programming, evolution strategies, and
evolutionary programming.

In [49], a fuzzy approach to CAs is presented in
which an FLC regulates the amount of information to be
transferred to the belief space used by the CA over time.
In particular, the FLC determines the number of indi-
viduals which shall impact the current beliefs. Its inputs
are the individual success ratio (ratio of the number of
successes to the total number of mutations) and the
current generation. The basic intuition used to design
the fuzzy rules was that if the current generation is early
on in the evolution process and the success ratio is low
then accept a medium number (around top 30%) of
individuals from the population. If the current genera-
tion is early on and the success ratio is high, then
accept a larger number (around 40%). If the current
generation is near the end of the evolution process and
the success ratio is low, then accept a smaller number
(around top 20%). And, if the current generation is near
the end and the success ratio is high, then accept a
medium number.

A comparison was made between the fuzzy version of a
CA (that used evolutionary programming as the popula-
tion component) and its non fuzzy version on 34 optimi-
sation functions. The conclusions were: (1) the fuzzy
interface between the population and belief space out-
performed the non fuzzy version in general, and (2) the
use of fuzzy acceptance function significantly improved
the success ratio and reduced CPU time.

560

References
1. Angeline PJ (1995) Adaptive and self-adaptive evolutionary

computations. In: Palaniswami M, Attikiouzel Y, Markc R,
Fogel D, Fukuda T (eds), Computational Intelligence: A Dy-
namic Systems Perspective, pp. 152–163. Piscataway, NJ: IEEE
Press

2. Angeline PJ (1996) Two self-adaptive crossover operators for
genetic programming. In: Angeline PJ, Kinnear JE, Jr. (eds),
Advances in Genetic Programming 2, pp. 89–109. Cambridge,
MA: MIT Press

3. Arnone S, Dell’Orto M, Tettamanzi A (1994) Toward a fuzzy
government of genetic populations. In: Proc. of the 6th IEEE
Conference on Tools with Artificial Intelligence, pp. 585–591.
Los Alamitos, CA: IEEE Computer Society Press

4. Bäck, T (1992) The interaction of mutation rate, selection, and
self-adaptation within genetic algorithm. In: Männer R,
Manderick B (eds), Parallel Problem Solving from Nature 2,
pp. 85–94. Amsterdam: Elsevier Science Publishers

5. Bäck T (1992) Self-adaptation in genetic algorithms. In: Varela
FJ, Bourgine P, (eds), Proc of the First European Conference
on Artificial Life, pp. 263–271. Cambridge, MA: The MIT
Press

6. Bäck T, Schütz M (1996) Intelligent mutation rate control in
canonical genetic algorithms. In: Ras ZW, Michalewicz M
(eds), Foundation of Intelligent Systems 9th Int Symposium,
pp. 158–167. Berlin: Springer

7. Baker JE (1985) Adaptive selection methods for genetic
algorithms. In: Proc First Int Conf on Genetic Algorithms,
pp. 101–111. Hillsdale, MA: L. Erlbaum Associates

8. Baker JE (1987) Reducing bias and inefficiency in the selec-
tion algorithm. In: Grefenstette JJ (ed.), Proc of the Second Int
Conf on Genetic Algorithms and their Applications, pp. 14–
21. Hillsdale, NJ: Lawrence Erlbaum

9. Bastian A, Hayachi I (1996) A proposal for knowledge-based
systems using fuzzy rules and genetic algorithms, Japanese
J Fuzzy Theory and Systems 8(6): 895–907

10. Bergmann A, Burgard W, Hemker A (1994) Adjusting
parameters of genetic algorithms by fuzzy control rules.
In: Becks K-H, Perret-Gallix D (eds), New Computing
Techniques in Physics Research III, pp. 235–240. Singapore:
World Scientific Press

11. Cantú-Paz E (2000) Efficient and Accurate Parallel Genetic
Algorithms, Kluwer Academic Publishers

12. Cordón O, Herrera F, Peregrı́n A (1997) Applicability of the
fuzzy operators in the design of fuzzy logic controllers, Fuzzy
Sets and Systems, 86(1): 15–41

13. Cordón O, Herrera F, Hoffmann F, Magdalena L (2001)
Genetic fuzzy systems. Evolutionary tuning and learning of
fuzzy knowledge bases. World Scientific

14. Davis L (1991) Handbook of Genetic Algorithms. New York:
Van Nostrand Reinhold.

15. De Jong KA (1975) An analysis of the behaviour of a class of
genetic adaptive systems. Doctoral dissertation, University of
Michigan, Ann Arbor. Dissertation Abstracts International,
36(10), 5140B (University Microfilms No 76-9381)

16. Dozier GV, McCullough S, Homaifar A, Moore L (1998)
Multiobjective evolutionary path planning via fuzzy tourna-
ment selection. In: IEEE International Conference on Evolu-
tionary Computation (ICEC’98), pp. 684–689. Piscataway:
IEEE Press

17. Driankow D, Hellendoorn H, Reinfrank M (1993) An
Introduction to Fuzzy Control. Berlin: Springer-Verlag

18. Eiben AE (1997) Multi-parent recombination. In: Bäck T,
Fogel D, Michalewicz Z (eds), Handbook of Evolutionary
Algorithms, pp. 25–33. IOP Publishing Ltd. and Oxford
University Press

19. Eiben AE, Hinterding R, Michalewicz Z (1999) Parameter
control in evolutionary algorithms, IEEE Trans Evolut
Comput, 3(2): 124–141

20. Eshelman LJ, Mathias KE, Schaffer JD (1997) Crossover op-
erator biases: exploiting the population distribution. In: Bäck
T (ed.), Proc of the Seventh Int Conf on Genetic Algorithms,
pp. 354–361. San Mateo: Morgan Kaufmann

21. Fogarty TC (1989) Varying the probability of mutation in the
genetic algorithm. In: Schaffer JD (ed.), Proc of the Third Int
Conf on Genetic Algorithms, pp. 104–109. San Mateo: Morgan
Kaufmann

22. Fogel DB, Fogel GB, Ohkura K (2001) Multiple-vector
self-adaptation in evolutionary algorithms, BioSystems 61:
155–162

23. Forrest S, Mitchell M (1993) Relative building block fitness
and the building block hypothesis. In: Whitley LD (ed.),
Foundations of Genetic Algorithms-2, pp. 109–126. San
Mateo: Morgan Kaufmann

24. Goldberg DE, Richarson JJ (1987) Genetic algorithms with
sharing for multimodal function optimization. In: Grefens-
tette JJ (ed.), Proc of the Second Int Conf on Genetic Algo-
rithms and their Applications, pp. 28–31. Hillsdale, NJ:
Lawrence Erlbaum

25. Goldberg DE (1989) Genetic Algorithms in Search, Optimi-
zation, and Machine Learning, Addison-Wesley

26. Goldberg DE, Korb B, Deb K (1989) Messy genetic algorithms:
motivation, analysis, and first results, Complex Systems 3:
493–530

27. Goldberg DE, Wang L (1997) Adaptive niching via coevolu-
tionary sharing. In: Quagliarella et al. (eds), Genetic Algo-
rithms in Engineering and Computer Science, pp. 21–38. John
Wiley and Sons Ltd

28. Grefenstette JJ (1986) Optimization of control parameters for
genetic algorithms, IEEE Trans Systems, Man, and Cyber-
netics 16: 122–128

29. Iba H, de Garis H (1996) Extending genetic programming with
recombinative guidance. In: Angeline PJ, Kinnear JE, Jr. (eds),
Advances in Genetic Programming 2, pp. 69–88. Cambridge,
MA: MIT Press

30. Herrera F, Herrera-Viedma E, Lozano M, Verdegay JL (1994)
Fuzzy tools to improve genetic algorithms. In: Proc of the
European Congress on Intelligent Techniques and Soft
Computing, pp. 1532–1539

31. Herrera F, Lozano M (1996) Adaptation of genetic algorithm
parameters based on fuzzy logic controllers. In: Herrera F,
Verdegay JL (eds), Genetic Algorithms and Soft Computing,
pp. 95–125. Physica-Verlag

32. Herrera F, Lozano M (2000) Adaptive control of the mutation
probability by fuzzy logic controllers. In: Schoenauer M, Deb
K, Rudolph G, Yao X, Lutton E, Merelo JJ, Schwefel H-P (eds),
Parallel Problem Solving from Nature VI, pp. 335–344. Berlin:
Springer

33. Herrera F, Lozano M (2001) Adaptive genetic operators based
on coevolution with fuzzy behaviours, IEEE Trans on Evolut
Comput 5(2): 1–18

34. Herrera F, Lozano M, Verdegay JL (1995) Tackling fuzzy
genetic algorithms. In: Winter G, Periaux J, Galan M, Cuesta P
(eds), Genetic Algorithms in Engineering and Computer
Science, pp. 167–189, John Wiley and Sons

35. Herrera F, Lozano M, Verdegay JL (1995) Tuning fuzzy logic
controllers by genetic algorithms, Int J Approx Reasoning, 12:
299–315

36. Herrera F, Lozano M, Verdegay JL (1996) Dynamic and
heuristic fuzzy connectives-based crossover operators for
controlling the diversity and convengence of real-coded
genetic algorithms, Int J Intelligent Systems 11: 1013–1041

37. Herrera F, Lozano M, Verdegay JL (1997) Fuzzy connectives
based crossover operators to model genetic algorithms
population diversity, Fuzzy Sets and Systems 92(1): 21–30

38. Herrera F, Lozano M, Verdegay JL (1998) Tackling real-coded
genetic algorithms: operators and tools for the behavioural
analysis, Artificial Intelligence Reviews 12(4): 265–319

561

39. Koza JR (1992) Genetic Programing: on the Programming of
Computers by Means of Natural Selection. Cambridge: The
MIT press

40. Lee MA, Takagi H (1993) Dynamic control of genetic algo-
rithms using fuzzy logic techniques. In: Forrest S (ed.), Proc
of the Fifth Int Conf on Genetic Algorithms, pp. 76–83. San
Mateo: Morgan Kaufmann

41. Lee MA, Takagi H (1994) A framework for studying the effects
of dynamic crossover, mutation, and population sizing in
genetic algorithms. In: Furuhashi T (ed.), Advances in Fuzzy
Logic, Neural Networks and Genetic Algorithms, pp. 111–126.
Lecture Notes in Computer Science 1011, Berlin: Springer-
Verlag

42. Lee MA, Esbensen, H (1997) Fuzzy/multiobjective genetic
systems for intelligent systems design tools and components.
In: Pedrycz W (ed.), Fuzzy Evolutionary Computation,
pp. 57–80. Boston: Kluwer Academic Publishers

43. Mahfoud SW (1992) Crowding and preselection revised.
In: Männer R, Manderick B (eds), Parallel Problem Solving
from Nature 2, pp. 27–36. Amsterdam: Elsevier Science
Publishers

44. Matousek R, Osmera P, Roupec J (2000) GA with fuzzy in-
ference system. In: Proc 2000 IEEE Int Conf on Evolutionary
Computation, pp. 646–651. Piscataway, NJ: IEEE Press

45. Michalewicz Z (1992) Genetic Algorithms + Data Structures =
Evolution Programs, New York: Springer-Verlag

46. Michalewicz Z, Schoenauer M (1996) Evolutionary algorithms
for constrained parameter optimization problems, Evolut
Comput 4(1): 1–32

47. Oyama A, Obayashi S, Nakamura T (2001) Real-coded
adaptive range genetic algorithm applied to transonic wing
optimization, Appl Soft Compting 16: 1–9

48. Reynolds RG (1994) An introduction to cultural algorithms.
In: Sebald AV, Fogel LJ (eds), Proc of the 3rd Annual Con-
ference on Evolutionary Programming, pp. 131–139. River
Edge, NJ: World Scientific

49. Reynolds RG, Chung C-J (1997) Regulating the amount of
information used for self-adaptation in cultural algorithms.
In: Bäck T (ed.), Proc of the Seventh Int Conf on Genetic
Algorithms, pp. 401–408. San Francisco: Morgan Kaufmann
Publishers

50. Ronald E (1993) When selection meets seduction. In: Forrest S
(ed.), Proc of the Fifth Int Conf on Genetic Algorithms,
pp. 167–173. San Mateo: Morgan Kaufmann

51. Schraudolph NN, Belew RK (1992) Dynamic parameter
encoding for genetic algorithms, Machine Learning 9: 9–21

52. Shi Y, Eberhart R, Chen Y (1999) Implementation of
evolutionary fuzzy systems, IEEE Trans Fuzzy Systems
7(2): 109–119

53. Smith JE, Fogarty TC (1997) Operator and parameter adap-
tation in genetic algorithms. Soft Computing 1(2): 81–87

54. Srinivas M, Patnaik LM (1994) Adaptive probabilities of
crossover and mutation in genetic algorithms, IEEE Trans
Systems, Man, and Cybernetics 24(4): 656–667

55. Streifel RJ, Marks II RJ, Reed R, Choi JJ, Healy M (1999)
Dynamic fuzzy control of genetic algorithm parameter
coding, IEEE Trans Systems, Man, and Cybernetics – Part B:
Cybernetics 29(3): 426–433

56. Subbu R, Sanderson AC, Bonissone PP (1998) Fuzzy logic
controlled genetic algorithms versus tuned genetic algo-
rithms: an agile manufacturing application. In: Proc of the
IEEE SIC/CIRA/ISAS ’98 Conference

57. Teller A (1996) Evolving programmers: the co-evolution of
intelligent recombination operators. In: Angeline PJ, Kinnear
JE, Jr. (eds), Advances in Genetic Programming 2, pp. 45–68.
Cambridge, MA: MIT Press

58. Tettamanzi AG (1995) Evolutionary algorithms and fuzzy
logic: a two-way integration. In: 2nd Joint Conference on
Information Sciences, pp. 464–467, Wrightsville Beach, NC

59. Tuson AL, Ross P (1998) Adapting operator settings in genetic
algorithms. Evolut Comput 6(2): 161–184

60. Van Le T (1995) A fuzzy evolutionary approach to solving
constraint problems. In: Proc 1995 IEEE Int Conf on Evolu-
tionary Computation, pp. 317–319. Piscataway, NJ: IEEE
Press

61. Van Le T (1996) A fuzzy evolutionary approach to constrained
optimisation problems. In: Proc 1996 IEEE Int Conf on
Evolutionary Computation, pp. 274–278. Piscataway, NJ: IEEE
Press

62. Voigt HM, Mühlenbein H, Cvetkovic D (1995) Fuzzy re-
combination for the breeder genetic algorithm. In: Eshelman
L (ed.), Proc of the Sixth Int Conf on Genetic Algorithms,
pp. 104–111. San Francisco: Morgan Kaufmann Publishers

63. Voget S (1996) Multiobjective optimization with genetic al-
gorithms and fuzzy-control. In: Proc of the Fourth European
Congress on Intelligent Techniques and Soft Computing,
pp. 391–394

64. Voget S, Kolonko M (1998) Multidimensional optimization
with a fuzzy genetic algorithm, J Heuristic 4(3): 221–244

65. Wang PY, Wang GS, Hu ZG (1997) Speeding up the search
process of genetic algorithm by fuzzy logic. In: Proc of the
European Congress on Intelligent Techniques and Soft
Computing, pp. 665–671

66. Wolpert DH, Macready WG (1997) No free lunch theorems
for optimization, IEEE Trans Evolut Comput 1(1): 67–82

67. Xu HY, Vukovich G (1993) A fuzzy genetic algorithm with
effective search and optimization. In: Proc of 1993 Interna-
tional Joint Conference on Neural Networks, pp. 2967–2970

68. Xu HY, Vukovich G, Ichikawa Y, Ishii Y (1994) Fuzzy evo-
lutionary algorithms and automatic robot trajectory genera-
tion. In: Michalewicz Z, Schaffer JD, Schwefel H-P, Fogel DB,
Kitano H (eds), Proceeding of the First IEEE International
Conference on Evolutionary Computation, pp. 595–600.
Piscataway, NJ: IEEE Press

69. Zeng X, Rabenasolo B (1997) A fuzzy logic based design
for adaptive genetic algorithms. In: Proc of the European
Congress on Intelligent Techniques and Soft Computing,
pp. 660–664

562

