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The ordered weighted geometric (OWG) operator is an aggregation operator that is based on the
ordered weighted averaging (OWA) operator and the geometric mean. Its application in multi-
criteria decision making (MCDM) under multiplicative preference relations has been presented.
Some families of OWG operators have been defined. In this article, we present the origin of the
OWG operator and we review its relationship to the OWA operator in MCDM models. We show
a study of its use in multiplicative decision-making models by providing the conditions under
which reciprocity and consistency properties are maintained in the aggregation of multiplicative
preference relations performed in the selection process. © 2003 Wiley Periodicals, Inc.

1. INTRODUCTION

In any multicriteria decision-making (MCDM) problem the final solution
must be obtained from the synthesis of performance degrees of criteria.1,2 To this
end, the aggregation of information is fundamental.

The ordered weighted geometric (OWG) operator is an aggregation operator
that we define and characterize in Ref. 3, to design multiplicative decision-making
models,4,5 i.e., MCDM processes using multiplicative preference relations6 to
express the preferences about alternatives. It is based on the ordered weighted
averaging (OWA) operator7 and on the geometric mean. Recently, some families
of OWG operators were presented in Ref. 8.
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In this article, we study the basic ideas that justify the definition of the OWG
operator and show its relationship to the OWA operator in the MCDM models.
Additionally, we analyze two important aspects of its application in multiplicative
decision-making processes:

(1) The conditions under which the reciprocity property is maintained when aggregating
multiplicative preference relations and, in particular, we provide a necessary and
sufficient condition to this end

(2) The conditions under which the consistency property is maintained when aggregating
multiplicative preference relations and we show that this property generally is not
maintained

To do this, our study is set out as follows. In Section 2 we present the OWG
operator and study the foundations of its definition. In Section 3 we analyze its
relationship to the OWA operator. In Section 4 we study the necessary and
sufficient conditions under which the reciprocity property is maintained when
aggregating reciprocal multiplicative preference relations using an OWG operator.
In Section 5 we show that OWG operators generally do not maintain Saaty’s
consistency property6 in the aggregation process but the geometric mean does.
Finally, in Section 6 we draw our conclusions.

2. THE OWG OPERATOR AND ITS ORIGIN

In this section, we show why and how the OWG operator is defined in
multiplicative decision-making models.

In Ref. 9 we consider MCDM problems where the information about the
alternatives is represented using fuzzy preference relations and we design a fuzzy
majority guided choice scheme that follows two steps to achieve a final decision
from the synthesis of performance degrees of the majority of criteria: (i) aggrega-
tion and (ii) exploitation. This choice scheme is based on the quantifier-guided
aggregation operator, the OWA operator,7 which implements the concept of fuzzy
majority in the aggregation phase by means of the fuzzy quantifiers10 used to
calculate its weighting vector.

DEFINITION 1. In Ref. 7 an OWA operator of dimension n is a function � : �n3
� that has associated to it a set of weights or weighting vector W � (w1, . . . , wn)
such that wi � [0, 1] and ¥i�1

n wi � 1 and is defined to aggregate a list of values
{p1, . . . , pn} according to the following expression:

��p1, . . . , pn� � �
i�1

n

wi � qi

being qi the ith largest value in the set {p1, . . . , pn}.

Yager7 suggests a way of calculating the weights of the OWA operator using
fuzzy quantifiers representing the concept of fuzzy majority, which in the case of
a nondecreasing relative quantifier Q is expressed as follows:
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wi � Q� i

n� � Q� i � 1

n � , i � 1, . . . , n

When a fuzzy quantifier Q is used to compute the weights of the OWA operator
�, then it is symbolized by �Q.

The MCDM problem when the experts express their preferences using
multiplicative preference relations has been solved by Saaty using the decision
analytic hierarchical process (AHP), which obtains the set of solution alterna-
tives by means of the eigenvector method.6 However, this decision process is
not guided by the concept of fuzzy majority. As shown in Refs. 11 and 12, the
proper aggregation operator of ratio-scale measurements is not the arithmetic
mean but the geometric mean. However, the geometric mean does not allow the
concept of fuzzy majority to be incorporated in the decision processes. There-
fore, if we want to design a decision scheme for multiplicative preference
relations that allows decision makers to implement the concept of fuzzy
majority to obtain the final solution, then it is necessary to introduce a new
class of operator to aggregate ratio-scale measurements, allowing the imple-
mentation of the fuzzy majority concept.

In Ref. 4, we obtained the transformation function between multiplicative and
fuzzy preference relations, which is given in the following result:

PROPOSITION 1. From Ref. 4, suppose that we have a set of alternatives X �
{x1, . . . , xn} and associated with it a multiplicative reciprocal preference relation
A � (aij), with aij � [1/9, 9] and aij � aji � 1, for all i, j. Then the corresponding
fuzzy reciprocal preference relation P � (pij) associated to A, with pij � [0, 1] and
pij � pji � 1, @ i, j, is given as follows:

pij � f�aij� �
1

2
�1 � log9 aij�

The above transformation function is bijective and, therefore, allows us to
transpose concepts that have been defined for fuzzy preference relations to mul-
tiplicative preference relations. In this way, e.g., if we want to aggregate a set of
values {a1, . . . , an} given on the basis of a positive ratio scale, we can use the
OWA operator not on the set of values {a1, . . . , an} but on the set of values
{ p1, . . . , pn} obtained using the foregoing transformation function f, i.e., pi �
f(ai) � 1/ 2 (1 � log9 ai). Thus, we obtain

p � ��p1, . . . , pn� � �
i�1

n

wi � qi

being qi the ith largest value in { p1, . . . , pn}. If we denote bi as the ith largest
value in {a1, . . . , an}, as f is an increasing function, then qi � f(bi) � 1/ 2(1 �
log9 bi), and, therefore,

ORDERED WEIGHTED GEOMETRIC OPERATOR 691



p � �
i�1

n

wi �
1

2
�1 � log9 bi� �

1

2 �1 � �
i�1

n

wi � log9 bi�
�

1

2 � 1 � �
i�1

n

log9 bi
wi� �

1

2 �1 � log9 �
i�1

n

bi
wi�

This last expression justifies the definition of the OWG operator as an aggregation
operator to aggregate information given on a ratio scale.

DEFINITION 2. From Ref. 3. An OWG operator of dimension n is a function �G :
�n3 �, to which a set of weights or weighting vector is associated W � (w1, . . . ,
wn), such that wi � [0, 1] and ¥iwi � 1, and it is defined to aggregate a list of
values {a1, . . . , an} according to the following expression:

�G�a1, . . . , an� � �
i�1

n

bi
wi,

where bi is the ith largest value in the set {a1, . . . , an}.

From Ref. 3 we show that the OWG operator satisfies the following
properties:

(1) It is an or-and operator, i.e., it remains between the minimum and the maximum of the
arguments: min(a1, . . . , am) � �G(a1, . . . , am) � max(a1, . . . , am).

(2) It is commutative: �G(a1, . . . , am) � �G(a�(1), . . . , a�(m)) for all �.
(3) It is idempotent: �G(a1, . . . , am) � a, if ai � a for all i.
(4) It is increasing monotonous: �G(a1, . . . , am) � �G(d1, . . . , dm), if ai � di for all

i.
(5) It leads to the geometric mean when wi � 1/m for all i: �GM

G (a1, a2, . . . , am) �
�k�1

m (ak)1/m.
(6) It leads to the maximum when W � [1, 0, . . . , 0]: �G(a1, a2, . . . , am) �

maxi�1
m (ai).

(7) It leads to the minimum when W � [0, . . . , 0, 1]: �G(a1, a2, . . . , am) �
mini�1

m (ai).

Because the OWG operator is based on the OWA operator, it is clear that the
weighting vector W can be obtained by the same method used in the case of the
OWA operator, i.e., the vector may be obtained using a fuzzy quantifier Q,
representing the concept of fuzzy majority. When a fuzzy quantifier Q is used to
compute the weights of the OWG operator �G, then it is symbolized by �Q

G.
Consequently, the OWG operator is defined to implement the concept of

fuzzy majority in the multiplicative decision-making processes and its expression
is obtained from the OWA operator using the transformation function f that relates
the multiplicative to the fuzzy preference relations. We used it in Refs. 4 and 5 to
design different multiplicative decision-making models and has been used by other
authors to define different families of OWG operators.8
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3. THE RELATIONSHIPS BETWEEN THE OWG AND THE OWA
OPERATORS IN DECISION-MAKING CONTEXTS

In this section we analyze the relationships between the OWG and OWA
operators when they are used as aggregation operators in the MCDM problems.
Such relationships are established via the foregoing transformation function f.

3.1. The Relationship Between the OWG and the OWA Operators to
Define Choice Degrees of Alternatives

In Ref. 13 we define two quantifier-guided choice degrees of alternatives
using the ideas presented in Ref. 14: quantifier-guided dominance degree (QGDD)
and quantifier-guided nondominance degree (QGNDD) to solve MCDM problems
under fuzzy preference relations, which are based on the use of the OWA operator �Q.

DEFINITION 3. In Ref. 3 if P � (pij) is a fuzzy preference relation over the set of
alternatives X � {x1, . . . , xn}, for the alternative xi we define the QGDDi, used to
quantify the dominance that xi has over all the others in a fuzzy majority sense, as
follows:

QGDDi � �Q�pi1, . . . , pin�

DEFINITION 4. In Ref. 3 if P � (pij) is a fuzzy preference relation over the set of
alternatives X � {x1, . . . , xn}, for the alternative xi we define the QGNDDi, used
to quantify the degree to which xi is not dominated by a fuzzy majority of the
remaining alternatives, as follows:

QGNDDi � �Q�1 � p1i
s , . . . , 1 � pni

s �

where pji
s � max{pji � pij, 0} represents the degree to which xi is strictly

dominated by xj.
We note that if the fuzzy preference relation P � (pij) is assumed reciprocal

in the sense that pij � pji � 1, for all i, j, then we have

1 � pji
s � 1 � max	pji � pij, 0
 � min	1 � �pji � pij�, 1
 � min	2pij, 1


and the expression of QGNDDi can be rewritten as

QGNDDi � �Q�pi1
d , . . . , pin

d � being pij
d � min	2pij, 1


The OWG operator gives us the opportunity to define the multiplicative
versions of the foregoing QGDD and QGNDD for solving MCDM problems under
multiplicative preference relations. Indeed, if we have a multiplicative reciprocal
preference relation A � (aij), aij � aij � 1, then by applying function f we obtain
the corresponding fuzzy reciprocal preference relation P � ( pij), pij � 1/ 2(1 �
log9 aij), where the QGDD and QGNDD are defined.

If we denote as bij the jth largest value of {ai1, . . . , ain}, we have qij �
1/ 2(1 � log9 bij) because f is an increasing function. Thus, we obtain
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QGDDi � �Q�pi1, . . . , pin� � �
j�1

n

wj � qij � �
j�1

n

wj � �1

2
� �1 � log9 bij��

�
1

2
� � 1 � �

j�1

n

wj � log9 bij� �
1

2
� �1 � log9 �

j�1

n

bij
wj�

�
1

2
� �1 � log9 �Q

G�ai1, . . . , ain�� � f��Q
G�ai1, . . . , ain��

This last expression gives us the justification for the following definition.

DEFINITION 5. [multiplicative QGDD (MQGDD)]. If A � (aij) is a multiplicative
preference relation over the set of alternatives X � {x1, . . . , xn} for the alternative
xi, we define the MQGDDi, used to quantify the dominance that xi has over all the
others in a fuzzy majority sense, as follows:

MQGDDi � �Q
G�ai1, . . . , ain�

We should point out the following about this definition:

(1) It is obvious that with Definition 5 we have QGDDi � f(MQGDDi).
(2) To obtain a unique ordering among the set of alternatives by the application

of a choice degree, it is obvious that we can use a particular expression of a
choice degree or any one obtained by the application of an increasing
function. In fact, if we use the expression MQGDDi � 1/ 2 � [1 � log9

�Q
G(ai1, . . . , ain)] as the definition of multiplicative quantifier-guided choice

degree,6,7 then it is clear that we would get the same ordering of alternatives
as we would get by using the one given in Definition 5, because these two
expressions are related by the bijective increasing function f.

(3) Using the expression MQGDDi � 1/ 2 � [1 � log9 �Q
G(ai1, . . . , ain)] means

defining the QGDD for a multiplicative preference relation A as the QGDD
of the fuzzy preference relation obtained by applying the transformation
function f to A, i.e., P � f( A).

On the other hand, if we denote aji
s � max{aji/aij, 1} and aij

d � 9/aji
s , then

pij
d � 1 � pji

s � 1 � max	pji � pij, 0
 � 1 � max�1

2
log9

aji

aij
, 0�

� 1 �
1

2
log9�max�aji

aij
, 1��

� 1 �
1

2
log9 aji

s �
1

2
�1 � log9 9� �

1

2
log9 aji

s

�
1

2 �1 � log9

9

aji
s � �

1

2
�1 � log9 aij

d�
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therefore,

QGNDDi � �Q�pi1
d , . . . , pin

d � � �
j�1

n

wj � qij
d � �

j�1

n

wj �
1

2
�1 � log9 bij

d�

�
1

2
� � 1 � �

j�1

n

wj � log9 bij
d� �

1

2
� �1 � log9 �

j�1

n

�bij
d�wj�

�
1

2
� �1 � log9 �Q

G�ai1
d , . . . , ain

d �� � f��Q
G�ai1

d , . . . , ain
d ��

We note that for all a, b  0, 1/(max{a, b}) � min{1/a, 1/b}, and thus aij
d �

min{9 � (aij/aji), 9}. All this leads us to the following definition:

DEFINITION 6. [multiplicative QGNDD (MQGNDD)]. If A � (aij) is a multipli-
cative preference relation over the set of alternatives X for the alternative xi, we
define the MQGNDDi used to quantify the degree to which xi is not dominated by
a fuzzy majority of the remaining alternatives as follows:

MQGNDDi � �Q
G�ai1

d , . . . , ain
d �

where aij
d � min{9 � (aij/aji), 9} represents the degree to which xi is strictly

dominated by xj measured in [1/9, 9].

In the two following propositions, we establish the consistency of the fore-
going multiplicative choice degrees by comparing them with the priority vectors
provided by Saaty’s eigenvector method applied in the AHP. In particular, we
show that the ordering among the alternatives provided by Saaty’s eigenvector
method from a multiplicative preference relation A � (aij) and the one obtained
by applying any of the two foregoing multiplicative quantifier-guided choice
degrees are the same; therefore, we show both choice degrees do not change the
informative content of the multiplicative preference relation.

PROPOSITION 2. If xi, xj � X, assuming that for a given consistent multiplicative
preference relation A � (aij), aij � ajk � aik, for all i, j, k,11 without loss of
generality, the eigenvector method provides a priority vector � � (�1, . . . , �n)
verifying �i � �j, and then the MQGDD satisfies the equivalent relationship:

MQGDDi � MQGDDj

Proof. We know that as A is consistent, the relation between the weights �i, �j,
and the judgment aij is given by aij � s(�i)/s(�j) being s an increasing function,7

and in particular aij � �i/�j. Then, the expression of the MQGDDi reduces to

MQGDDi � �
t�1

n

ait
wt � �

t�1

n �s��i�

s��t�
�wt

�
�t�1

n s��i�
wt

�t�1
n s��t�

wt

�
s��i�

¥t�1
n wt

�t�1
n s��t�

wt
�

s��i�

C
�

s��j�

C
� MQGDDj,
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where C � �t�1
n s(�t)

wt. �

PROPOSITION 3. If xi, xj � X, assuming that for a given consistent multiplicative
preference relation A, without loss of generality, the eigenvector method provides
a priority vector � verifying �i � �j, and then the MQGNDD satisfies the
equivalent relationship:

MQGNDDi � MQGNDDj

Proof. The assumption that �1 � �2 � . . . � an implies

(1) 1/�1 � 1/�2 � . . . � 1/�n and because s is an increasing function, ai1 � ai2

� . . . � ain

(2) ait � ati, for all i � t, which implies that

ait
d � min�9 �

ait

ati
, 9� � �9 � ait

2 if t � i
9 otherwise

In the case of the MQGNDDi, we have the following expression:

MQGNDDi � �
t�1

n

�ait
d�wt � �

t�1

i�1

�ait
d�wt � �

t�i

n

�ait
d�wt � �

t�1

i�1

9wt � �
t�i

n

�9ait
2�wt � 9 � �

t�i

n

�ait
2�wt

Because ait � 1, for all t � i, then

MQGNDDi � 9 � �
t�i

n

�ait�
2wt � 9 � �

t�i

j�1

�ait�
2wt � �

t�j

n

�ait�
2wt

� 9 � �
t�i

j�1

12wt � �
t�j

n

�ait
2�wt � 9 � �

t�j

n

�ait
2�wt � MQGNDDj �

3.2. The Relationship Between the OWG and the OWA Operators to
Design a Selection Process

At this point, we note that the foregoing multiplicative choice degrees of
alternatives and the OWG operator can be used to build a selection process based
on fuzzy majority to solve MCDM problems, where the experts express their
preferences on the set of alternatives X by means of a set of multiplicative
preference relations {A1, . . . , Am}. This selection process can be designed as a
multiplicative version of the selection process based on the OWA operator pro-
posed in Ref. 13 for MCDM problems with fuzzy preference relations.

Thus, the multiplicative selection process based on fuzzy majority is struc-
tured in two phases:

(1) The aggregation phase. This phase defines a collective multiplicative preference
relation, Ac � (aij

c ), which indicates the global preference according to the fuzzy
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majority of the experts’ opinions. Ac is obtained from {A1, . . . , Am} by means of the
following expression:

aij
c � �Q

G�aij
1, . . . , aij

m�

where �Q
G is the OWG operator guided by the concept of fuzzy majority represented

by the fuzzy linguistic quantifier Q.
(2) The exploitation phase. Using the quantifier-guided choice degrees defined for multi-

plicative preference relations, this phase transforms the global information about the
alternatives into a global ranking of them, supplying the set of solution alternatives.
According to the exploitation scheme designed in Refs. 3 and 4, the choice degrees can
be applied in three steps:

Step 1. Using �Q
G we obtain the following two sets of choice degrees of alternatives

from Ac:

�MQGDD1
c, . . . , MQGDDn

c� and �MQGNDD1
c, . . . , MQGNDDn

c�

The application of each choice degree of alternatives over X allows us to
obtain the following sets of alternatives:

XMQGDD � 	xi	xi � X, MDQGDDi
c � sup

j

MQGDDj
c


XMQGNDD � 	xi	xi � X, MDQGNDDi
c � sup

j

MQGNDDj
c


Step 2. The application of the conjunction selection policy, obtaining the following
set of alternatives: XQGCP � XMQGDD � XMQGNDD. If XQGCP � A, then end.
Otherwise, continue.

Step 3. The application of one of the two sequential selection policies, according to
either a dominance or nondominance criterion, i.e.,

• The dominance-based sequential selection process MQG-DD-NDD. To
apply the QGDD over X to obtain the set XMQGDD. If card(XMQGDD) � 1
then end, and this is the solution set. Otherwise, continue obtaining

XMQG-DD-NDD � 	xi	xi � XMQGDD, MDQGNDDi
c � sup

xj�XMQGDD

MQGNDDj
c


This is the selection set of alternatives.
The nondominance-based sequential selection process MQG-NDD-DD. To
apply the QGNDD over X to obtain the set XMQGNDD. If card(XMQGNDD) �
1 then end, and this is the solution set. Otherwise, continue obtaining

XMQG-NDD-DD � 	xi	xi � XMQGNDD, MDQGDDi
c � sup

xj�XMQGNDD

MQGDDj
c


This is the selection set of alternatives.

We should point out that in Ref. 4 we have shown that the transformation function
f also connects both OWA and OWG operators in the sense expressed in the
following result.

PROPOSITION 4. If {A1, . . . , Am} is a set of multiplicative preference relations and
Ac the collective multiplicative preference relation obtained using the OWG
operator �Q

G, and if {P1, . . . , Pm} is the set of additive fuzzy preference relations
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obtained via the transformation function f, Pk � f (Ak), and Pd is the collective
fuzzy preference relation obtained using the OWA operator �Q then Pd � f(Ac).

4. THE PRESERVATION OF THE RECIPROCITY PROPERTY
IN THE MULTIPLICATIVE SELECTION PROCESS

BASED ON THE OWG OPERATOR

In multiplicative MCDM models we assume that the multiplicative preference
relations to express the judgements are reciprocal. However, it is well known that
reciprocity generally is not preserved after aggregation is performed in the selec-
tion process. In this section, we study the conditions under which the reciprocity
property is maintained when aggregating multiplicative reciprocal preference re-
lations using an OWG operator guided by a relative fuzzy quantifier.

Suppose that a group of experts E � {e1, . . . , em} provide preferences about
the alternatives X � { x1, . . . , xn} by means of the multiplicative preference
relations {A1, . . . , Am}, which are reciprocal, aij

k � aji
k � 1, for all i, j, k.6

Then, in the aggregation phase of the foregoing multiplicative selection
process, we derive a collective preference relation Ac � (aij

c ) by using an OWG
operator �Q

G guided by a linguistic quantifier Q. Each aij
c indicates the global

preference between every pair of alternatives xi and xj according to the majority of
expert opinions represented by Q:

aij
c � �Q

G�aij
1, . . . , aij

m� � �
k�1

m

�bij
k�uk

with bij
k the kth largest value in the set {aij

1 , . . . , aij
m} and wk � Q(k/m) �

Q[(k�1)/m], for all k.
Because we are assuming Ak is reciprocal and then aji

k � 1/aij
k ; therefore, if

{bij
1 , . . . , bij

m} are ordered from highest to lowest, then {bji
1 , . . . , bji

m}, being bji
k

� 1/bij
k , are ordered from lowest to highest, and consequently we have

aij
c � aji

c � �
k�1

m

�bij
k�wk �

k�1

m

�bij
k�wm�k�1 � �

k�1

m

�bij
k�wk � �

k�1

m � 1

bij
k�wm�k�1

� �
k�1

m

�bij
k�wk�wm�k�1 � �

k�1

m

�bij
k�w� k

where w� k � {Q(k/m) � Q[(k�1)/m]} � {Q[(m�k�1)/m] � Q[(m�k)/m]}.
If we denote A(k) � Q(k/m) � Q[1 � (k/m)] then w� k � A(k) � A(k � 1). The
following result is obvious.

PROPOSITION 5. If Q is a nondecreasing linguistic quantifier with membership
function verifying

Q�1 � x� � 1 � Q�x�
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then the collective multiplicative preference relation Ac, obtained by aggregating
the set of multiplicative preference relations, {A1, . . . , Am}, using the OWG
operator �Q

G, is reciprocal.

Proof. If Q(1 � x) � 1 � Q( x), then A(k) � 1, for all k and, consequently,
w� k � A(k) � A(k � 1) � 0, for all k. This implies that

aij
c � aji

c � �
k�1

m

�bij
k�w� k � �

k�1

m

�bij
k�0 � �

k�1

m

1 � 1, @ i, j �

In the case that Q is a nondecreasing relative fuzzy quantifier with member-
ship function,

Q�x� � 

0 0 � x 	 a

x � a

b � a
a � x � b

1 b 	 x � 1

a, b � [0, 1], the election of a suitable fuzzy quantifier representing the concept
of fuzzy majority that we wish to implement in our MCDM problem is reduced to
choosing adequate values for the parameters a and b.

4.1. The Sufficient Condition for Parameters a and b

The problem that we have to solve is

What condition do the parameters a and b have to meet so that aij
c � aji

c � 1, @ i, j

Note 1. If all the individual multiplicative reciprocal preference relations are the
same, i.e., A1 � . . . � Am � A, then we will have Ac � A, no matter which OWG
operator �Q

G we use.
We distinguish three possible cases, according to the value of a � b: ( A) a �

b � 1, (B) a � b � 1, and (C) a � b  1.

4.1.1. Case A: a � b � 1

In this case 1 � a � b (1 � b � a); therefore,

Q�1 � x� � 

0 0 � 1 � x 	 a

1 � x � a

b � a
a � 1 � x � b

1 b 	 1 � x � 1
� � 


1 � 0 0 � x 	 a

1 �
x � a

b � a
a � x � b

1 � 1 b 	 x � 1
�

� 1 � Q�x�

If we apply the Proposition 5, the reciprocity property is maintained after the
aggregation phase is performed. This is summarized in the following proposition.
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PROPOSITION 6. If Q is a relative nondecreasing linguistic quantifier with param-
eters a and b verifying a � b � 1, then the OWG operator guided by Q maintains
multiplicative reciprocity.

EXAMPLE 1. Let’s assume the following three multiplicative reciprocal preference
relations

A1 � � 1 1 5
1 1 5

1/5 1/5 1
� A2 � � 1 3 9

1/3 1 3
1/9 1/3 1

� A3 � � 1 4 8
1/4 1 2
1/8 1/2 1

�
If we take the parameter values a � 0.4 and b � 0.6, then we have

Q�0� � Q�1/3� � 0, Q�2/3� � Q�1� � 1

therefore, the associated weighing vector is W � (w1, w2, w3) � (0, 1, 0). The
collective multiplicative preference relation that we obtain is

Ac � � 1 3 8
1/3 1 3
1/8 1/3 1

�
which obviously is reciprocal.

4.1.2. Case B: a � b � 1

In this case, we have 1 � a  b (1 � b  a) and as a � b we have a �
1/ 2. We will start by assuming that b � 1/ 2, which implies that 1 � b � b, and,
consequently,

Q�x� � 

0 0 � x 	 a
x � a

b � a
a � x 	 1 � b

x � a

b � a
1 � b � x 	 b

1 b � x 	 1 � a
1 1 � a � x 	 1

Q�1 � x� � 

1 0 � x 	 a
1 a � x 	 1 � b
1 � x � a

b � a
1 � b � x 	 b

1 � x � a

b � a
b � x 	 1 � a

0 1 � a � x 	 1

A�x� � 

1 0 � x 	 ma
x � m�b � 2a�

m�b � a�
ma � x 	 m�1 � b�

1 � 2a

b � a
m�1 � b� � x 	 mb

m � x � m�b � 2a�

m�b � a�
mb � x 	 m�1 � a�

1 m�1 � a� � x 	 m.
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It is clear that there exists h1, h2, h3, h4 � {1, . . . , m} such that h1 � 1 � m �
a � h1, h2 � 1 � m(1 � b) � h2, h3 � 1 � m � b � h3, and h4 � 1 � m(1 �
a) � h4; therefore,

A�0� � · · · � A�h1 � 1� � 1

A�k� �
k � m�b � 2a�

m�b � a�
, k � h1, . . . , h2 � 1

A�j� �
1 � 2a

b � a
, j � h2, . . . , h3 � 1

A�l� �
m � l � m�b � 2a�

m�b � a�
, l � h3, . . . , h4 � 1

A�h4� � · · · � A�m� � 1

Moreover, we have m � h4 � h1 � 1, m � h3 � h2 � 1; thus,

w� 1 � · · · � w� h1�1 � 0 � w� h4�1 � · · · � w� m

w� h1 �
h1 � ma

m�b � a�
� �w� h4 � 0

w� h1�1 � · · · � w� h2�1 �
1

m�b � a�
� �w� h3�1 � · · · � �w� h4�1 � 0

w� h2 �
h3 � mb

m�b � a�
� �w� h3 � 0

w� h2�1 � · · · � w� h3�1 � 0

The expression of aij
c � aji

c reduces to

aij
c � aji

c � �bij
h1

bij
h4�w� h1

� �
k�h1�1

h2�1 � bij
k

bij
m�k�1� 1/�m�b�a��

� �bij
h2

bij
h3�w� h2

As {bij
1 , . . . , bij

m} is ordered from highest to lowest, every fraction in the foregoing
expression is greater or equal to 1; therefore, the whole product is as well, i.e. aij

c �
aji

c � 1. In the case of b � 1/ 2 following a similar reasoning, we reach the same
conclusion. Summarizing, we have obtained the following result.

PROPOSITION 7. If {A1, . . . , Am} is a finite set of individual multiplicative recip-
rocal preference relations and Q is a nondecreasing relative quantifier with
membership function

Q�x� � 

0 0 � x 	 a
x � a

b � a
a � x � b

1 b 	 x � 1

ORDERED WEIGHTED GEOMETRIC OPERATOR 701



with a � b � 1, then the collective multiplicative preference relation obtained
using the OWG operator �Q

G, Ac � (aij
c), and aij

c � �Q
G(aij

1, . . . , aij
m) verifies aij

c � aji
c

� 1.

EXAMPLE 2. In the case of a � 0 and b � 0.5 (symbolizing the fuzzy quantifier of
“at least one-half”), the collective multiplicative preference relation that we obtain
is

Ac � � 1 3.63 8.65
0.69 1 4.22
0.17 0.44 1

�
If a � 0.15 and b � 0.35 the collective multiplicative preference relation is

Ac � � 1 3.90 8.91
0.91 1 4.79
0.19 0.48 1

�
In both cases it is clear that the condition aij

c � aji
c � 1 is verified.

4.1.3. Case C: a � b  1

As in the previous subsection, we have to distinguish two subcases: (i) a �
1/ 2 and (ii) a � 1/ 2. We study just the first one because following a similar
reasoning the same result is obtained in both subcases.

The expression of A( x) when a � 1/ 2 is the following:

A�x� � 

1 0 � x 	 m�1 � b�
m � x � ma

m�b � a�
m�1 � b� � x 	 ma

1 � 2a

b � a
ma � x 	 m�1 � a�

x � ma

m�b � a�
m�1 � a� � x 	 mb

1 mb � x 	 m.

As in the previous case, there exists r1, r2, r3, r4 � {1, . . . , m} such that r1 �
1 � m(1 � b) � r1, r2 � 1 � ma � r2, r3 � 1 � m(1 � a) � r3, r4 �
1 � mb � r4, m � r4 � r1 � 1, and m � r3 � r2 � 1; therefore,

w� 1 � · · · � w� r1�1 � 0 � w� r4�1 � · · · � w� m

w� r1 �
m � r1 � mb

m�b � a�
� �w� r4 � 0

w� r1�1 � · · · � w� r2�1 �
�1

m�b � a�
� �w� r3�1 � · · · � �w� r4�1 � 0

702 HERRERA, HERRERA-VIEDMA, AND CHICLANA



w� r2 �
r2 � 1 � ma

m�b � a�
� �w� r3 � 0

w� r2�1 � · · · � w� r3�1 � 0

The expression of aij
c � aji

c reduces to

aij
c � aji

c � �bij
r4

bij
r1�w� r4

� �
k�r1�1

r2�1 �bij
m�k�1

bij
k � 1/�m�b�a��

� �bij
r3

bij
r2�w� r3

As {bij
1 , . . . , bij

m} is ordered from highest to lowest, every fraction in the foregoing
expression is lower or equal to 1 and so the whole product is as well, i.e., aij

c � aji
c

� 1. Summarizing, we have obtained the following result.

PROPOSITION 8. If {A1, . . . , Am} is a finite set of individual multiplicative recip-
rocal preference relations and Q is a nondecreasing relative quantifier with
membership function

Q�x� � 

0 0 � x 	 a
x � a

b � a
a � x � b

1 b 	 x � 1

with a � b  1, then the collective multiplicative preference relation obtained
using the OWG operator �Q

G, Ac � (aij
c), and aij

c � �Q
G (aij

1, . . . , aij
m) verifies aij

c � aji
c

� 1.

EXAMPLE 3. In the case of a � 0.3 and b � 0.8 (fuzzy quantifier “most of”), the
collective multiplicative preference relation obtained is

Ac � � 1 2.28 7.11
0.33 1 2.79
0.12 0.3 1

� .

If a � 0.6 and b � 0.9, the collective multiplicative preference relation is

Ac � � 1 1.44 5.85
0.28 1 2.29
0.12 0.24 1

� .

In both cases it is clear that the condition aij
c � aji

c � 1 is verified.

4.2. The Necessity of the Condition a � b � 1

In this subsection, we will show that the condition a � b � 1 is also a
necessary condition to maintain reciprocity in the aggregation process of multipli-
cative preference relations.
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If we suppose that Ac � (aij
c ) is reciprocal no matter which set of individual

multiplicative reciprocal preference relations {A1, . . . , Am} are used, aij
c � aji

c �
1, for all i, j what can we say about the parameters a and b? Is it compulsory that
a � b � 1?

We will prove that in fact a � b � 1 because we will show that Ac is
reciprocal and that a � b � 1 are not compatible.

If a � b � 1, four cases have to be studied,

a � b � 1 b � 1/2
b � 1/2

a � b  1 a � 1/2
a � 1/2

As we have done in the previous subsection, we will prove the necessity of
a � b � 1 for cases a � b � 1 � b � 1/ 2 and a � b  1 � a � 1/ 2, because
in the other two cases the same result is obtained by similar reasoning.

4.2.1. Case B1: a � b � 1 and b � 1/2

To ensure that Ac � (aij
c ) is reciprocal for every set of multiplicative

reciprocal preference relations, the following two conditions have to be met:

(1) w� h1
� 0 and w� h2

� 0
(2) w� h1�1 � . . . � w� h2�1 � 0

or, equivalently,

(1) h1 � ma and h3 � mb
(2) h1 and h2 have to be consecutive numbers because 1/[m(b � a)] � 0, i.e., h2 � h1 �

1

These two conditions lead to

m�a � b� � ma � mb � h1 � h3 � �h2 � 1� � �m � �h2 � 1�� � m

i.e., a � b � 1, which contradicts a � b � 1.

4.2.2. Case C1: a � b  1 and a � 1/2

Again, to guarantee the reciprocity of Ac � (aij
c ) for every set of multipli-

cative reciprocal preference relations, the following has to be verified:

(1) w� r1
� w� r2

� 0 N r1 � m(1 � b) � r2 � 1 � m � a
(2) w� r1�1 � . . . �w� r2�1 � 0 N r2 � r1 � 1

and, consequently,

m�a � b� � ma � mb � r2 � 1 � m � r1 � r1 � 1 � 1 � m � r1 � m
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i.e., a � b � 1, which contradicts a � b � 1. Summarizing, we have obtained
the following result.

PROPOSITION 9. If Q is a nondecreasing relative fuzzy quantifier with membership
function

Q�x� � 

0 0 � x 	 a
x � a

b � a
a � x � b

1 b 	 x � 1

then the collective multiplicative preference relation, Ac, obtained by aggregating
a set of multiplicative preference relations {A1, . . . , Am}, using the OWG operator
�Q

G, is reciprocal if and only if a � b � 1.

5. THE CONSISTENCY PROPERTY IN THE MULTIPLICATIVE
SELECTION PROCESS BASED ON THE OWG OPERATOR

In the case that multiplicative preference relations are consistent, A � (aij),
verifying aij � ajk � aik, for all i, j, k, we showed in Section 3 that the ordering
among the alternatives provided by Saaty’s eigenvector method and the multipli-
cative choice degrees are the same. Therefore, knowing how to maintain the
consistency property in the aggregation process could be of great interest to a
decision maker.

It is easy to verify that the particular case of OWG operator, the geometric
mean, that has associated a set of weights or weighting vector W � (w1, . . . , wn)
such that wi � 1/m for all i not only preserves reciprocity but the consistency
property as well.

aij
c � ajk

c � � �
k�1

m

aij
l � 1/m

� � �
k�1

m

ajk
l � 1/m

� � �
k�1

m

aij
l � ajk

l � 1/m

� � �
k�1

m

aik
l � 1/m

� aik
c , @i, j, k

However, we note that the consistency property generally is not maintained after
aggregation is performed when using an OWG operator guided by a relative
nondecreasing quantifier Q.

Indeed, as is well known, a consistent multiplicative preference relation A has
to be reciprocal, i.e.,

aij � ajk � aik, @ i, j, kf aij � aji � 1, @ i, j

This is easy to prove. First, taking

k � j � i f aii � aii � 1, @ i

and therefore

aij � aji � aii � 1, @ i, j
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This means that to maintain the consistency property in the aggregation
process, the parameters a, b � [0, 1] of the relative nondecreasing fuzzy
quantifier Q have to verify a � b � 1, as we have proved in the previous section.
In example 1 we had

Ac � � 1 3 8
1/3 1 3
1/8 1/3 1

�
which obviously is reciprocal but not consistent because a12 � a23 � a13.

6. CONCLUDING REMARKS

In this study we have studied the foundations and presented justifications of
the origins of the OWG operator. We have also shown the main relationships
between the OWG and the OWA operator in an MCDM context, where preferences
are modeled by multiplicative preference relations. To do that we have used the
function that transforms multiplicative preference relations into fuzzy preference
relations, and the corresponding concepts, the OWA operator, and the QGDD and
QGNDD, in the case of fuzzy preference relations. We have also presented an
alternative selection process for MCDM problems to Saaty’s AHP, with the
advantage of allowing the decision makers to implement the concept of fuzzy
majority in the decision process, which was not possible in the case of Saaty’s
AHP. On the other hand, we have given a necessary and sufficient condition to
maintain reciprocity when aggregating a finite set of multiplicative reciprocal
preference relations using OWG operators guided by fuzzy quantifiers. In the case
of a nondecreasing relative fuzzy quantifier with parameters (a, b), reciprocity is
maintained only when a � b � 1. Furthermore, the greater the value of 	a � b �
1	 the more distant the collective multiplicative preference relation is from being
reciprocal. Finally, we have given an example that shows that a � b � 1 is a
necessary but not sufficient condition to maintain the consistency property in the
aggregation process.

In the future, we intend to study the order-induced aggregation15,16 when
using OWG operators and show its usefulness in multiplicative decision models.
Additionally, we want to study the use of OWG operators to define consensus
models17 in multiplicative decision making.
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