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Abstract. This paper presents the use of genetic algorithms to develop smartly tuned fuzzy logic controllers
dedicated to the control of heating, ventilating and air conditioning systems concerning energy performance and
indoor comfort requirements. This problem has some specific restrictions that make it very particular and complex
because of the large time requirements existing due to the need of considering multiple criteria (which enlarges the
solution search space) and to the long computation time models require to assess the accuracy of each individual.

To solve these restrictions, a genetic tuning strategy considering an efficient multicriteria approach has been
proposed. Several fuzzy logic controllers have been produced and tested in laboratory experiments in order to check
the adequacy of such control and tuning technique. To do so, accurate models of the controlled buildings (two real
test sites) have been provided by experts. Finally, simulations and real experiments were compared determining the
effectiveness of the proposed strategy.
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1. Introduction

In EU countries, primary energy consumption in build-
ings represents about 40% of total energy consumption
and it has grown from 1974 over 13% overall. This en-
ergy consumption is highly dependent on weather con-
ditions. Moreover, depending on the countries, more
than a half of this energy is used for indoor climate
conditions. On a technological point of view, it is es-
timated that the consideration of specific technologies
like Building Energy Management Systems (BEMSs)
can save up to 20% of the energy consumption of the
building sector, i.e., 8% of the overall Community con-
sumption. BEMSs are generally applied only to the
control of active systems, i.e., Heating, Ventilating, and
Air Conditioning (HVAC) systems. HVAC systems are

equipments usually implemented for maintaining sat-
isfactory comfort conditions in buildings. The energy
consumption as well as indoor comfort aspects of ven-
tilated and air conditioned buildings are highly depen-
dent on the design, performance and control of their
HVAC systems and equipments.

On the other hand, a study performed in the frame
of the ALTENER1 project has shown that the use
of automatic control for passive systems (e.g., shad-
ing or free cooling) and its integration into a BEMS
could result in important energy savings when com-
pared to manual control [1]. Therefore, the role of
automatic control is thus of major importance. How-
ever, control systems in buildings are often designed
and tuned using rules of thumb not always compatible
with the controlled equipment requirements, energy
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performance and users expectations and demand.
Therefore, an optimum operation of these systems is a
necessary condition for minimizing energy consump-
tions and optimizing indoor comfort.

Moreover, in current systems, various criteria are
considered and optimized independently one from an-
other: variable air flows are used for Indoor Air Quality
control, controlled air temperature is used for thermal
comfort management, and temperature set points are
modified for energy consumption control. No global
strategy for a coupled and integrated management of
all these criteria has been yet efficiently implemented
at an industrial level.

The use of rule-based controllers, specially Fuzzy
Logic Controllers (FLCs) [2–4], would enable the im-
plementation of multicriteria control strategies incor-
porating expert knowledge. However, a rational oper-
ation and improved performance of FLCs is required
for implementing complex control techniques. The use
of smart setting and tuning techniques for these con-
trollers could improve the energy savings and the in-
door comfort by fitting previously obtained Knowl-
edge Bases (KBs) provided by experts [5]. Genetic
Algorithms (GAs) [6, 7] present the ideal framework
to tune these FLCs [8] when multiple criteria are
considered.

In this paper, the use of GAs to develop smartly
tuned FLCs to control HVAC systems concerning en-
ergy performance and indoor comfort requirements is
presented. To evaluate the goodness of the proposed
technique, several FLCs incorporating the said inno-
vations have been produced and tested in laboratory
experiments in order to check the adequacy of such con-
trol and tuning techniques. To run the proposed tuning
technique, accurate models of the controlled buildings
(two real test sites) were provided by experts in order
to assess the fitness function.

This paper is set up in the following way. In the next
section, the basics of HVAC systems and FLCs are pre-
sented, explaining how these kinds of controllers can
be applied to HVAC systems. In Section 3, the HVAC
systems tuning restrictions are introduced, proposing a
particular genetic tuning technique to solve this prob-
lem. Section 4 shows the experiments performed in
the two test sites. First, several experiments are set up,
showing the oddities from each system to be controlled.
Later, simulated and experimental results are analyzed.
In Section 5, some concluding remarks are pointed
out, showing how this methodology could be applied
to other systems and progressively implemented at

industrial level. Finally, a table with the used acronyms
is presented in Appendix A.

2. HVAC Systems and their Control with FLCs

Nowadays, there are a lot of real-world applications
of FLCs like intelligent suspension systems, mo-
bile robot navigation, wind energy converter control,
air conditioning controllers, video and photograph
camera autofocus and imaging stabilizer, anti-sway
control for cranes, and many industrial automation
applications.

In the specific case of HVAC systems, most works
apply FLCs to solve simple problems such as thermal
regulation, maintaining a temperature setpoint [9–11].
However, in this work various different criteria must be
considered in order to reduce the energy consumption
maintaining a desired comfort level. Therefore, many
variables have to be considered from the controlled
system, which makes it very complex.

In the following we will see how we can solve this
complex problem by the application of FLCs.

2.1. Heating, Ventilating, and Air Conditioning
Systems

An HVAC system is comprised by all the components
of the appliance used to condition the interior air of a
building. The HVAC system is needed to provide the
occupants with a comfortable and productive working
environment which satisfies their physiological needs.

Temperature and relative humidity are essential fac-
tors in meeting physiological requirements. When tem-
perature is above or below the comfort range, the en-
vironment disrupts person’s metabolic processes and
disturbs his activities.

Therefore, an HVAC system is essential to a build-
ing in order to keep occupants comfortable. A well-
designed operated, and maintained HVAC system is
essential for a habitable and functional building envi-
ronment. Outdated, inappropriate, or misapplied sys-
tems result in comfort complaints, Indoor Air Quality
issues, control problems, and exorbitant utility costs.
Moreover, many HVAC systems do not maintain a
uniform temperature throughout the structure because
those systems employ unsophisticated control algo-
rithms. In a modern intelligent building, a sophisticated
control system should provide excellent environmental
control [9].
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Figure 1. Generic structure of an office building HVAC system.

In Fig. 1, a typical office building HVAC system
is presented. This HVAC system would comprise the
following components to be able to raise and lower
the temperature and relative humidity of the supply
air:

A. This module mixes the return air and the outside
air to provide supply air, and also closes outside
air damper and opens return air damper when fan
stops.

B. It is a filter to reduce the outside air emissions to
supply air.

C. The preheater/heat recovery unit preheats the
supply air and recovers energy from the exhaust
air.

D. A humidifier raising the relative humidity in winter.
E. This is a cooler to reduce the supply air temperature

and/or humidity.
F. An after-heater unit to raise the supply air tem-

perature after humidifier or to raise the supply air
temperature after latent cooling (dehumidifier).

G. The supply air fan.
H. The dampers to demand controlled supply air flow

to rooms.
I. It is a heat recovery unit for energy recovery from

exhaust air.
J. The exhaust air fan.

There are no statistical data collected on types and
sizes of HVAC systems delivered to each type of build-
ing in different European countries. Therefore, to pro-
vide an HVAC system compatible with the ambiance
is a task of the BEMS designer depending on its own
experience.

2.2. Fuzzy Logic Controllers

FLCs [2–4] are suitable for engineering because their
inputs and outputs are real-valued variables, mapped
with a non-linear function. These kinds of systems
achieve an alternative for those applications where clas-
sical control strategies do not achieve good results. In
many cases, these systems have two characteristics: the
need for human operator experience, and a strong non
linearity, where it is not possible to obtain a mathemat-
ical model.

Expert Control is a field of Artificial Intelligence
that has become a research topic in the domain of sys-
tem control, with the purpose of avoiding the afore-
mentioned drawbacks with respect to classical control
strategies. Fuzzy Logic Control is one of the topics
within Expert Control. Moreover, FLCs, as initiated by
Mamdani and Assilian [3, 4], are now considered as one
of the most important applications of Fuzzy Set Theory
proposed by Zadeh [12] in 1965. This theory is based
on the notion of fuzzy set as a generalization of the
ordinary set characterized by a membership function µ

that takes values in the interval [0, 1] representing de-
grees of membership to the set. FLCs typically define a
non-linear mapping from the system’s state space to the
control space. Thus, it is possible to consider the output
of an FLC as a non-linear control surface reflecting the
process of the operator’s prior knowledge.

An FLC is a kind of Fuzzy Rule-Based System which
is composed of a KB that comprises the information
used by the expert operator in the form of linguistic
control rules, a Fuzzification Interface, that transforms
the crisp values of the input variables into fuzzy sets
that will be used in the fuzzy inference process, an
Inference System that uses the fuzzy values from the
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Figure 2. Generic structure of a fuzzy logic controller.

Fuzzification Interface and the information from the
KB to perform the reasoning process, and the Defuzzi-
fication Interface, which takes the fuzzy action from
the inference process and translates it into crisp values
for the control variables. Figure 2 shows the generic
structure of an FLC.

The KB encodes the expert knowledge by means of
a set of fuzzy control rules. A fuzzy control rule is a
conditional statement in which the antecedent is a con-
dition in its application domain, the consequent is a
control action to be applied in the controlled system
and both, antecedent and consequent, are associated
with fuzzy concepts, that is, linguistic terms. The KB
is comprised by two components: the Data Base (DB)
and the Rule Base (RB). The DB contains the defini-
tions of the linguistic labels, that is, the membership
functions for the fuzzy sets. The RB is a collection of
fuzzy control rules, comprised by the linguistic labels,
representing the expert knowledge of the controlled
system.

According to the form of the consequents of the
fuzzy control rules, we can usually distinguish two
main different types of FLCs in the specialized lit-
erature, Mamdani FLCs [4] and Takagi-Sugeno-Kang
FLCs [13, 14]:

• Mamdani-type rules are composed of input and out-
put linguistic variables taking values on a linguistic
term set with a real-world meaning:

Ri: If X1 is Ai1 and . . . and Xn is Ain then Y is Bi ,

• Takagi-Sugeno-Kang-type rules are based on the di-
vision of the input space into several fuzzy sub-
spaces in which each rule defines a linear input-
output relationship by means of the real-valued

coefficients pi j :

Ri : If X1 is Ai1 and . . . and Xn is Ain then Y

= pi1 · X1 + · · · + pin · Xn + pi0,

where Xi and Y are the input and output linguistic
variables and the Ai j and Bi are linguistic labels with
fuzzy sets associated specifying their meaning.

Without lack of generality, in the following we con-
sider an RB constituted by m Mamdani-type fuzzy con-
trol rules Ri , i = 1, . . . , m.

The Fuzzification Interface establishes a mapping
between each crisp value of the input variable and a
fuzzy set defined in the universe of the corresponding
variable. Being x0 a crisp value defined in the input
universe U , A′ a fuzzy set defined in the same universe
and F a fuzzifier operator, it works as follows:

A′ = F(x0).

There are two main types of fuzzification, the first
one being the most usual:

a Singleton Fuzzification: A′ is built like a singleton
fuzzy set with support x0:

A′(x) =
{

1, if x = x0

0, otherwise.

b Non-Singleton or Approximate Fuzzification: In this
case, when x = x0, A′(x0) = 1, and the membership
of the rest of the values for U decreases while moving
away from x0.

The Inference System is based on the application
of the Generalized Modus Ponens, an extension of the
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classical Modus Ponens, proposed by Zadeh in the way:

If X is A then Y is B
X is A′

Y is B ′

The fuzzy conditional statement If X is A then Y is
B (with X , Y being linguistic variables and A, B fuzzy
sets) represents a fuzzy relation between A and B de-
fined in U ×V , with U and V being the universes of the
variables X and Y , respectively. The fuzzy relation is
expressed by a fuzzy set R whose membership function
µR(x, y) is given by:

∀x ∈ U, y ∈ V: µR(x, y) = I (µA(x), µB(y)),

with µA(x) and µB(y) being the membership functions
of the fuzzy sets A and B, respectively and I being a
fuzzy implication operator (rule connective) modeling
the fuzzy relation. The consequent B ′, obtained from
the Generalized Modus Ponens, is deduced by projec-
tion on V by means of the Compositional Rule of In-
ference, given by the following expression in which T ′

is a connective:

µB ′ (y) = Supx∈U {T ′
(µA′ (x), I (µA(x), µB(y)))}.

When Singleton Fuzzification is considered, the
fuzzy set A′ is a singleton. Thus, the Compositional
Rule of Inference is reduced to the following expres-
sion:

µB ′ (y) = I (µA(x0), µB(y)).

As said, the calculation of µA(x0) consists of the
application of a conjunctive operator T on µAi (xi ):

µA(x0) = T
(
µA1 (x1), µA2 (x2), . . . , µAn (xn)

)
.

The Inference System produces the same amount of
output fuzzy sets as the number of rules collected in the
KB. These groups of fuzzy sets are aggregated by the
also connective, which is modeled by an operator G.
However, they must be transformed into crisp values
for the control variables. This is the goal of the Defuzzi-
fication Interface. To describe its operation mode, we
denote by B ′

i the fuzzy set obtained as output when
performing inference on rule Ri , and by y0 the global
output of the FLC for an input x0.

There are two types of defuzzification methods
[15–17] according to the way in which the individ-
ual fuzzy sets B ′

i are aggregated through the also
connective, G:

• Mode A: Aggregation First, Defuzzification After.
The Defuzzification Interface performs the aggre-
gation of the individual fuzzy sets inferred, B ′

i , to
obtain the final output fuzzy set B ′:

µB ′ (y) = G
{
µB ′

1
(y), µB ′

2
(y), . . . , µB ′

n
(y)

}
.

Usually, the aggregation operator modeling G is the
minimum or the maximum. After that, the fuzzy set
B ′ is defuzzified using any strategy D, like the Mean
of Maxima, or the Center of Gravity mostly:

µ0 = D(µB ′ (y)).

• Mode B: Defuzzification First, Aggregation After. It
avoids the computation of the final fuzzy set B ′ by
considering the contribution of each rule output indi-
vidually, obtaining the final control action by taking
a calculation (an average, a weighted sum or a selec-
tion of one of them) of a concrete crisp characteristic
value associated to each of them.

More complete information on FLCs can be found
in [2, 18, 19].

2.3. Applying Fuzzy Logic Controllers to Heating,
Ventilating, and Air Conditioning Systems

In building automation, the objective of a global con-
troller would be to maintain the indoor environment
within the desired (or stipulated) limits. In our case, to
maintain environmental conditions within the comfort
zone and to control the Indoor Air Quality. Further-
more, other important objectives could be required, e.g,
energy savings, system stability, etc. In any case, nu-
merous factors have to be considered in order to achieve
these objectives. It makes the system being controlled
very complex and present a strong non linearity. In
these cases, FLCs are very robust tools which would
enable the implementation of multiple criteria control
strategies incorporating expert knowledge.

As it is known, the design of an FLC is focused on
the following parameters and characteristics:

• Control and controlled parameter selection. Con-
trolled parameters are variables which are affected
by the action of a controlled device receiving signals
from a controller, whilst control parameters are vari-
ables which may be used as inputs or outputs for a
control strategy.
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• The composition of the FLC KB, that is, the set of
fuzzy control rules forming the RB, and the set of
linguistic terms in the fuzzy partitions of the input
and output spaces forming the DB.

• FLC architecture and operators, i.e., the rule type
and architecture of the FLC, the membership func-
tion type, the conjunctive operator and, the implica-
tion function, the defuzzification mode, the charac-
teristic value and the control crisp value.

In this way, after the BEMS designer has defined
the system to be controlled (building and HVAC spec-
ification), the construction of the corresponding FLC
can be performed. This task can be subdivided in the
following subtasks:

1. Knowledge extraction method selection.
2. Identification of the controlled and the control pa-

rameters.
3. Identification of global indices for assessment of the

indoor building environment.
4. Description of number and architecture of fuzzy

controllers.
5. KB derivation method selection.
6. Selection of the inference system operators.
7. KB derivation.

In the following, several of these design tasks are
analyzed more deeply.

2.3.1. The Composition of the FLC KB. As said, the
KB encodes the expert knowledge of the controlled
system. Therefore, it depends on the concrete applica-
tion making the accuracy of the designed FLC directly
depend on its composition. There are four modes of
derivation of fuzzy control rules, that are not mutually
exclusive [19]. These modes are the following:

a Expert experience and control engineering knowl-
edge: It is the most widely used, being effective when
the human operator is able to linguistically express
the control rules he uses to control the system. Since
they present an adequate form to represent expert
knowledge, these rules are usually of Mamdani type.

b Modeling of the operator’s control actions: The con-
trol action is formed making a model of the operator
actions without interviewing him.

c Based on the fuzzy model of a process: It is based
on developing a fuzzy model of the system and con-
structing the fuzzy rules of the KB from it. This ap-
proach is similar to that traditionally used in Control

Theory. Hence, structure and parameter identifica-
tion are needed [20].

d Based on learning and self-organization: This
method is based on the ability for creating and mod-
ifying the fuzzy control rules in order to improve
the controller performance by means of automatic
methods.

In these kinds of problems (HVAC system controller
design), the KB is usually constructed by using the
first method, i.e., based on the operator’s experience.
However, FLCs sometimes fail to obtain satisfactory
results with the initial rule set drawn from the expert’s
experience [11]. This is because of:

• the gathering and structuring of expertise is not easy,
• the setting up of the KB is an extensive task, and
• although a lot of knowledge is generic, the structure

of the system to which it will apply varies substan-
tially.

Moreover, in our case the system being controlled
is too complex and optimal controllers are required.
Therefore, this approach needs of a modification of the
initial KB to obtain an optimal controller. To do so, a
tuning on the semantic of an FLC previously obtained
from human experience could be performed by modi-
fication of the DB components. Other possibility is to
perform the rule learning together with the derivation
of the DB components [21].

In this work, FLCs will be obtained from human
experience to subsequently be tuned by the applica-
tion of automatic tuning techniques. Thus, the learning
method is a combination of the first and fourth deriva-
tion modes.

On the other hand, to evaluate the FLC performance,
physical modelization of the controlled buildings and
equipments is needed. These models will be developed
by BEMS designers using building simulation tools,
and they will have to be able to account for all the pa-
rameters considered in the control process. The models
will be validated using experimental data correspond-
ing to the real sites being simulated. Many data cor-
responding to various operation conditions and heat
or cooling load will be prepared and compared with
simulations.

Thus, we will have the chance to evaluate the FLCs
designed in the simulated system with the desired en-
vironmental conditions. In the same way, these system
models can be used by the experts to validate the initial
KB before the tuning process. On the other hand, it is
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of major importance to assess the fitness function in
tuning.

2.3.2. Control and Controlled Parameter Selec-
tion. Control and controlled parameters have to be
chosen regarding the control strategy being imple-
mented, the technical feasibility of the measurements
as well as economic considerations. Fortunately, the
BEMS designer is usually able to determine these
parameters.

However, our intention is to develop both controllers
and tuning strategies. This requires the use of explicit
parameters (directly used as fuzzy controller’s inputs
or outputs) as well as implicit parameters used in the
fitness function developed in order to evaluate the per-
formance of each controller.

To identify the FLC’s variables, various parameters
(control or explicit parameters) may be considered de-
pending on the HVAC system, sensors and actuators.
We propose the following parameters:

• Predicted Mean Vote (PMV) index for thermal com-
fort: Instead of only using air temperature as a ther-
mal comfort index, we could consider the more
global PMV index selected by international standard
ISO 7730 (incorporating relative humidity and mean
radiant temperature).

• Difference between supply and room temperatures:
Possible disturbances can be related to the difference
between supply and mean air temperature. When
ventilation systems are used for air conditioning,
such a criterion can be important.

• CO2 concentration: Indoor Air Quality was found
to be critical. As CO2 concentration is a reliable in-
dex of the pollution emitted by occupants, it can be
selected as Indoor Air Quality index. It is therefore
supposed that the building and HVAC system have
been properly designed and that occupants actually
are the main source of pollution.

• Outdoor temperature also needed to be accounted
for, since during mid-season periods (or even morn-
ings in summer periods) its cooling (or heating) po-
tential through ventilation can be important and can
reduce the necessity of applying mechanical cooling
(or heating).

• HVAC system actuators: It directly depends on the
concrete HVAC system, e.g., valve positions, oper-
ating modes, fan speeds, etc.

To identify global indices for assessment of the
indoor building environment, various (controlled or

implicit) parameters may be measured depending
on the objectives of the control strategy. In these
kinds of problems, these parameters could be selected
among:

• Thermal comfort parameters: Indoor climate control
is one of the most important goals of intelligent build-
ings. Among indoor climate characteristics, thermal
comfort is of major importance. This might include
both global and local comfort parameters.

• Indoor Air Quality parameters: Indoor Air Quality is
also of major concern in modern buildings. It is con-
trolled either at the design stage by reducing possible
pollutants in the room and during operation thanks
to the ventilation system. As our work is dedicated
to HVAC systems, Indoor Air Quality is also an im-
portant parameter to account for.

• Energy consumption: If appropriate Indoor Air Qual-
ity and thermal comfort levels have to be guaranteed
in offices, this has to be achieved at a minimum en-
ergy cost. Therefore, energy consumption parame-
ters would need to be incorporated.

• HVAC system status: A stable operation of the con-
trolled equipments is necessary in order to increase
life cycle and thus reduce the maintenance cost. In-
formation of the status of the equipments at the de-
cision time step or on a longer period must thus be
considered.

• Outdoor climate parameters: Indoor conditions are
influenced by outdoor conditions (air temperature,
solar radiation, wind). Moreover, in an air distribu-
tion HVAC system, the power required to raise or
lower the supply temperature is a function of outdoor
temperature and humidity. Some of these parameters
would thus need to be selected.

The selection of these parameters is a task concerned
to the BEMS designer as well. In our case, several
controller architectures involving different variables
(control or explicit parameters) have been developed
depending on the concrete testing site (building) con-
sidered (see Fig. 8 in Section 8 for a concrete FLC
architecture and its respective parameters).

2.3.3. FLC Architecture and Operators. Architec-
ture and inference operators are factors that have a
significant influence on the FLC behavior. The influ-
ence of several of these factors is analyzed in [16, 22],
taking as a basis several control applications.

As we have already seen, there are different alter-
natives to select these factors. In this section, we will
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propose one of them attending to their advantages and
weaknesses in some aspects of the KB derivation pro-
cess. We will strive to apply operators as simple as
possible without loss in the system accuracy. If so,
these operators will be easier to implement and faster
to compute.

A distributed hierarchical architecture [23, 24],
which allows us to divide the control tasks among dif-
ferent modules, is proposed for our FLC. Using the
expert knowledge of the system to partition the con-
troller permits an adequate control with much fewer
rules. Moreover, with this approach, the subsequent
control tuning becomes easier since the modification
of one parameter influences a smaller number of rules.

In addition, it is recommended that three controllers
(rather than a single one) be developed for each testing
site (in our case, by only changing the corresponding
KB and maintaining the FLC architecture). The reason
for this lies in the important climate variations all over
the year and the variable expectations from occupants
according to season. Therefore, one controller per sea-
son will be developed considering fall and spring as
the same kind of season. These controllers could be
switched according to dates or by mixing the three con-
trollers including a new meta-level in the hierarchical
FLC.

On the other hand, the remaining factors to be consid-
ered are the following: rule type, type of membership
functions, conjunctive operator, implication function,
defuzzification mode, characteristic value and control
crisp value. The selection of all of them is presented
below.

We propose the Mamdani-type rules because they
provide a natural framework to include expert knowl-
edge in the form of linguistic rules which is of major
importance in our problem. In the same way, we pro-
pose the triangular membership functions instead of the
trapezoidal or the gaussian ones—being the former two
linear functions and the latter a non-linear function—.
Since we expect a KB derivation from experts, lin-
ear functions are more intuitive and easier to manage.
Moreover, as all of them achieve similar results [25],
we will use triangular membership functions, which
are simpler. Their formula is:

µAi (x) =




x − a

b − a
, if a ≤ x < b

c − x

c − b
, if b ≤ x ≤ c

0, otherwise.

Among all the associative functions, t-norms are
the more suitable to be used to define the connective
and [16]. Two basic t-norms have been usually con-
sidered: minimum (Min(x, y) = min(x, y)) and prod-
uct (�(x, y) = x · y). Minimum operator achieves co-
operative rules while product operator achieves com-
petitive rules. Since we have recommended triangular
membership functions and a good co-operation among
rules is interesting in this case, the minimum operator
is proposed. On the other hand, from the results re-
ported in [16], we recommend the use of the minimum
t-norm (Mamdani implication) also as implication op-
erator (rule connective) because it yielded the best be-
havior among the 41 implication operators tested.

We use Mode B defuzzification (see Section 2.2)
because the defuzzification method working in this
mode is more robust, quick and easier to compute than
those used in Mode A [16]. As characteristic value and
control crisp value, we propose the Mean of Maxima
weighted by the rule antecedent matching, hi , since
according to the results reported in [16], it renders the
best accuracy among the 17 different defuzzification
methods tested.

3. Genetic Tuning of FLCs for HVAC Systems

The tuning of FLCs for HVAC systems presents two
specific restrictions that make it very particular and
complex. The following subsections address these
problems proposing an efficient genetic tuning tech-
nique to develop smartly tuned FLCs dedicated to the
control of HVAC systems.

3.1. HVAC Systems Tuning Restrictions

Tuning problems are usually based on the availability
of a predefined RB and a preliminary set of member-
ship functions associated to the fuzzy partitions, DB.
Their main aim is to find a better set of parameters by
only changing the DB components, thus reducing the
solution search space. We have followed the same ap-
proach but, in our case, the problem has two specific
restrictions which make it very particular and complex:

• The evaluation is based on multiple objectives (en-
ergy consumption, occupants thermal comfort, In-
door Air Quality, peak load electrical demand, . . .).
This fact adds complexity to the search because we
must obtain the best trade-off among the different
criteria.
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• The controller accuracy is assessed by means of
simulations which usually take a long time. This
causes the run time of the algorithms to be extremely
long.

Although there are many genetic tuning techniques
[26–28], neither of them in their original proposed
forms can be satisfactorily used because they do not
properly address these restrictions. On the one hand,
neither of them is initially prepared to tackle with
multiobjective optimization (of course, they could be
adapted to do so). On the other hand, the choices
considered for the GA components in these proposals
(generational replacement, coding scheme, etc.) would
make the optimization process extremely slow if ap-
plied directly to a problem like ours where the simu-
lation performed to evaluate each chromosome could
take approximately 200 seconds. Therefore, in order to
solve these two problems, efficient tuning approaches
considering both restrictions should be developed.

GAs can represent any type of fuzzy rules, present
flexibility to work with different FLC architectures and
have a good capability to include expert knowledge [8].
Furthermore, the ability to handle complex problems,
involving features such as discontinuities, multimodal-
ity, disjoint feasible spaces and noisy function evalua-
tions, reinforces the potential effectiveness of GAs in
multicriteria search and optimization. For these rea-
sons, GAs have been recognized to be possibly well-
suited to multicriteria optimization [29].

From this point of view, the first restriction will be
solved by using multicriteria genetic optimization tech-
niques that will allow us to work with fitness functions
comprised by competitive objectives. In these cases, we
could obtain not only an optimal solution, but a possi-
ble solution set. Depending on the number of solutions
obtained, we can distinguish between those multicrite-
ria approaches based and not based on aggregation of
the objectives.

All classical multicriteria aggregation-based meth-
ods scalarize the objective vector reducing it to a scalar
optimization problem. Probably, the simplest of all
these classical techniques is the objective weighting
method. In this case, multiple objective functions are
combined into one overall objective function by means
of a vector of weights. This technique has much sensi-
tivity and dependency toward weights. However, when
trustworthy weights are available, this approach re-
duces the search space providing the adequate direc-
tion into the solution space and its use is highly recom-
mended. Therefore, the main question to be considered

in this approach is: have we trusted weights to estimate
the importance of each objective?

In our case, trustworthy weights were provided by
the BEMS designer. Therefore, the fitness function will
be based on objective weighting. Furthermore, the use
of fuzzy goals for dynamically adapting the search di-
rection in the space of solutions will be considered.
It will make the method robust and more independent
from the weight selection for the fitness function.

In order to solve the second restriction, the use of ef-
ficient tuning methods is necessary. There are some ap-
proaches that increase the convergence speed of GAs:

• An objective weighting technique would reduce the
search space when trustworthy weights are used.

• A steady-state GA [30], that involves selecting two
of the best individuals in the population and com-
bining them to obtain two offspring. This approach
improves the convergence and simultaneously de-
creases the number of evaluations.

• Reducing the population size, the number of evalu-
ations is significantly decreased. However, this size
must be large enough in order to maintain the diver-
sity in the genetic population.

Both, the multicriteria and the efficient tuning ap-
proaches will be considered in the proposed tuning
method.

3.2. Genetic Tuning Proposal

Taking into account the existence of trusted weights
and in order to benefit from them, we propose a simple
steady-state GA with the classical real coding [31] and
with a fitness function based on objective weighting, the
so called Weighted Multi-Criteria Steady-State Genetic
Algorithm (WMC-SSGA).

In the following subsections, GAs and multicrite-
ria genetic plain aggregation approaches are briefly in-
troduced to subsequently present the proposed WMC-
SSGA.

3.2.1. Genetic Algorithms: The Steady-State
Approach. GAs are general-purpose global search
algorithms that use principles inspired by natural
population genetics to evolve solutions to problems.
The basic principles of the GAs were first laid down
rigorously by Holland [32] and are well described in
many texts such as [7].
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The basic idea is to maintain a population of knowl-
edge structures that evolves over time through a process
of competition and controlled variation. Each structure
in the population represents a candidate solution to the
specific problem and has an associated fitness to deter-
mine which structures are used to form new ones in the
process of competition.

Hence, a subset of relatively good solutions are se-
lected for reproduction to give offspring that replace the
relatively bad solutions which die. Usually, offspring
replace their parents for the next generation (genera-
tional approach). These new individuals are created by
using genetic operators such as crossover and mutation.
The crossover operator combines the information con-
tained into the parents increasing the average quality of
the population (exploitation), while the mutation oper-
ator randomly changes the new individuals helping the
algorithm to avoid local optima (exploration).

On the other hand, the steady-state approach [30]
consists of selecting two of the best individuals in
the population and combining them to obtain two off-
spring. Then, these two new individuals are included
in the population replacing the two worst individuals if
the former are better adapted than the latter. An advan-
tage of this technique is that good solutions are used as
soon as they are available. Therefore, the convergence
is accelerated while the number of evaluations needed
is decreased.

3.2.2. Multicriteria Genetic Optimization. Gener-
ally, multicriteria GAs only differ from the rest of GAs
in the fitness function and/or in the selection opera-
tor. The evolutionary approaches in multicriteria opti-
mization can be classified into three groups [29]: plain
aggregating approaches, population-based non-pareto
approaches, and pareto-based approaches.

The method of objective weighting belongs to the
former approach. Within this approach, as conventional
GAs require scalar fitness information to work on, a
scalarization of the objective vectors is always nec-
essary. In most problems, where no global criterion
directly emerges from the problem formulation, objec-
tives are often artificially combined, or aggregated, into
a scalar function according to some understanding of
the problem, and then the GA is applied. Practically, all
the classical aggregation approaches can be used with
GAs.

Optimizing a combination of the objectives has the
advantage of producing a single compromise solu-
tion, requiring no further interaction with the decision-

maker. The problem is that, if the optimal solution can
not be accepted, new runs of the optimizer may be
required until a suitable solution is found. However,
when trustworthy weights are available this problem
disappears.

3.2.3. Weighted Multi-Criteria Steady-State Genetic
Algorithm. WMC-SSGA consists of a GA based on
the well-known steady-state approach [30]. Its main
characteristic is the fact that good solutions are used
as soon as they are available, thus accelerating the
convergence and decreasing the number of evaluations
needed. Figure 3 presents the flowchart of the proposed
method, while its main components are introduced as
follows.

3.2.3.1. Coding Scheme. WMC-SSGA uses a real
coding scheme [31]. A solution is directly encoded into
a chromosome by joining the representation of the li

labels of each one of the m variables composing the
DB. For example:

Ci = (
ai

1, bi
1, ci

1, . . . , ai
li
, bi

li
, ci

li

)
, i = 1, . . . , m,

C = C1C2 . . . Cm .

 Variation Intervals Definition

 Initial Population Generation

 Evaluation

t     0

 Variation Intervals Adapting

 Converge Restart

Begin

 Selection of the
   two parents

 Crossover

Mutation

t     t+1

t > t

yes

no

max

 End

no

yes

 Evaluation

Figure 3. Flowchart of the GA process.
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3.2.3.2. Initial Gene Pool. To make use of the existing
knowledge, the DB previously obtained from expert
knowledge is included in the population as an initial
solution. The remaining individuals are randomly gen-
erated maintaining their genes within their respective
variation intervals. These intervals are computed from
the initial solution. Thus, the variation intervals of each
definition point of the j-th label membership function
of the i-th variable, (ai

j , bi
j , ci

j ), are calculated as

{
l1
a , l2

a

} = {
max
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ci
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Notice that the associated variation intervals of the
corresponding extreme values, ai

j and ci
j , are calculated

exactly as the intervals for bi
j−1 and bi

j+1, respectively.
In a strong fuzzy partition (those in which the mem-

bership degree within the variable domain is kept to
1.0), the vertex of each label (bi

j ) coincides with the
nearest extreme points of its neighbor labels, ci

j−1 =
bi

j = ai
j+1. In this case, only the vertex of the labels has

to be considered and the same variation interval can be
defined for coincident points. Thus, the variation inter-
vals are usually defined by the middle points between
the correspondent vertex and the vertex of the previous
and the next label.

In our case, a more flexible approach is considered
and the vertex of the labels does not have to coincide
with the nearest extreme points of its neighbor labels
(see Fig. 4). However, considering these three points as
a simple set for each label B j = {ci

j−1, bi
j , ai

j+1} and
taking into account that they have the same variation
interval, the same approach can be followed. In this
way, the middle point between two sets can be com-
puted considering the maximum point of the first set
and the minimum point of the second set. Therefore,
to calculate the left extreme of the variation interval

b i
j

Label j-1 Label j Label j+1

Bj-1 Bj Bj+1

b i
j-1 b i

j+1

a i
j c i

jc i
j-1a i

j+1 a i
j+2c i

j-2

Lb i
j

Rb i
j

Lc i
j-1

La i
j+1

Rc i
j-1

Ra i
j+1

... ...

Figure 4. Variation interval of bi
j , ci

j−1 and ai
j+1.

for a concrete definition point x ∈ B j , we should con-
sider the maximum point of B j−1 (l1

x ) and the mini-
mum point of the corresponding set B j (l2

x ). And for
the corresponding right extreme, we should consider
the maximum point of B j (r1

x ) and the minimum point
of B j+1 (r2

x ).
Figure 4 graphically depicts the variation intervals

for those points contained in B j following the proposed
approach. We have considered that the vertex of the la-
bels at the edges of the variables’ domain must coincide
with the extreme points. These labels will be symmet-
rical with respect to their vertexes.

Finally, these intervals are dynamically adapted from
the best individual for each generation, avoiding the re-
strictions of fixing them from the beginning of the GA
run. Once these intervals have been calculated, the
genes out of range are randomly generated within them.

3.2.3.3. Evaluating the Chromosome. The fitness
function was finally selected with the following typ-
ical components:

O1 Upper thermal comfort limit: if PMV > 0.5, O1 =
O1 + (PMV − 0.5).

O2 Lower thermal comfort limit: if PMV <

−0.5, O2 = O2 + (−PMV − 0.5).
O3 Indoor Air Quality requirement: if CO2 conc. >

800 ppm, O3 = O3 + (CO2 − 800).
O4 Energy consumption: O4 = O4 + Power at time t .
O5 System stability: O5 = O5 + System change from

time t to (t − 1), where system change states for
a change in the system operation, i.e., it counts
the system operation changes (a change in the fan
speed or valve position).
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This fitness function is based on objective weight-
ing. However, it has been modified in order to consider
the use of fuzzy goals for dynamically adapting the
search direction in the space of solutions, decreasing
the improvement possibility of those objectives which
approach their goals in the first place. Thus, a function
modifier parameter, δi (x), is used to penalize each ob-
jective (taking values over 1.0) whenever its value gets
worse with respect to the initial solution or to decre-
ment the importance of each individual fitness value
whenever it comes to its respective goal (taking values
close to 0.0). Moreover, a penalization rate has been
included in δi (x), allowing the user to set up priorities
in the objectives. This penalization rate, pi , for each
objective is a real number from 0.7 to practically 1,
although the user specifies this penalization from 0 to
1 (less and more priority, respectively), which is more
interpretable. Therefore, the global fitness is evaluated
as:

F =
5∑

i=1

wi · δi (Oi ) · Oi ,

with wi being the weighting coefficients to be set for
each specific problem.

Two cases can happen in the corresponding individ-
ual according to the value of the goal, gi , and the value
of the initial solution, ii . Depending on these values,
two different δ functions will be applied:

• The first case is when the value of gi is lesser than
the value of ii , presenting the following behavior (see
Fig. 5):

δi (x) =




0, if x ≤ gi

x − gi

ii − gi
, if gi < x < ii

x − ii

x − x · pi
+ 1, if ii ≤ x .

1

0

gi ii

Figure 5. δi (x) when gi ≤ ii .

In this case, the objective is not considered if the goal
is met and penalized if the initial results are worsen.

• The second case happens when the initial value, ii ,
is lesser than the goal value, gi (see Fig. 6):

δi (x) =



0, if x < gi

x − gi

x − x · pi
+ 1, if gi ≤ x .

1

0

giii

Figure 6. δi (x) when gi > ii .

Now, the initial results can be worsen while the goal
is met, and it is penalized otherwise.

Notice that the penalization function allows the
search to slightly worsen the goal, improving other ob-
jectives to subsequently met the goal again.

3.2.3.4. Genetic Operators. Since WMC-SSGA uses
the real coding scheme, the crossover and mutation
operators have been selected according to this as-
pect: the Max-Min-Arithmetical crossover [33] and
Michalewicz’s non-uniform mutation [7].

Let Cv = (c1, . . . , ck, . . . , cH ) and Cw = (c′
1, . . . ,

c′
k, . . . , c′

H ) be the two parents selected for crossover.
Using the max-min-arithmetical crossover, the result-
ing descendents are the two best of the next four
offspring:

C1′ = aCw + (1 − a)Cv

C2′ = aCv + (1 − a)Cw

C3′ with c3k = min{ck, c′
k}

C4′ with c4k = max{ck, c′
k},

with a being a constant parameter chosen by the GA
designer, and H being the number of genes.

In the case of the Michalewicz’s non-uniform muta-
tion, a gene ck , with a variation interval [Lck , Rck ], can
be mutated as c′

k = ck +�(t, Rck −ck) with probability
0.5, or as c′

k = ck − �(t, ck − Lck ), otherwise. With t
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being the current generation, function �(t, y) returns
a value in the range [0, y] such that the probability of
�(t, y) being close to 0 increases as the number of
generations increases. This function is formulated as
�(t, y) = y(1 − r (1− t

T )b
), with r being a random num-

ber in [0, 1], T the total number of generations, and b
being selected by the user to determine the dependency
with t .

On the other hand, the selection is based on the
Baker’s stochastic universal sampling [34] together
with the elitist selection.

3.2.3.5. Restart. Finally, to get away from local op-
tima, this algorithm uses a restart approach [35]. Thus,
when the population of solutions converges to very sim-
ilar results, the entire population but the best individual
is randomly generated within the variation intervals.
This allows the algorithm to perform a better explo-
ration in the search space and to avoid getting stuck at
local optima.

4. Experiments and Results Obtained

To evaluate the goodness of the proposed technique,
several experiments have been carried out within the
framework of the JOULE-THERMIE programme un-
der the GENESYS2 project. Two real test sites were
available for the experiments. The first one is provided
by both Centre National de la Recherche Scientifique
(CNRS) and the Ecole Nationale des Travaux Publics
de l’Etat (ENTPE) from France, whilst the second be-
longs to a French private enterprise whose name must
remain anonymous. From now on, the latter will be
called ATC test cells—from Anonymous Test Cell—.
In both cases, the main objective was the energy per-
formance but maintaining the required indoor comfort
levels.

To run the proposed tuning technique, accurate mod-
els of these controlled buildings were provided by ex-
perts for each season. These models assess the tuning
algorithm for fitness computation (see Section 2.3.1
and Section 3). The results obtained were very satis-
factory, specially for the ATC summer-season model.
However, due to the large number of results, we will
work only with a cross-section of the models, the CNRS
ENTPE mid-season and summer-season models, and
the ATC summer-season model.

In this section, the experiments performed with the
said models are presented. After the experiments are
set up—showing the oddities from each system to be

controlled—, simulated and experimental results will
be analyzed. Results will be compared to the perfor-
mance of the initial expert FLC and to a classical con-
trol technique, an On-Off controller.

4.1. Experimental Set-Up

The first task was to develop the thermal models of
the two test sites that would be used in the complete
learning process. These test sites have different char-
acteristics, specially regarding the composition of their
HVAC system. The main aspects of these sites are the
following:

• CNRS ENTPE test site: Two single zone twin cells
with low thermal mass located in a large hall whose
climatic conditions can be controlled. The climatic
control of the large hall temperature make it pos-
sible to create artificial climate with at least 8◦C
amplitude per day (e.g. from 23 to 31◦C in sum-
mer conditions). The HVAC system is based on an
air supply ventilation system with a maximum air
flow rate of 2000 m3/h (test cells volume is 80 m3),
with direct expansion cooling and an electric coil
controlled through a triac. Three fan speeds make
it possible to slightly control supplied air flow rates
(Fig. 7 illustrates these test cells).

• ATC test site: Also located in France, this test envi-
ronment consists of two adjacent twin cells. Around
these test cells walls, an artificial climate can be
created at any time (winter conditions can be sim-
ulated in summer and vice-versa). These test cells
are medium weight constructions. The HVAC system
tested is a fan coil unit supplied by a reverse-cycle
heat pump, and a variable fan speed mechanical ex-
tract for ventilation.

These test cells were equipped with all sensors re-
quired according to the selected control and controlled
parameter.

The main achievement was the development of a full
monozone building model. This model was built from
scratch within the Matlab-Simulink environment, be-
ing developed as a general purpose model which could
be used for any other conditions, projects or applica-
tions in the future. However, in order to improve its
performance, it was later customized to suit each test-
ing facility (different test sites and seasons). This cus-
tomization (such as including HVAC systems models)
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Figure 7. Representation of the CNRS ENTPE test cells.

might be slightly changed in the future in order to ac-
count for further experiments and calibration.

The thermal simulation was based on finite-
differences methods for the conduction model. The
maximum value for the time-step of the simulation was
calculated using the stability condition according to
the discretization scheme. Simulation time step could
be reduced to 60 seconds for these test cells. Due to
the relatively small thickness and large thermal con-
ductive of windows, the heat conduction model for the
windows was considered constant.

Convective heat exchanges were based on con-
stant heat convection coefficients. Radiant tempera-
ture is calculated as a function of surface temperature,
weighted by their relative area.

The HVAC system models were based on manufac-
turers data and modules developed in the frame of IEA
task 22 provided by the Royal Technical Institute of
Stockholm.

Fitness function and fuzzy inference algorithms (see
Section 2.3.3) were also added within these models.
Data were available and used for models calibration.
The main problems in the calibration concerned the
modelization of the HVAC equipments as well as solar
radiation effects on internal heat gains.

For each of the two testing sites, a different hierar-
chical FLC architecture was selected, regardless of the
season considered in each case. They are very slightly
different in their structure but all of them include at
least PMV, CO2 concentration, previous HVAC system
status and outdoor temperature. In addition, the archi-
tecture developed for the ATC FLC included measures

of thermal discomfort, Indoor Air Quality discomfort
and energy consumption for a 30 minutes to 1 hour
period prior to the control decision. The ATC FLC ar-
chitecture is presented in Fig. 8.

Another important outcome was the development
of the fitness function aiming to characterize the
performance of each tested controller towards ther-
mal comfort, Indoor Air Quality, energy consumption
and system stability criteria. This was presented in
Section 3.2.3. However, in order to compare the dif-
ferent solutions obtained, the fuzzy goals will not be
considered to compute the fitness value of the results
presented in tables.

This fitness function was comprised of five crite-
ria. The main problem was then to assign appropriate
weights to each criterion. The basic idea in this weight
definition was to find financial equivalents for all of
them. Such equivalences are difficult to define and there
is a lack of confident data on this topic. Whereas en-
ergy consumption cost is easy to set, comfort criteria
are more difficult. Recent studies have shown that an
18% improvement in people’s satisfaction about indoor
climate corresponds to a 3% productivity improvement
for office workers. Based on typical salaries and due to
the fact that PMV and CO2 concentrations are related to
people’s satisfaction, such equivalences can be defined.

The same strategy can be applied to the systems
stability criterion, life-cycle of various systems being
related to number of operations. Based on this, weights
can be obtained for each specific office (or test cell in
our case). Thus, trusted weights for both test cells were
obtained. For CNRS ENTPE model the chosen values
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Figure 8. Initial rule base and generic structure of the ATC summer-season fuzzy logic controller.

were: w1 = 0.0083022, w2 = 0.0083022, w3 =
0.00000456662, w4 = 0.0000017832 and w5 =
0.000761667. For ATC model: w1 = 0.0041511, w2 =
0.0041511, w3= 0.00000228333, w4 = 0.0000017832
and w5 = 0.000761667.

Finally, initial KBs were obtained from BEMS de-
signers for each model and season. Figures 8 and 9
show the initial RB and DB of the ATC FLC for
summer-season. This initial RB is fixed for all the
tuning process. As initial DB, we considered sym-
metrical fuzzy partitions of triangular-shaped member-
ship functions for each one of the m variables. These
membership functions were labeled from L1 to Lli ,
with li being the number of membership functions of
the i-th variable. Notice that in Fig. 8 we represent
the decision tables of each module of the hierarchi-
cal FLC considered in terms of these labels. When
the RB considers more than two variables (as in the

case of modules M-2 in layer 2 and M-3a and M-3b in
layer 3 where three input variables are involved), the
three-dimensional table is decomposed into three two-
dimensional decision tables (one for each possible label
of the first variable) in order to clearly show its com-
position. Therefore, each cell of the table represents a
fuzzy subspace and contains its associated output con-
sequent(s), i.e., the corresponding label(s). The output
variables are denoted in the top left square for each
module. Notice that, when there are two consequents
they are placed in the same cell (divided by a diagonal
line).

4.2. Experiments Developed on Simulated Systems

Three different models were implemented, the CNRS
ENTPE mid-season and summer-season models, and
the ATC summer-season model. The FLCs obtained
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Figure 9. Initial and tuned DB of the ATC fuzzy logic controller.

from the proposed technique will be compared among
them, to the original FLC without tuning and to a classi-
cal On-Off controller for all of these models (the goals
and improvements will be computed with respect to
this classical controller).

The tuning strategy was assessed with simulations
of 10 days with the correspondent climatic conditions.
The results obtained by the tuning method for each
model are presented in the following and they are
picked up from the last population obtained from each
strategy.

4.2.1. CNRS ENTPE Mid-Season Model. In this
case, WMC-SSGA was run two times, first from the
initial DB and then from the best DB obtained in the
previous run. Each run had 500 iterations.

Since the time required for each model evaluation
was approximately 200 seconds, the estimated run time
was four days for 500 iterations (computed as the prod-
uct of the number of evaluations per generation, the
evaluation time and the number of generations).

Our goal from experts was to achieve up to 15%
energy saving with a system stability at least equal to
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Table 1. Results obtained with the CNRS ENTPE Mid-Season model.

Fitness PMV > 0.5 PMV < −0.5 CO2 Energy Stability
ENTPE
model Val. % Val. % Val. % Val. % Val. % Val. %

On-Off 43.49 – 0 – 95.7 – 0 – 22780 – 2730 –

Init. FLC 40.82 6.14 0 – 100.1 −4.7 0 – 21857 4.05 1340 50.9

Goals – – – – 105.0 −10.0 – – 19363 15.00 2730 0.0

WMC-1 38.52 11.43 0 – 100.3 −4.9 0 – 20044 12.01 2557 6.3

WMC-2 38.53 11.41 0 – 100.3 −4.9 0 – 20065 11.92 2527 7.4

WMC-3 38.24 12.07 0 – 103.7 −8.4 0 – 19700 13.52 2960 −8.4

WMC-4 38.09 12.42 0 – 104.0 −8.7 0 – 19484 14.47 3270 −19.8

the On-Off controller stability (2730) and PMV infe-
rior criteria no more than 10% higher than for On-Off
(PMVinf < 105) —see Table 1—. However, the val-
ues imposed to the method were the following: 0, 108,
0, 19363 and 2800, respectively for fitness, PMV su-
perior, PMV inferior, CO2, energy and stability. The
penalization rates considered were 0.0, 0.0, 0.0, 0.5
and 0.7, respectively.

From Table 1, and taking into account the requested
goals, experts considered as the best solution the first
obtained by WMC-SSGA, that practically meets the
energy goal with a 12%, and completely meets the re-
maining ones. On the other hand, the third solution
with only an 8% of loss in stability gets notorious
improvements in energy. It shows that even in the case
of considering an objective-weighting fitness function,
diverse individuals could be obtained. Moreover, all
these individuals increase the global fitness in more
than 10% showing that all of them are very acceptable
solutions.

4.2.2. CNRS ENTPE Summer-Season Model. In
this case, WMC-SSGA was run three times from the

Table 2. Results obtained with the CNRS ENTPE Summer-Season model.

Fitness PMV > 0.5 PMV < −0.5 CO2 Energy Stability
ENTPE
model Val. % Val. % Val. % Val. % Val. % Val. %

On-Off 21.60 – 0.00 – 13.84 – 0 – 11557 – 1160 –

Init. FLC 18.40 14.81 4.50 −450 13.70 1.01 0 – 9148 20.85 2579 −122.3

Goals – – 0 100 – – – – 10000 – 1160 0.0

WMC-1 18.71 13.37 2.35 −234 13.55 2.04 0 – 9799 15.21 1451 −25.1

WMC-2 18.76 13.13 0.05 −4.7 13.77 0.49 0 – 9823 14.99 1486 −28.1

WMC-3 18.76 13.13 0.03 −2.5 13.77 0.49 0 – 9827 14.96 1476 −27.2

WMC-4 18.73 13.26 0.03 −2.5 13.77 0.49 0 – 9811 15.09 1476 −27.2

best DB obtained in the previous run. Each run had 500
iterations.

The time required for each model evaluation was ap-
proximately 220 seconds. Therefore, the computation
time was similar to that of the mid-season model.

Our goal was to reduce PMV superior to 0 and to
maintain HVAC stability as close as possible to the
On-Off controller (1160), with energy not greater than
10000 (see Table 2). In this way, the values imposed
to WMC-SSGA were the following ones: 0, 13.7, 0,
9000 and 1477, with penalization rates of 1, 1, 1, 0.9
and 0.99, respectively.

In view of the results shown in Table 2, all the goals
but the stability were practically met. In this case, the
solution presenting the best stability value (−25.1%)
is the first from WMC-SSGA, due to which it was con-
sidered the best one by the experts. However, this so-
lution does not meet the PMV goal, thus making the
fourth solution a good alternative. In any case, values
in stability were improved 100% from the initial FLC
results, and all the remaining goals have been practi-
cally met; hence it is a very good result for this tuning
method.
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It is noticeable that energy savings were about 15%
for all the solutions, this being the main objective in
the project. Moreover, the improvement of the fitness
function was about 13% which show a good general
behavior of the obtained FLCs.

4.2.3. ATC Summer-Season Model. The tuned DBs
presented in Table 3 for the Summer ATC model corre-
spond to three individuals from the population at gen-
eration 500 with WMC-SSGA.

The time required for each model evaluation is ap-
proximately 215 seconds. Therefore, once again the
algorithm was in the known times.

The goals determined by the experts were to try to
have 15% energy saving and global fitness reduced by
10% compared to On-Off control. Comfort parame-
ters could be slightly increased if necessary (no more
than 1 point for objectives 1 and 2). In this way, the
goal values imposed to WMC-SSGA were the follow-
ing ones: 1, 1, 7, 2000000 and 1000, with penalization
rates of 1, 1, 1, 0.9, and 0.97, respectively. Notice that
these goals imposed to the algorithm are higher than the
ones initially required since the initial goals were easily
met.

In this case, the goals have been easily met by WMC-
SSGA. Moreover, the solutions present a desirable di-
versity that allowed us to select different and interesting
FLCs.

From the results in Table 3, experts selected the third
DB from WMC-SSGA as the most promising one. In
this case, the solutions obtained present improvement
rates of about 20% in energy and fitness.

Figure 9 represents the initial and the final DBs
for the ATC FLC taking as final DB the third
solution from WMC-SSGA in Table 3. It shows
that small variations in the membership function

Table 3. Results obtained with the ATC Summer-Season model.

Fitness PMV > 0.5 PMV < −0.5 CO2 Energy Stability
ENTPE
model Val. % Val. % Val. % Val. % Val. % Val. %

On-Off 6.58 – 0.0 – 0 – 0 – 3206400 – 1136 –

Init. FLC 6.32 3.99 0.0 – 0 – 0 – 2901686 9.50 1505 −32.48

Goals – 10.00 1.0 – 1 – – – – 15.00 – –

WMC-1 5.44 17.33 0.0 – 0 – 0 – 2575949 19.66 1115 1.85

WMC-2 5.43 17.45 0.0 – 0 – 0 – 2587326 19.31 1077 5.19

WMC-3 5.43 17.49 0.0 – 0 – 0 – 2596875 19.01 1051 7.48

parameters cause large improvements in the FLC
performance.

4.2.4. Method Analysis. The proposed technique has
yielded much better results than the classical On-Off
controller, showing the good behavior that FLCs
can achieve on these kinds of complex multicriteria
problems.

The good results obtained by WMC-SSGA can be
attributed to the use of a method of objective weight-
ing that can directly guide to the best solution, to the
use of fuzzy goals for dynamically adapting the search
direction in the space of solutions, and to the restart
approach getting away from local optima. In the fol-
lowing, a convergence analysis on WMC-SSGA will
be made in order to see the way in which these factors
affect to the fitness function.

Figure 10 illustrates the evolution chart of the fit-
ness (original expression without considering goals)
and performance values obtained by the WMC-SSGA
method when tuning the ATC summer model. The
chart has been generated obtaining the values of the
best individual (according to the fitness with goals)
in each generation. The improvement attained by the
tuning process with respect to the On-Off controller
solution is represented in vertical axis, where 0%
stands for no improvement, a negative value for a
worsened result, and a positive value for an improved
result.

Analyzing the chart, we can observe how, after some
initial generations where the algorithm is being stabi-
lized, the energy consumption is gradually decreased
until the generation 131 where almost 16% of improve-
ment is achieved. Stability and hence fitness are also
improved during this period. After that, a significant
improvement of the energy causes a worse stability to
be obtained and the algorithm lies in a local optimum
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Figure 10. Evolution of the WMC-SSGA in the ATC summer season model.

where an improvement of 19.4% for energy is ob-
tained at the expense of stability, 11.5% worse than
that of the On-Off controller. This is kept until the gen-
eration 402 where making the energy slightly worse
involves finding a good stability result 12.1% better
than the On-Off controller. This fact is derived from
the restart action performed some generations before
and it allows the algorithm to get away from the lo-
cal optimum. From this generation to the end of the
run, the energy is gradually improved with an accept-
able stability that entails decreasing the fitness function
value.

The obtained chart leads us to notice the convergence
degree of the WMC-SSGA algorithm and analyze the
tuning process from the efficiency (time-consuming)
point of view. From this angle, it is interesting to ver-
ify that a good solution where the energy consumption
is improved in a 15.9% with the rest of performance
values similar to the On-Off controller is obtained in

Table 4. ATC Summer-Season model: Simulation results vs. test results (two days period only).

Fitness PMV > 0.5 PMV < −0.5 CO2 Energy Stability

Simulation

On-Off 0.7189 0 0 10.13 344190 138

Fuzzy 0.7135 0 0 0 304270 224.35

Difference (%) 0.75 0 0 0 11.60 −62.57

Experiment

On-Off 0.7409 0 0 1015.5 350813 142

Fuzzy 0.6881 0 0 1016.5 304031 188.62

Difference (%) 7.12 0 0 −0.10 13.34 −32.83

less than 100 generations. This means that good so-
lutions are quickly obtained and the process could
be stopped in this state if severe time constraints are
imposed.

4.3. Experiments on the CNRS ENTPE and ATC
Real Test-Cells

Results are presented only for both CNRS ENTPE
and ATC summer-season experiments. From now
on, experiments is referred to the tests in the real
sites. These experiments were performed using an
FLC with the best DB selected by experts for each
model.

At ATC (see Table 4), experimental results show
that energy savings are interesting (12.5%). However,
the stability criterion is far more important than ini-
tially expected. This could also be observed when new
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Table 5. CNRS ENTPE Summer-Season model: Test results (four days period only).

Experiment Fitness PMV > 0.5 PMV < −0.5 CO2 Energy Stability

On-Off 8.07 0 0.21 4925 8493541 1280

Fuzzy 6.97 0 0.11 4822 5951575 4330

Difference (%) 13.63 0 47.62 2.09 29.93 −238.28

simulations have been performed with the same cli-
matic conditions. The reason for this is partly due
to the CO2 concentration model. In the model, mix-
ing is supposed perfect, which is not the case in
the real test cells. Despite the sensor being located
close to extract fan, CO2 concentration proved to be
measured at much higher values than expected. Fan
operation has therefore been more important and so did
stability.

For CNRS ENTPE (Table 5), excellent results have
been obtained with up to 30% energy savings. Ex-
perimental conditions created outdoor conditions from
21◦C at night up to 31◦C during the day. Outdoor air
cooling potential in the morning is therefore quite im-
portant for these experiments, which explains these ex-
cellent results. On the other hand, stability proved to
be very bad. A possible reason for this is a round-
ing problem within the controller. Actuator is op-
erated with a small number of positions (4 for fan
speed and 3 for mode) and rounding is required be-
tween fuzzy output and actuator signal, thus creating
unstabilities.

Summarizing, it has been proved that energy con-
sumption is greatly reduced during experimentation in
real tests cells. Moreover, comparisons between sim-
ulations and experiments are in good agreement for
the BEMSs designers. Therefore, the proposed tech-
nique has been demonstrated to be effective to solve
this problem.

5. Concluding Remarks

In this paper, a GA has been considered to de-
velop smartly tuned FLCs dedicated to the control
of HVAC systems concerning energy performance
and indoor comfort requirements. To evaluate the
goodness of the proposed technique, several FLCs
have been produced and tested in laboratory ex-
periments in order to check the adequacy of such
control and tuning techniques. To run the proposed

tuning technique, accurate models of the controlled
buildings (two real test cells) were provided by
experts.

The proposed technique has yielded much better re-
sults than the classical On-Off controller showing the
good behavior that FLCs can achieve on these kinds of
complex multicriteria problems.

Regarding the experimentation in real test cells,
comparisons between simulations and experiments are
in good agreement for the BEMSs designers, present-
ing significant energy savings in both cases. It shows
the effectiveness of the proposed technique to solve this
problem.

The proposed tuning algorithm has an interesting
advantage for industrial application: the consideration
of fuzzy goals to perform the multicriteria optimiza-
tion. These fuzzy goals significantly improve the tun-
ing performance and make easier the expert’s knowl-
edge interpretation since the specification of goals,
i.e., when each objective has been properly improved,
seems to be easy to give. Furthermore, the use of
these goals together with the penalization factor in-
ternally changes the initial proposed weights during
the evolution of the WMC-SSGA algorithm, dynam-
ically adapting the search direction in the space of
solutions. It makes this method robust and more in-
dependent from the weight selection for the fitness
function.

The results of this work should be ready for im-
plementation in real buildings for the specific studied
systems. An extended test of our prototypes will how-
ever be necessary before product marketing. Moreover,
appropriate interfaces will have to be developed. First
industrial applications of our results could therefore
start approximately in two years.

This methodology could then be applied to other
systems and progressively implemented at industrial
level. However, the marketing potential should be par-
ticularly studied as well as the way by which they
could be efficiently extended to other equipments and
buildings.
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Appendix A. Acronyms

Acronym Meaning

BEMS Building Energy Management System

HVAC Heating, Ventilating, and Air Conditioning

FLC Fuzzy Logic Controller

KB Knowledge Base

GA Genetic Algorithm

DB Data Base

RB Rule Base

PMV Predicted Mean Vote index for thermal comfort

WMC-SSGA Weighted Multi-Criterion Steady-State Genetic
Algorithm

CNRS Centre National de la Recherche Scientifique

ENTPE Ecole Nationale des Travaux Publics de l’Etat

ATC The Anonymous Test Cell from a French
private enterprise
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“A multicriteria genetic tuning for fuzzy logic controllers,”
Mathware and Soft Computing, vol. 8, no. 2, pp. 179–201, 2001.

6. D.E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison-Wesley, 1989.

7. Z. Michalewicz, Genetic Algorithms + Data Structures = Evo-
lution Programs, Springer-Verlag, 1996.

8. O. Cordón, F. Herrera, F. Hoffmann, and L. Magdalena, Ge-
netic Fuzzy Systems: Evolutionary Tuning and Learning of Fuzzy
Knowledge Bases, World Scientific: Singapore, 2001.

9. M. Arima, E.H. Hara, and J.D. Katzberg, “A fuzzy logic and
rough sets controller for HVAC systems,” in Proc. of the IEEE
WESCANEX’95, vol. 1, NY, 1995, pp. 133–138.

10. P.Y. Glorennec, “Application of fuzzy control for building en-
ergy management,” in Building Simulation: International Build-
ing Performance Simulation Association 1, Sophia Antipolis:
France, 1991, pp. 197–201.

11. S. Huang, and R.M. Nelson, “Rule development and adjustment
strategies of a fuzzy logic controller for an HVAC system—
Parts I and II (analysis and experiment),” ASHRAE Transactions,
vol. 100, no. 1, pp. 841–850, 851–856, 1994.

12. L.A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8,
pp. 338–353, 1965.

13. M. Sugeno and G.T. Kang, “Structure identification of fuzzy
model,” Fuzzy Sets and Systems, vol. 28, pp. 15–33, 1988.

14. T. Takagi and M. Sugeno, “Fuzzy identification of systems and
its application to modeling and control,” IEEE Transactions on
Systems, Man, and Cybernetics, vol. 15, no. 1, pp. 116–132,
1985.

15. A. Bardossy and L. Duckstein, Fuzzy Rule-Based Modeling with
Application to Geophysical, Biological and Engineering Sys-
tems, CRC Press, 1995.

16. O. Cordón, F. Herrera, and A. Peregrı́n, “Applicability of the
fuzzy operators in the design of fuzzy logic controllers,” Fuzzy
Sets and Systems, vol. 86, pp. 15–41, 1997.

17. L.X. Wang, Adaptive Fuzzy Systems and Control. Design and
Stability Analysis, Prentice-Hall, 1994.

18. P.P. Bonissone, “Fuzzy logic controllers: An introduction re-
ality,” in Computational Intelligence: Imitating Life, edited by
J.M. Zurada, R.J. Marks II, and C.J. Robinson, IEEE Press, 1994,
pp. 316–327.

19. C.C. Lee, “Fuzzy logic in control systems: Fuzzy logic
controller—Parts I and II,” IEEE Transactions on Systems, Man,
and Cybernetics, vol. 20, pp. 404–418, 419–435, 1990.

20. R. Palm, D. Driankov, and H. Hellendoorn, Model Based Fuzzy
Control, Springer-Verlag, 1997.

21. L.A. Sánchez and J.A. Corrales, “Niching scheme for steady
state GA-P and its application to fuzzy rule based classifiers
induction,” Mathware and Soft Computing, vol. 7, nos. 2/3,
pp. 337–350, 2000.

22. J. Kiszka, M. Kochanska, and D. Sliwinska, “The influence of
some fuzzy implication operators on the accuracy of a fuzzy



176 Alcalá et al.

model—Parts I and II,” Fuzzy Sets and Systems, vol. 15, pp. 111–
128, 223–240, 1985.

23. A.E. Gegov and P.M. Frank, “Hierarchical fuzzy control of mul-
tivariable systems,” Fuzzy Sets and Systems, vol. 72, pp. 299–
310, 1995.

24. R.R. Yager, “On the construction of hierarchical fuzzy systems
model,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 22, pp. 1414–1427, 1992.

25. M. Delgado, M.A. Vila, and W. Voxman, “On a canonical rep-
resentation of fuzzy numbers,” Fuzzy Sets and Systems, vol. 93,
no. 1, pp. 125–135, 1998.

26. O. Cordón and F. Herrera, “A three-stage evolutionary process
for learning descriptive and approximative fuzzy logic controller
knowledge bases from examples,” International Journal of Ap-
proximate Reasoning, vol. 17, no. 4, pp. 369–407, 1997.

27. F. Herrera, M. Lozano, and J.L. Verdegay, “Tuning fuzzy con-
trollers by genetic algorithms,” International Journal of Approx-
imate Reasoning, vol. 12, pp. 299–315, 1995.

28. C. Karr, “Genetic algorithms for fuzzy controllers,” AI Expert,
pp. 26–33, 1991.

29. C.M. Fonseca and P.J. Fleming, “An overview of evolutionary
algorithms in multiobjective optimization,” Evolutionary Com-
putation, vol. 3, pp. 1–16, 1995.

30. D. Whitley and J. Kauth, “GENITOR: A different genetic algo-
rithm,” in Proc. of the Rocky Mountain Conference on Artificial
Intelligence, Denver, 1988, pp. 118–130,.

31. F. Herrera, M. Lozano, and J.L. Verdegay, “Tackling real-coded
genetic algorithms: Operators and tools for the behaviour anal-
ysis,” Artificial Intelligence Review, vol. 12, pp. 265–319, 1998.

32. J.H. Holland, Adaptation in Natural and Artificial Systems, The
University of Michigan Press: Ann Arbor, 1975 (The MIT Press,
London, 1992).

33. F. Herrera, M. Lozano, and J.L. Verdegay, “Fuzzy connectives
based crossover operators to model genetic algorithms popula-
tion diversity,” Fuzzy Sets and Systems, vol. 92, no. 1, pp. 21–30,
1997.

34. J.E. Baker, “Reducing bias and inefficiency in the selection al-
gorithm,” in Proc. of the 2nd International Conference on Ge-
netic Algorithms, edited by J.J. Grefenstette, Lawrence Erlbaum:
Hillsdale, NJ, 1987, pp. 14–21.

35. L.J. Eshelman, The CHC Adaptive Search Algorithm: How to
Have Safe Search when Engaging in Nontraditional Genetic
Recombination, Morgan Kauffman: San Mateo, CA, 1990.
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