
ar
X

iv
:1

81
0.

09
73

3v
1

 [
cs

.L
G

]
 2

3
O

ct
 2

01
8

OCAPIS: R package for Ordinal Classification And

Preprocessing In Scala

M. Cristina Heredia-Gómeza,∗, Salvador Garćıaa,∗∗, Pedro Antonio
Gutiérrezb, Francisco Herreraa

aDaSCI Andalusian Institute of Data Science and Computational Intelligence, University

of Granada, Spain
bDepartment of Computer Science and Numerical Analysis, University of Córdoba,

Campus de Rabanales, edificio Albert Einstein 14017, Córdoba, Spain

Abstract

Ordinal Data are those where a natural order exist between the labels. The
classification and pre-processing of this type of data is attracting more and
more interest in the area of machine learning, due to its presence in many
common problems. Traditionally, ordinal classification problems have been
approached as nominal problems. However, that implies not taking into ac-
count their natural order constraints. In this paper, an innovative R package
named ocapis (Ordinal Classification and Preprocessing In Scala) is intro-
duced. Implemented mainly in Scala and available through Github, this
library includes four learners and two pre-processing algorithms for ordinal
and monotonic data. Main features of the package and examples of installa-
tion and use are explained throughout this manuscript.

Keywords: Ordinal classification, Ordinal regression, Data preprocessing,
Machine learning, R, Scala

1. Introduction

The development of supervised classification and pre-processing tech-
niques for data with numerical targets is a central topic in machine learning

∗Corresponding author
∗∗Correspondence
Email addresses: mrcrstnherediagmez@gmail.com (M. Cristina Heredia-Gómez),

salvagl@decsai.ugr.es (Salvador Garćıa)

Preprint submitted to Name of journal October 24, 2018

http://arxiv.org/abs/1810.09733v1

and data science [1, 2]. Nonetheless, it is now that more attention is being
paid to classification and pre-processing of ordinal and monotonic data, given
their big presence in everyday problems. For example, there is an increasing
amount of data from service rating surveys whose target is based on an ordi-
nal scale [bad, regular, good, very good, excellent] and therefore class labels
incorporate order information, consequently an instance with class excellent
has a higher rating than another from regular class [3]. Monotonic data is
a special case of ordinal data where monotonicity constraints exist between
instances and class labels in such a way that given two instances x, x′ where
x ≤ x′ ⇒ f(x) ≤ f(x′). That is, if an instance is smaller or equal than other
instance, then its associated class cannot be greater. Monotonic constraints
are present in many real data, such as house prices, since they increase di-
rectly with the size of the house and the year of construction and inversely
with the distance to the city. They are also very present in finance, where
there are some companies that dominate others for all financial indicators[4].
The main challenges when dealing with this kind of data are, on the one
hand, considering the ordering information to build more realistic models,
and on the other hand, using different misclassification cost depending on
error, as labeling an instance as good when its real label is very good is not
the same error as labeling it as bad.
Although there are numerous scientific publications on ordinal classification
(also ordinal regression), there are very few open source libraries for perform-
ing ordinal and monotonic classification and pre-processing tasks.
For R we find the very recent ordinalNet package [5], that fits ordinal
regression models with elastic penalty and supports model families from
element-wise link multinomial-ordinal class. Another very recent R package
is ordinal [6] which also implements Ordered Regression models, commonly
named proportional odds models. Like ordinalNet, it allows specifying
a link function from [logit, probit, loglog, cloglog, cauchit]. Since last year,
monMLP [7] is also available which offers a multi-layer perceptron neural
network where monotonicity constraints can be optionally applied. Although
there are others packages related to ordinal data, they offer an isolated task
or algorithm, like ordinal data conversion [8, 9], mixture models [10], penal-
ized ratio models [11, 12], multiple ordinal tobit models [13], clustering [14]
or rule models [15].
For Matlab and Octave we find orca [3] a more complete library than those
mentioned above, which offers many algorithms for ordinal data classification.

2

However, there are three main issues with the software mentioned above.
First, both ordinalNet and ordinal essentially just offer highly customiz-
able proportional odds models, without considering other techniques. Some-
thing similar happens with monMLP which offers multilayer perceptron
models. Second, none of them offer pre-processing techniques for ordinal
data. Third, although orca offers many classification techniques, it is less
accessible, more complicated to install and less efficient, specially when deal-
ing with high dimensional data.
In this paper an innovative and efficient R package named ocapis 1 is pre-
sented. It is built mainly in Scala [16], a pretty young JVM language well
known for its scalability, mixed paradigm (object-oriented and functional pro-
gramming), mixin-composition constructs for composing classes and traits,
decomposition of objects by pattern matching and its powerful abstraction
for types and values, which has made Scala one of the most used languages
in Big Data [17, 18].

Developing ocapis primarily in Scala along with R has been possible by
using the very recent rscala [19] package. The proposed package is, to our
knowledge, the third R package built in Scala after shallot [20] and bam-
boo [21], both from rscala creator. Ocapis aims to provide an open source
library of classification and pre-processing methods for ordinal data that cur-
rently lack an implementation in R, including non-linear ordinal classification
techniques and one of the most recent instance selector proposed in the lit-
erature.
The rest of the manuscript is arranged as follows. Section 2 presents the
software and implemented algorithms. Section 3 shows some illustrative ex-
amples of use. Section 4 exposes the experimental framework and results.
Finally, Section 5 sets out conclusions.

2. Software

The importance of creating specific techniques for data of an ordinal
nature is beyond all doubt. Since the problem was first studied in statistics by
using a link function to model underlying probabilities [22], the field of ordinal
classification has evolved a great deal in recent years [23, 24]. In this new

1https://github.com/CristinaHG/OCAPIS

3

package, four of the best-known techniques for ordinal data classification are
implemented, along with two pre-processing algorithms, an ordinal feature
selector adapted to deal also with monotonic data and a newly proposed
instance selector:

• svmop. The Support Vector Machine with Ordered Partitions (SV-
MOP classifier) is an ensemble of weighted support vector machines
for ordinal regression proposed in [25], based on Frank & Hall binary
decomposition method [26].

• pom. The Proportional Odd Model for Ordinal Regression (POM) is
a member of a family of linear models known as cumulative link mod-
els or ordered regression models, proposed by [27]. It is based on a
link function to model class probabilities. Accepted link functions are
(logit, probit, cloglog, loglog, cauchit), where logit is usually the stan-
dard choice.

• kdlor. Kernel Discriminant Learning for Ordinal Regression (KDLOR)
is a Kernel version of LDA applicable to non-linear data of an ordinal
nature. Proposed by [28], it minimizes the distance within classes and
maximizes the distance between classes, while considering the order
information of the different classes.

• wknnor. Weighted k-Nearest-Neighbor for ordinal classification (WKN-
NOR) proposed by [29] maps neighbors distances to weights according
to a kernel function. Accepted kernels are: rectangular, triangular,

epanechnikov, biweight, triweight, cosine, gaussian, inversion. The al-
gorithm has been adapted to cope with monotonic data, incorporating
the monotonicity constraints suggested in [30].

• fselector. This Feature selector for monotonic classification was origi-
nally proposed in [31]. The pre-processing algorithm is based on Fuzzy
Rank Mutual Information (FRMI) [32] and the search strategy of min-
redundancy and max-relevance (mRMR) is used to select best features.

• iselector. Training Set Selection for Monotonic Ordinal Classification.
This new proposal [4] introduces a triphasic instance selector where
first, feature selection is performed, then a collision removal is carried
out, and finally an evaluation metrics process is applied.

4

3. Examples of use

All classification algorithms are designed to have a fit and an analogous
predict method. In the following example an ordinal dataset named balace-
scale is loaded. Then an example about how to apply the two pre-processing
techniques over the training set is given. Finally, we illustrate how to per-
form classification and prediction using the SVMOP, POM, KDLOR and
WKNNOR classifiers.

1 # Load train and test data

2 dattrain<-read.table("train_balance-scale.0", sep=" ")

3 trainlabels<-dattrain[,ncol(dattrain)] # train labels

4 traindata=dattrain[,-ncol(dattrain)] # train data

5 dattest<-read.table("test_balance-scale.0", sep=" ")

6 testdata<-dattest[,-ncol(dattest)] # test labels

7 testlabels<-dattest[,ncol(dattest)] # test data

8

9 # Select the three most important features using k and beta=2

10 selected<-fselector(traindata,trainlabels,2,2,3)

11 trainselected<-traindata[,selected]

12

13 # Select the most relevant instances with a candidate rate=0.02,

collision rate=0.1 and considering maximum 5 neighbors→֒

14 selected<-iselector(traindata,trainlabels,0.02,0.1,5)

15 trainselected<-selected[,-ncol(selected)]

16 trainlabels<-selected[,ncol(selected)]

17

18 # Classifying using SVMOP using weights per instance, cost=0.1 and

gamma=0.1→֒

19 modelstrain<-svmofit(traindata,trainlabels,TRUE,0.1,0.1)

20 predictions<-svmopredict(modelstrain,testdata)

21 sum(predictions[[2]]==testlabels)/nrow(dattest)

22 [1] 0.9235669

23

24 # Classifying using POM with logistic link function

25 fit<-pomfit(traindata,trainlabels,"logistic")

26 predictions<-pompredict(fit,testdata)

27 projections<-predictions[[1]]

28 predictedLabels<-predictions[[2]]

29 sum(predictedLabels==testlabels)/nrow(dattest)

30 [1] 0.910828

31

32 # Classifying using KDLOR with RBF kernel, optimization parameter=10,

parameter for H matrix=0.001 and kernel param =1→֒

5

33 myfit<-kdlortrain(traindata,trainlabels,"rbf",10,0.001,1)

34 pred<-kdlorpredict(myfit,traindata,testdata)

35 sum(pred[[1]]==testlabels)/nrow(dattest)

36 [1] 0.8343949

37

38 # Classifying using WKNNOR considering 5 nearest neighbors, euclidean

distance, rectangular kernel to compute weights and without

monotonicity constraints

→֒

→֒

39 predictions<-wknnor(traindata,trainlabels,testdata,5,2,

40 "rectangular",FALSE)

41 sum(predictions==testlabels)/nrow(dattest)

42 [1] 0.7515924

In the previous example the first 7 lines read the train and test datasets,
separating the class labels from the data. In lines 9-11 a feature selection is
performed over the training data, choosing the three most relevant features.
Similarly, in lines 13-16 an instance selection is performed over the training
set. As it returns a complete dataset with the selected instances, we make it
our new training set. Then an example of the use of the four implemented
classifiers is given. For each of them we start by fitting the model using the
training data. After that, predictions are made using the test data. Finally,
model accuracy is computed and shown for each model.

4. Experimental framework and results

Experiments have been carried out thought a comparison of performance
and CPU time consumption between the only software solution mentioned
above that implements three of this four classification techniques, orca [3],
and ocapis. For performance evaluations, two widely used metrics in the
field of ordinal classification have been used, named MZE (Mean Zero-one
Error) and MAE (Mean Absolute Error).
The Mean Zero-one Error is the error rate of the classifier:

MZE =
1

N

N∑

i=1

[[y∗
i
6= yi]] = 1− Accuracy,

where yi, y
∗

i
are the real and predicted values respectively. This metric ranges

from 0 to 1 and relates to global performance, without considering the order.
The MAE is the average deviation in absolute value of the predicted rank

6

from the true one[3]:

MAE =
1

N

N∑

i=1

|yi − y∗
i
|,

where (yi, y
∗

i
) represents each real-prediction pair. MAE values range from 0

to Q− 1, where Q denotes the number of categories, and it uses an absolute
cost.

The datasets used for the experiments are described in Table 1. The pa-
rameter configuration used is shown in Table 2. The parameters has been left
by default to illustrate performance. Table 3 shows the performance com-
parison between orca and ocapis, where check-marks represent cases where
ocapis performs better than orca. In order to illustrate the pre-processing
techniques behavior, Table 4 and Table 5 show their performance over the
mentioned datasets, where check-marks are used to show cases where the pre-
processing has shown to improve the base classification results from Table 3.
Finally, Table 7 shows CPU times for orca and ocapis classifiers, while
Table 6 shows CPU time for the two pre-processing algorithms implemented
in ocapis.

Table 1: Ordinal datasets used in experiments
Dataset Instances Features Classes

balance-scale 625 4 3
winequality-red 1599 11 6

SWD 1000 10 4
contact-lenses 24 6 3

toy 300 2 5
ESL 488 4 9
LEV 1000 4 5

Automobile 205 71 6
Pasture 36 25 3

Squash-stored 52 51 3

7

Table 2: Parameters configuration used for experiments
Algorithm Configuration

SVM [33] C =0.1,γ=0.1
POM [27] logistic linkfunction

KDLOR [28] RBF kernel, d=10, u=0.001, k=1
WKNNOR [29] Rectangular kernel, k=5, distance=1
FSelector [31] k, β =2, selects half of the characteristics
ISelector [4] candidates=0.01,collisions=0.02, kEdition=5

Table 3: Performance comparison between orca and ocapis (orca/ocapis)
SVM POM KDLOR WKNNOR

Dataset MAE MZE MAE MZE MAE MZE MAE MZE

balance-scale 0.0890/0.0890 0.0764/0.0760 0.1019/0.1019 0.0891/0.0891 0.1656/0.1656 0.1656/0.1656 0.4076 0.2484
winequality-red 0.5120/0.5050X 0.4325/0.4300X 0.4475/0.4425X 0.4100/0.4020X 0.5000/0.5100 0.4470/0.4600X 2.6350 0.9950

SWD 0.4400/0.4400 0.4280/0.4280 0.4800/0.4800 0.4640/0.4640 0.5560/0.5080X 0.4840/0.4560X 1.3240 0.8400
contact-lenses 0.3330/0.3330 0.3330/0.3330 0.5000/ - 0.3330/ - 0.5000/0.5000 0.5000/0.5000 0.5000 0.3333

toy 0.4930/0.5860 0.4270/0.4800 0.8800/0.8800 0.6670/0.6670 0.1460/0.1460 0.1460/0.1460 1.9333 0.8933
ESL 0.3850/0.3770X 0.3690/0.3600X 0.3610/0.3610 0.3270/0.3270 0.4180/0.3930X 0.4016/0.3524X 1.8033 0.8852
LEV 0.4640/0.4360X 0.4240/0.400X 0.4120/0.4120 0.3760/0.3760 0.4840/0.4840 0.4040/0.4200 1.4400 0.7840

Automobile 2.8269/1.1540X 0.9810/0.6920X - / - - / - 1.0192/1.0192 0.7307/0.7307 2.8269 0.9808
Pasture 1/0.6670X 0.6670/0.6670 0.7780/ - 0.6670/ - 0.6670/0.6670 0.6670/0.6670 1 0.6667

Squash-stored 0.7690/0.7690 0.6150/0.6150 0.7692/ - 0.6923/ - 0.5385/0.5385 0.5385/0.5385 0.7692 0.6150

Table 4: Performance of ocapis Feature selector
SVM POM KDLOR WKNNOR

Dataset MAE MZE MAE MZE MAE MZE MAE MZE
balance-scale 0.5159 0.2994 0.5159 0.2994 0.4777 0.3376 0.8089 0.4458

winequality-red 0.6125 0.5200 0.5525 0.4800 0.9500 0.6275 2.6350 0.9950
SWD 0.5240 0.4960 0.5400 0.4880 0.5640 0.5040 1.2040X 0.8200X

contact-lenses 0.5000 0.3333 0.5000X 0.3333X 0.8333 0.8333 0.5000 0.3333
ESL 0.4918 0.4344 0.5000 0.4426 0.5164 0.4590 1.8032 0.7623X
LEV 0.5720 0.5120 0.5840 0.5120 0.700 0.5720 1.4120X 0.8040

Automobile 0.9423X 0.5961X 1.1346X 0.7692X 0.9808X 0.7115X 2.8269 0.9808
Pasture 1 0.6667 0.2222X 0.2222X 0.6667 0.6667 1 0.6667

Squash-stored 0.7692 0.6154 0.3846X 0.3077X 0.5385 0.5385 0.7692 0.6154

Table 5: Performance of ocapis Instance selector
SVM POM KDLOR WKNNOR

Dataset MAE MZE MAE MZE MAE MZE MAE MZE
balance-scale 0.1338 0.1274 0.1911 0.1401 0.4522 0.4331 0.4458 0.2675

winequality-red 0.5150 0.4325 0.4400 0.4025 0.5075 0.4575X 2.6350 0.9950
SWD 0.4280X 0.4120X 0.4760X 0.4640 0.4920X 0.4480X 1.2800X 0.8120X

contact-lenses 1 1 1X 0.5000X 0.5000 0.8333 0.5000 0.3333
toy 1.1467 0.6533 1.1200 0.6400X 0.5467 0.4267 1.8800X 0.8800X
ESL 0.5328 0.5164 0.4262 0.3934 0.6475 0.5819 2.5246 0.9508
LEV 0.4520 0.3960X 0.4400 0.3880 0.4800X 0.4120X 1.3960X 0.7440X

8

Table 6: Times of preprocessing algorithms
Dataset Feature Selector Instance selector

balance-scale 1.0900 3.4782

winequality-red 38.9118 8.5956

SWD 7.2385 4.5675

contact-lenses 0.0089 1.665

toy 0.3214 2.6208

ESL 0.9519 2.2521

LEV 3.8742 4.367

Automobile 17.1677 1.8520

Pasture 0.1679 1.7769

Squash-stored 1.295 1.9367

Table 7: Time comparison between orca and ocapis (seconds) (orca/ocapis)
Dataset SVM POM KDLOR WKNNOR

balance-scale 3.1671/0.2194X 0.0733/0.0034X 0.5686/0.0022X 0.00142
winequality-red 2.3509/2.0927X 0.0482/0.1222 6.0023/6.9004 0.1977

SWD 1.2154/0.5304X 0.0371/0.07723 1.2800/1.4996 1.4529
contact-lenses 1.8219/1.1578X 0.0400/0.0500 0.1993/0.0164X 0.0313

toy 1.3535/0.1433X 0.0256/0.0220X 0.2432/0.1194X 0.0288
ESL 0.9492/0.4393X 0.0287/0.0570 0.3676/0.2532X 0.0368
LEV 1.2184/0.5660X 0.0275/0.0609 1.1943/1.4839 0.0905

Automobile 1.0813/0.1780 X 0.1183/0.1062X 0.2706/0.0728 X 0.0223
Pasture 1.0201/0.0208X 0.0421/0.0417 X 0.2151/0.0117X 0.0053

Squash-stored 1.1047/0.0245X 0.0866/0.0616X 0.2152/0.0153X 0.0117

From Table 3 we may conclude that our implementation performs equal
and sometimes better than orca algorithms. Main performance differences
can be seen in SVMOP, where a lot of check-marks denotes that the SVMOP
implemented in ocapis gets better results than the SVMOP implemented in
orca. In spite of both uses libsvm-weights [33] implementation underneath,
as it is originally implemented in C, one uses the Matlab wrapper while the
other uses the Python wrapper. In KDLOR, we can see that ocapis per-
forms exactly equal and in three cases better than orca. The cause is that
while orca uses the QP solver from Matlab, ocapis uses the QP solver from
the very new Scala library Breeze [34] still under development.

Besides that we can see that for large datasets as Automobile with 71 fea-
tures, a preprocessing step is mandatory to reduce the problem dimension-
ality, as some algorithms like POM may present problems to converge with
such amount of features. In this case ocapis is a more complete software
option as it offers two preprocessing algorithms while orca does not include

9

any. From Table 4 and Table 5 we can see that classification techniques can
greatly benefit from a previous preprocessing step, especially when dealing
with datasets where number of features or instances is large. Lastly, from
Table 7 we can point a clear advantage in performing times for ocapis over
orca in the algorithms implemented in Scala, which are SVMOP, KDLOR
and WKNNOR, this difference is not so large for POM, which is imple-
mented in R. In addition, for all of them, ocapis gets much shorter CPU
times than orca when dealing with high-dimensional datasets as Automobile

(71 features), Pasture (25 features) and Squash-stored (51 features), due to
its Scala implementations applying functional programming and immutabil-
ity principles.
Whereas WKNNOR is not included in ORCA and not tested with these
datasets in its original proposal [29], this Scala implementation has shown
a very good time performance even with high-dimensional datasets. From
Table 6 we conclude that even though pre-processing is usually the most ex-
pensive task in terms of computing time, ocapis performs well even when
the number of features to select and the number of instances is high.

5. Conclusions

Considering embedded order and monotonic restrictions present in ordi-
nal and monotonic data is crucial when developing classification and pre-
processing algorithms for data of that nature.
In this paper we have presented the ocapis package for R. It was intended
to provide efficient and scalable algorithms implemented in Scala for ordinal
and monotonic data that are not yet available for researchers and practition-
ers of the R community. Firsts, it includes two pre-processing techniques,
an instance selector and a feature selector. Second, it includes four ordinal
classification algorithms, one linear (Proportional Odds Models for Ordinal
Regression) and three non-linear (Kernel Discriminant Learning for Ordinal
Regression, Support Vector Machines with Ordered Partitions and Weighted
k-Nearest-Neighbor for Ordinal Regression).
As future work, we propose to keep maintaining and adding algorithms for
ordinal and monotonic data to our package, building a package to offer the
vast majority of the major techniques proposed in the literature for ordinal
regression and monotonic classification. Therefore, there are good perspec-
tives to continue improving the software in the near future.

10

Acknowledgements

This work is supported by the Project BigDaP-TOOLS - Ayudas Fun-
dación BBVA a Equipos de Investigación Cient́ıfica 2016.

Appendix A. Installation Guide

To install ocapis, R language is needed (see the R official site for fur-
ther instructions on how to install it). Also, the required software includes
a version of Python ≥2.7 (see Python installation guide), Scala ≥2.11 (see
Scala installation guide) and libsvm-weights (see libsvm-weights README).
Once the requirements are satisfied, the latest developed version of ocapis
can be easily installed directly from Github through R with the devtools

package[35]:

1 devtools::install_github("cristinahg/OCAPIS/OCAPIS")

For further installation information, check the ocapis website.

References

[1] I. H. Witten, E. Frank, M. A. Hall, C. J. Pal, Data Mining: Practical
machine learning tools and techniques, Morgan Kaufmann, 2016.

[2] V. Cherkassky, F. Mulier, Learning from data: concepts, theory, and
methods. 2007.

[3] P. A. Gutierrez, M. Perez-Ortiz, J. Sanchez-
Monedero, F. Fernandez-Navarro, C. Hervas-Martinez,
Ordinal regression methods: survey and experimental study, IEEE
Transactions on Knowledge and Data Engineering 28 (1) (2016)
127–146.
URL https://github.com/ayrna/orca

[4] J.-R. Cano, S. Garćıa, Training set selection for monotonic ordinal clas-
sification, Data & Knowledge Engineering 112 (2017) 94–105.

[5] M. Wurm, P. Rathouz, B. Hanlon,
ordinalnet: Penalized ordinal regression, R package.
URL https://CRAN.R-project.org/package=ordinalNet

11

https://www.r-project.org/
https://wiki.python.org/moin/BeginnersGuide/Download
https://www.scala-lang.org/download/
https://github.com/claesenm/EnsembleSVM/blob/master/libsvm-weights-3.17/README
https://cristinahg.github.io/OCAPIS/
https://github.com/ayrna/orca
https://github.com/ayrna/orca
https://CRAN.R-project.org/package=ordinalNet
https://CRAN.R-project.org/package=ordinalNet

[6] R. H. B. Christensen, ordinal-regression models for ordinal data. r pack-
age version 2015.6-28, See http://www.cran.r-project.org/package= or-
dinal.

[7] A. Cannon, monmlp: Monotone multi-layer perceptron neural network,
R package version 1 (3).
URL https://CRAN.R-project.org/package=monmlp

[8] H. Demirtas, Y. Wang, R. Allozi,
Concurrent generation of binary, ordinal and continuous data, r package binordnonnor
(2016).
URL https://CRAN.R-project.org/package=BinOrdNonNor

[9] D. W. Betebenner, toOrdinal: Function for Converting Cardinal to Ordinal Numbers by Adding a Language Specific Ordinal Indicator to the Number,
r package version 1.0-0.0 (2017).
URL https://centerforassessment.github.io/toOrdinal

[10] M. Iannario, D. Piccolo, R. Simone, Cub: A class of mixture mod-
els for ordinal data, R package version 0.1, available at: cran.r-
project.org/web/packages/CUB/CUB.pdf, accessed October 29 (2016)
2016.

[11] K. Archer, Glmnetcr: fit a penalized constrained continuation ratio model for predicting an ordinal response
(2018).
URL https://CRAN.R-project.org/package=glmnetcr

[12] K. J. Archer, A. A. Williams, L1 penalized continuation ratio models for ordinal response prediction using high-dimensional datasets,
Statistics in Medicine 31 (2012) 1464–1474.
URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3718008/

[13] M. N. Wright, A. Ziegler, Multiple censored data in dentistry: A new statistical model for analyzing lesion size in randomized controlled trials,
Biometrical Journal 57 (3) (2015) 384–394.
URL https://CRAN.R-project.org/package=lmmot

[14] M. Selosse, J. Jacques, C. Biernacki,
ordinalclust: a package for analyzing ordinal data.
URL https://CRAN.R-project.org/package=ordinalClust

[15] R. Hornung, Ordinal forests.
URL https://CRAN.R-project.org/package=ordinalForest

12

https://CRAN.R-project.org/package=monmlp
https://CRAN.R-project.org/package=monmlp
https://CRAN.R-project.org/package=BinOrdNonNor
https://CRAN.R-project.org/package=BinOrdNonNor
https://centerforassessment.github.io/toOrdinal
https://centerforassessment.github.io/toOrdinal
https://CRAN.R-project.org/package=glmnetcr
https://CRAN.R-project.org/package=glmnetcr
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3718008/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3718008/
https://CRAN.R-project.org/package=lmmot
https://CRAN.R-project.org/package=lmmot
https://CRAN.R-project.org/package=ordinalClust
https://CRAN.R-project.org/package=ordinalClust
https://CRAN.R-project.org/package=ordinalForest
https://CRAN.R-project.org/package=ordinalForest

[16] M. Odersky, L. Spoon, B. Venners, Programming in scala, Artima Inc,
2008.

[17] J. Maillo, S. Ramı́rez, I. Triguero, F. Herrera, knn-is: An iterative
spark-based design of the k-nearest neighbors classifier for big data,
Knowledge-Based Systems 117 (2017) 3–15.

[18] A. Galicia, R. Talavera-Llames, A. Troncoso, I. Koprinska, F. Mart́ınez-
Álvarez, Multi-step forecasting for big data time series based on ensem-
ble learning, Knowledge-Based Systems.

[19] D. B. Dahl, Integration of r and scala using rscala.
URL https://github.com/cran/rscala

[20] D. B. Dahl, R. Day, J. W. Tsai,
Random partition distribution indexed by pairwise information, Jour-
nal of the American Statistical Association 112 (518) (2017) 721–732.
URL https://github.com/dbdahl/shallot

[21] Q. Li, D. B. Dahl, M. Vannucci, H. Joo, J. W. Tsai,
Bayesian model of protein primary sequence for secondary structure prediction,
PloS one 9 (10) (2014) e109832.
URL https://github.com/dbdahl/bamboo

[22] J. A. Anderson, Regression and ordered categorical variables, Journal
of the Royal Statistical Society. Series B (Methodological) (1984) 1–30.

[23] C.-W. Seah, I. W. Tsang, Y.-S. Ong, Transductive ordinal regression,
IEEE transactions on neural networks and learning systems 23 (7) (2012)
1074–1086.

[24] Q. Tian, S. Chen, X. Tan, Comparative study among three strategies of
incorporating spatial structures to ordinal image regression, Neurocom-
puting 136 (2014) 152–161.

[25] W. Waegeman, L. Boullart, An ensemble of weighted support vector ma-
chines for ordinal regression, International Journal of Computer Systems
Science and Engineering 3 (1) (2009) 47–51.

[26] E. Frank, M. Hall, A simple approach to ordinal classification, in: Eu-
ropean Conference on Machine Learning, Springer, 2001, pp. 145–156.

13

https://github.com/cran/rscala
https://github.com/cran/rscala
https://github.com/dbdahl/shallot
https://github.com/dbdahl/shallot
https://github.com/dbdahl/bamboo
https://github.com/dbdahl/bamboo

[27] P. McCullagh, Regression models for ordinal data, Journal of the royal
statistical society. Series B (Methodological) (1980) 109–142.

[28] B.-Y. Sun, J. Li, D. D. Wu, X.-M. Zhang, W.-B. Li, Kernel discriminant
learning for ordinal regression, IEEE Transactions on Knowledge and
Data Engineering 22 (6) (2010) 906–910.

[29] K. Hechenbichler, K. Schliep, Weighted k-nearest-neighbor techniques
and ordinal classification.

[30] W. Duivesteijn, A. Feelders, Nearest neighbour classification with mono-
tonicity constraints, in: Joint European Conference on Machine Learn-
ing and Knowledge Discovery in Databases, Springer, 2008, pp. 301–316.

[31] Q. Hu, W. Pan, L. Zhang, D. Zhang, Y. Song, M. Guo, D. Yu, Fea-
ture selection for monotonic classification, IEEE Transactions on Fuzzy
Systems 20 (1) (2012) 69–81.

[32] Q. Hu, M. Guo, D. Yu, J. Liu, Information entropy for ordinal classifi-
cation, Science China Information Sciences 53 (6) (2010) 1188–1200.

[33] C.-C. Chang, C.-J. Lin, Libsvm: a library for support vector machines,
ACM transactions on intelligent systems and technology (TIST) 2 (3)
(2011) 27.

[34] D. Hall, D. Ramage, et al., Breeze: numerical processing library for scala
(2009).
URL https://github.com/scalanlp/breeze

[35] H. Wickham, W. Chang, Devtools: tools to make developing r packages
easier. r package version 1.12. 0. 2016, URL http://CRAN. R-project.
org/package= devtools.

14

https://github.com/scalanlp/breeze
https://github.com/scalanlp/breeze

Required Metadata

Current executable software version

Nr. (executable) Software metadata
description

Please fill in this column

S1 Current software version 1.0.0
S2 Permanent link to executables of

this version
github.com/CristinaHG/OCAPIS

S3 Legal Software License GPL-3.0
S4 Computing platform/Operating

System
Linux, OS X, Microsoft Windows

S5 Installation requirements & depen-
dencies

Rscala, Reticulate, libsvm-weights-
3.17

S6 If available, link to user manual - if
formally published include a refer-
ence to the publication in the refer-
ence list

cristinahg.github.io/OCAPIS/

S7 Support email for questions mrcrstnherediagmez@gmail.com

Table A.8: Software metadata (optional)

Current code version

15

Nr. Code metadata description Please fill in this column
C1 Current code version 1.0.0
C2 Permanent link to code/repository

used of this code version
github.com/CristinaHG/OCAPIS

C3 Legal Code License GPL-3.0
C4 Code versioning system used git
C5 Software code languages, tools, and

services used
R (3.4.1), Scala (2.12), Python (≥
2.7)

C6 Compilation requirements, operat-
ing environments & dependencies

Rscala, Reticulate, libsvm-weights-
3.17

C7 If available Link to developer docu-
mentation/manual

cristinahg.github.io/OCAPIS/

C8 Support email for questions mrcrstnherediagmez@gmail.com

Table A.9: Code metadata (mandatory)

16

	1 Introduction
	2 Software
	3 Examples of use
	4 Experimental framework and results
	5 Conclusions
	Appendix A Installation Guide

