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a b s t r a c t 

New proposals in the field of multi-label learning algorithms have been growing in number steadily over 

the last few years. The experimentation associated with each of them always goes through the same 

phases: selection of datasets, partitioning, training, analysis of results and, finally, comparison with ex- 

isting methods. This last step is often hampered since it involves using exactly the same datasets, parti- 

tioned in the same way and using the same validation strategy. In this paper we present a set of tools 

whose objective is to facilitate the management of multi-label datasets, aiming to standardize the exper- 

imentation procedure. The two main tools are an R package, mldr.datasets, and a web repository with 

datasets, Cometa. Together, these tools will simplify the collection of datasets, their partitioning, doc- 

umentation and export to multiple formats, among other functions. Some tips, recommendations and 

guidelines for a good experimental analysis of multi-label methods are also presented. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

The need to automatically label data has significantly increased 
in recent years, in line with the growth of multimedia content 
online, especially all types of social networks. People and objects 
present in a photograph recently uploaded to Instagram or Face- 
book, subjects and areas related to an article published in a digital 
newspaper, or styles and emotions linked to a new melody must 
be determined as quickly and accurately as possible. The large flow 

of new information published every minute on the Internet re- 
quires this functionality, essential to catalog each piece of data. 
This demand is satisfied by multi-label learning algorithms [1,2] , 
able to learn from prelabeled examples and then do this task au- 
tomatically. 

The knowledge obtained from these prelabeled data instances 
can be represented in disparate ways, i.e. decision trees [3] , neural 
networks [4] , support vector machines [5] , etc. Since there are sev- 
eral labels associated to each data sample, the structure of these 
models tends to be slightly more complex than is usual in tra- 
ditional classification. Alternatively, there also exist certain label 
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transformation techniques, such as binarization [6] and label pow- 
erset [7] , oriented to applying traditional classifiers to multi-label 
data. In addition, there are some very specific casuistries, such as 
imbalanced labels concurrence [8] or high dimensionality both on 
the feature space [9] and label space [10] . As a consequence, a 
plethora of multi-label classification (MLC) algorithms have been 
proposed lately, each of them claiming to perform better than the 
previous ones. 

Proposing a new learning method implies comparing it with 
some existing algorithms. Doing so requires conducting an empiri- 
cal experimentation. The experimental process customarily consists 
in the following steps: 

1. Collect some multilabel datasets (MLDs), analyze their traits to 
choose those most suitable to the task, and properly document 
them. Additionally, some data preparation steps may be per- 
formed, such as binarization. 

2. Run the proposed algorithm with the chosen data, and obtain a 
collection of performance indicators. 

3. Compare the indicators of the new method with those of some 
existing ones, so as to assess the proposal. 

4. Tune the algorithm as convenient and return to step 2 until it 
achieves a clear improvement. 

Although the process is apparently clear, accomplishing it in a 
proper way is not always straightforward. Practitioners frequently 
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fail in some steps, drawing conclusions of doubtful correctness. 
Sometimes the reason is in the scarcity of appropriate tools. Occa- 
sionally the obstacle is the lack of experience in such a specialized 
field. 

As long-time MLC scholars we have developed several tools 
over the years to ease our work. In addition, we follow a standard- 
ized procedure for performing MLC experiments aiming to draw 

sound conclusions. Our goal in this paper is to present some of 
these tools, specifically the mldr.datasets R package and the 
comprehensive multi-label data source, Cometa. Furthermore, how 

to use these tools in order to avoid some of the pitfalls usually 
found during MLC experimentation is also explained. 

The main contributions in this paper can be summarized as fol- 
lows: 

• We have identified the main pitfalls while performing multi- 
label experiments. 

• A collection of good practices aimed to overcome the previous 
traps is provided. 

• We have developed a new tool, the mldr.datasets package 
introduced in Section 5 , with the goal of easing multi-label data 
selection and preparation. 

• By means of the previous tool, a comprehensive data repository 
has been generated. Cometa, presented in Section 6 , is a web 
application allowing to filter, search and select datasets, avail- 
able in different file formats and partitioning schemes. 

• A Docker image is provided to allow anyone to build their own 
multi-label data repository, automating the use of the previous 
tools. 

The remainder of this paper is structured as follows. The 
foundations about multi-label learning are provided in Section 2 . 
Section 3 describes how MLC experiments are usually conducted, 
while Section 4 explains some of the frequent pitfalls and the way 
them can be surpassed. Section 5 introduces the mldr.datasets 

R package. This tool has been used to build Cometa, the data 
repository presented in Section 6 . Lastly, Section 7 provides the fi- 
nal conclusions. 

2. Multi-label learning background 

The main focus in this paper is put on the process to per- 
form MLC and the tools needed to do it. However, MLC is part of 
broad field generically known as multi-label learning (MLL), where 
other kinds of tasks can be conducted as well. This section pro- 
vides a brief introduction to MLL, a topic to which dozens of pa- 
pers [2] and even full books [1] have been devoted. 

2.1. MLL foundations 

Most common supervised machine learning tasks, such as bi- 
nary and multiclass classification or regression, usually are guided 
only by an objective value. This would be the class assigned to a 
data pattern, in classification, or the target value to obtain as re- 
sult of some kind of regression computation. Even methods which 
perform frequently non-supervised tasks, such as clustering, some- 
times use this objective value to improve their results. 

Multi-label learning [1] differs from the previous ones by the 
nature of the objective that guides the process. It is a set of binary 
values stating which labels are relevant to each data pattern, rather 
than a single class. Assuming D is a dataset having f input features, 
and being L the full set of labels appearing in D , each data pattern 
would be constructed as shown in (1) . 

D i = (X i , Y i ) | X i ∈ X 1 × X 2 × · · · × X f , Y i ⊆ L (1) 

From this definition, mainly from the set of relevant labels (la- 
belset) for each data sample ( Y i ), it is easy to compute certain char- 
acterization metrics, as described in the following subsection. 

2.2. Characterization metrics 

Characterization measurements are useful to know traits of 
multi-label data, such as the multi-labeleness degree of a dataset, 
its imbalance level, the label sparseness, etc., thus being funda- 
mental to choose the proper datasets for each case. The described 
below are among the most used ones. 

Label cardinality. It is defined in [1] as shown in (2) , where D is 
any MLD, n the number of instances, k the number of labels, and 
Y i the labelset corresponding to the ith data sample. Card is the 
average number of relevant labels (number of labels active per in- 
stance) for the MLD D . 

Card ( D ) = 
1 

n 

n 
∑ 

i =1 

| Y i | (2) 

Label density. It is defined as (3) . Usually, Card changes along with 
the total number of distinct labels. So a normalized version, named 
Dens , is defined as Card divided by the total number of labels. 

Dens ( D ) = 
1 

k 

1 

n 

n 
∑ 

i =1 

| Y i | (3) 

meanIR. This measure is computed as (4) the average imbalance 
ratio of each label, the IRLbl (5) . In these equations L stands for 
the full set of labels appearing in the MLD. Both measures were 
introduced in [11] to assess the imbalance level in an MLD. 

MeanIR = 
1 

k 

∑ 

l∈ L 

IRLbl (l) . (4) 

IRLbl (l ) = 
max l ′ ∈ L 

(

∑ n 
i =1 � l 

′ ∈ Y i � 
)

∑ n 
i =1 � l ∈ Y i � 

. (5) 

SCUMBLE and SCUMBLE.CV. These two metrics are aimed to eval- 
uate the level of concurrence among minority and majority labels. 
Introduced in [12] , the former is defined (6) as the average SCUM- 

BLE of each instance (7) in the dataset. The latter is simply the 
coefficient of variation associated to this average. 

SCUMBLE ( D ) = 
1 

n 

n 
∑ 

i =1 

SCUMBLE i (6) 

SCUMBLE i = 1 −
1 

IRLbl i 

( 

∏ 

l∈ L 

IRLbl il 

) ( 1 /k ) 

(7) 

TCS. This metric (8) was presented in [13] as a straightforward 
way to assess the theoretical complexity of an MLD. It is based 
on just three traits of the dataset: f stands for the amount of in- 
put features, k for the number of labels, and ls is the total num- 
ber of label combinations in D . The larger is the value returned by 
this measurement, the harder would be to learn a predictive model 
from the dataset. 

TCS (D ) = log ( f × k × ls ) (8) 

All these metrics can be easily obtained through the 
mldr.datasets , as described in Section 5 . 

2.3. Main MLL tasks 

Aside from performing exploratory data analysis, different ma- 
chine learning tasks can be faced while working with multi-label 
data. The following are among the most usual ones: 
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Classification. It is arguably the most studied problem in multi- 
label learning. The goal is to find a model able to predict the la- 
belset for new data patterns. As described in [1] , two main ap- 
proaches to model a new classifier exist. The first one aims to 
transform the original data so that traditional classifiers can be 
used. The two main transformation techniques are known as BR 
( Binary Relevance ) [6] and LP ( Label Powerset ) [7] . The former deals 
with each label separately, using a set of binary classifiers to make 
the prediction. while the latter joins the labels to create a class 
identifier, relying in a multiclass classifier as predictive model. The 
second approach consists in adapting existing classification meth- 
ods to handle multi-label patterns, instead of transforming them. 
The use of ensembles is also very popular in the field, with pro- 
posals as ECC ( Ensemble of Classifier Chains ) [14] , EPS ( Ensemble of 

Pruned Sets ) [15] , etc. 

Ranking. As the name denotes, label ranking methods are used to 
elaborate a ranking of labels according to their relevance for a data 
pattern. Therefore, instead of producing a labelset, a string of 0s 
and 1s stating which labels are predicted as classifiers do, these 
methods assign a weight to each label. This label ranking can be 
used directly, as well as transformed into a predicted labelset by 
applying a specific threshold. There are many proposed label rank- 
ing methods, RPC ( Ranking by Pairwise Comparison ) [16] and CLR 
( Calibrated Label Ranking ) [17] are two of the best known. 

Clustering. Usually, clustering methods [18] work in an unsuper- 
vised manner. Therefore, there would be no difference between 
clustering binary, multiclass or multi-label data. However, some- 
times class information is taken into account to improve cluster- 
ing results. Both basic and hierarchical clustering have been used 
as tools to create predictive multi-label methods. For instance, the 
ML-RBF algorithm [19] relies on the classic k-means algorithm to 
cluster the data points and use the clusters as centers of the ra- 
dial basis functions in the hidden layer. The HOMER algorithm 

[20] produces an hierarchical model by clustering the patterns in 
each node, introducing the concept of meta-label to represent sim- 
ilar labels. Only a few multi-label specific clustering methods have 
been proposed until now. One of them [21] is an evolutionary al- 
gorithm able to perform distance metric learning. The method con- 
siders multiple labels per cluster, computing a cluster validity mea- 
sure from the relationships among neighbors. In [22] a density- 
based algorithm, similar to DBSCAN [23] , is proposed as potential 
solution to perform multi-label clustering. 

2.4. MLL evaluation metrics 

The metrics used to evaluate a result depend on the performed 
task, but also on the own nature of the analyzed data. While in 
binary classification Accuracy or Precision are the most usual per- 
formance measures, and there are only a handful more to choose 
from, when the class of patterns is not binary but multi-label the 
group of available metrics is considerably larger. The difference is 
that the output of a binary classifier is either correct or incorrect, 
while that of a multi-label can be totally or partially correct. This 
justifies the existence of around twenty metrics for multi-label 
classification only, as explained in [1, Chapter 3]. 

A multi-label classifier outputs a bipartition as result. That is 
a sequence or array of 0s and 1s, stating which labels are pre- 
dicted as relevant for a data sample and which not (the pre- 
dicted labelset). These predictions are aggregated to produce sev- 
eral confusion matrices, from which the usual classification per- 
formance metrics can be computed. Depending on how the aggre- 
gation is conducted, the metrics are grouped into two large cate- 
gories: example-based and label-based metrics. 

Example-based measurements are computed individually from 

each data pattern in the evaluated set. These values are then aver- 
aged, simply dividing by the number of evaluated samples. Some 
of the most usual metrics in this group are Hamming loss, Accuracy, 

Precision, Recall and F-measure . Unlike the other ones, Hamming loss 

(9) is not common in traditional classification. Being n the number 
of data points and k the number of considered labels, it calculates 
the symmetric difference ( � operator) between the predicted la- 
belset Y i and the ground truth Z i , thus counting the number of 
mismatches. Therefore, it is a performance metric to be minimized 
instead of maximized. 

Hamming loss = 
1 

n 

1 

k 

n 
∑ 

i =1 

| Y i �Z i | (9) 

Instead of mixing the results of all labels in each instance, those 
can be separately aggregated and the evaluation metrics computed 
for each label. This is the way label-based performance metrics 
work. In fact, there are two ways to perform the averaging, as 
shown in Eqs. (10) and (11) . The macro-averaging approach sums 
the number of true positives, false positives, true negatives and 
false negatives for each label, and independently computes the 
measurement for each label. Thus the metric, such as Precision, Re- 
call, F-measure , etc., is calculated several times, as many as labels 
there are. Lastly, these measurements are added and divided by the 
number of labels ( k ). By contrast, in the micro-averaging approach 
the metric is computed only once, after the counters for all label 
have been aggregated. 

Macro metric = 
1 

k 

∑ 

l∈L 

EvalMet ( TP l , FP l , TN l , FN l ) (10) 

Micro metric = EvalMet 

( 

∑ 

l∈L 

TP l , 
∑ 

l∈L 

FP l , 
∑ 

l∈L 

TN l , 
∑ 

l∈L 

FN l 

) 

(11) 

The third main group of multi-label evaluation metrics is aimed 
to work over label rankings, instead of bipartitions. One error, Rank- 
ing loss, Coverage and Average precision are among the best known 
metrics in this category. These metrics usually check if a true rel- 
evant label is in the ranking produced by the algorithm, the num- 
ber of steps to walk until a relevant label is found in the ranking, 
or whether a non-relevant label has been ranked above a relevant 
one. They can be computed even when the used algorithm pro- 
duces a bipartition instead of a ranking, by relying in some other 
kind of real value as can be the confidence or a set of weights in a 
neural network. 

Aside from these three main groups, some more specific multi- 
label metrics have been defined to evaluate hierarchical [24] multi- 
label classification or the quality of multi-label clustering [21] . 

3. Conducting multi-label learning experiments 

Let us assume we are designing a new MLC algorithm aimed 
to improve the results produced by existing ones. Aside from ex- 
plaining the theoretical hypotheses underlying the new proposal, 
stating why it should perform better, we also commit to providing 
real evidence of this enhancement. Therefore, an empirical study 
has to be conducted. 

The main steps usually followed to carry out a data mining ex- 
periment are the four ones previously enumerated, also depicted 
in Fig. 2 . Here we are delving into some specific aspects. Later, we 
will put the focus on the usual traps and on how to surpass them. 

3.1. Data selection and preparation 

The first step in this process is usually the selection of datasets 
to be used in experiments. The criteria employed to select the data 
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Fig. 1. Number of published articles dealing with MLC 20 0 0–2016 (source: Web of 

science). 

that will be involved in the experimentation may vary. In the MLC 
context aspects such as the number of distinct labels, label cardi- 
nality and density, imbalance levels and label concurrence, among 
others, are usually taken into consideration. 

Depending on the case, these data can be either real or syn- 
thetic. The use of data collected from actual sources has multiple 
advantages. In this way, the tested algorithm will be exposed to 
the characteristics and complexities of real-world information, in 
the same context in which it is presumably intended to be used. 
However, sometimes data of this kind do not meet the needs of 
ongoing experimentation or do not fit the specific traits required. 
In these cases specialized tools, capable of generating data that 
match the required characteristics, tend to be the solution. 

Once the datasets to be included in the experimental study 
have been collected, it is necessary to apply the preprocessing 
steps that are considered appropriate. For instance, a data trans- 
formation technique such as label powerset or binary relevance, 
would allow to apply a multiclass or binary classifier. Moreover, 
training and test partitions have to be extracted from the original 
MLD. Sometimes, depending on the algorithm, the training set can 
be also divided into two subsets, using one of them to train the 
model and the other to validate its parameters. 

3.2. Competing methods 

One of the objectives of proposing a new learning method is to 
improve the results of others. Although sometimes the algorithm 

presented may be completely new, in most cases it will be an im- 
provement over a method already in use. In any case, it is to be 
assumed that the authors have certain knowledge of the field un- 
der study and, in particular, of methods similar to their own. 

A large portion of MLC algorithms are based on transforma- 
tion techniques, such as binarization [6] and label powerset [7] . 
Those allow to transform a complex problem (MLC) into several 
easier ones, but at the expense of increasing the computational 
costs consumed to process them. Therefore, running a large set of 
MLC methods over several datasets can be very time consuming, 
thus the importance of choosing the proper ones. 

The alternative to the previous transformation techniques are 
classification methods adapted to deal with raw multi-label data. 
A plethora of proposals have been presented in this field, including 
multi-label decision trees [3] , instance-based classifiers [25] , neural 
networks [4] and support vector machines [5] , among other adap- 
tations of traditional classification methods. 

Deep learning techniques have also found their niche in the 
classification field. Different deep neural networks architectures 
[26] have been proposed in late years, and several of them, includ- 
ing DBNs ( Deep-Belief Networks ) and CNNs ( Convolutional Neural 
Networks ) have been proposed to classify multi-label data [27–29] . 
The superior performance of most deep learning methods is due to 
the integrated feature learning phase, able to extract a reduced set 
of new, more informative features. This task can be conducted as a 
preprocessing phase, for instance by relying on autoencoders [30] , 
then applying any multi-label classifier over the reduced feature 
set. 

Once the methods that are going to compete with the new 

one are selected, attention must be paid to the configuration pa- 
rameters present in each one of them. These should adjust to the 
recommendations given by their authors, otherwise their behavior 
could be unexpected. This is important only if we intend to run 
such algorithms, rather than take the published results. However, 
in the latter case, other aspects need to be taken into account as 
indicated below. 

3.3. Performance metrics 

The selection of performance metrics is another key factor in 
the experimental process, specially in the MLC field. Unlike tradi- 
tional classification, where usually a pair of performance indicators 
such as precision or accuracy tend to be enough, more than twenty 
evaluation measures are of common use in MLC. That is why pick- 
ing the right ones for each case can usually have a large impact in 
the final conclusions. 

As the compilation of performance metrics provided in 
[1] shows, the assessment of successes and failures can originate 
in a bipartition matrix or in a ranking. Moreover, the number of 

Fig. 2. Steps in a typical MLC experiment. (1) Datasets have to be selected from the available repositories, taking into account their traits in order to choose the more 

appropriate ones for the task at hand. Some data preparation could be needed, depending on possible data peculiarities (i.e. an imbalanced dataset could be balanced 

through a resampling algorithm). (2) Methods related to the proposed one have to be selected and run, obtaining a set of predictions from each one of them. (3) These 

predictions have to be evaluated, picking from the large set of available performance metrics those more adequate to the analyzed problem. (4) It is advisable to draw 

conclusions including statistical tests over the previous results. 
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hits and misses can be aggregated following different strategies, by 
label or by sample. 

It is obvious that the same performance metrics must be ob- 
tained for all the methods involved in the experimentation, other- 
wise it would not be possible to make a correct evaluation of the 
results. In addition to performing a detailed comparison, method 
against method and measure by measure, it is also necessary to 
obtain an overall appraisal for these comparison results. To accom- 
plish this task it is usual to rely on the proper statistical tests. 

4. Tips and pitfalls while performing multi-label experiments 

Any new algorithm proposal should begin with a review of 
existing literature on related methods, detailing their similarities, 
strengths and weaknesses, etc. Authors should establish the niche 
they intend to occupy with their proposal or the direction in which 
they want to improve the methods already published. Hereafter, 
the experimentation is usually carried out. 

Most of the mistakes made during experimentation involve the 
data used and how they are treated. You must select the appropri- 
ate datasets for the task at hand and the proposed algorithm type. 
In addition, such data should be prepared in line with the exper- 
iments already published on related methods. Occasionally there 
are obstacles that hinder the correct use and preparation of the 
data. This is why in the following sections we focus mainly on this 
aspect, and why in Sections 4 and 5 we present tools to overcome 
these obstacles. 

Logically, the rest of aspects mentioned above, such as the se- 
lection of methods to be compared against the proposal, the set of 
metrics used to evaluate their performance and the usage of sta- 
tistical tests, are also important. They will therefore be addressed 
later, albeit more briefly. 

4.1. Selecting the proper datasets 

While designing a new algorithm, sometimes the aim is to 
make it a general purpose method, with the goal of improving 
prediction in a broad way. However, in other cases the proposal 
is more specific. In the multi-label field, it is common to present 
methods tailored for dealing with large quantities of labels, with 
data showing imbalance among labels, with missing labels, etc. 
Each scenario requires a specific type of dataset to perform the ex- 
periments. 

The basic principle must be that the data used in experimen- 
tation should present the problem for which the algorithm is pro- 
posed. This, however, is not always the case. There are authors who 
propose a new method to deal with large sets of labels, but in their 
experimentation they use MLDs that only have a few dozen of 
them. Logically, to support the behavior of the proposed method, it 
must be demonstrated that it works correctly with the right con- 
figuration: against datasets having hundreds or thousands of la- 
bels. This scenario can be extrapolated to similar ones: if a method 
attempts to address multi-label imbalance, the selected datasets 
should present this problem (very common in this field, on the 
other hand); there would be no point in experimenting using only 
balanced datasets. 

When choosing datasets, it would be advisable to observe the 
following recommendations: 

• Begin by performing an exploration of the characteristics of the 
available datasets, obtaining metrics that allow you to know the 
number of labels, cardinality, degree of imbalance, level of con- 
currence between labels, etc. All this information is vital to be 
able to select those sets that best suit your needs. 

• Which datasets have other authors used to address the same 
task? By answering this question, a list of datasets commonly 

included in similar experiments can be obtained. It is a work 
that can be done at the same time as reviewing related works. 
It will also make it easier to compare results with previously 
published methods. 

If the new method is presented as a generic multi-label classi- 
fier, datasets with characteristics as diverse as possible should be 
included in the experimentation. This approach will make it possi- 
ble to identify the strengths and weaknesses of the proposal, key 
aspects when comparing it with existing methods. Again, the se- 
lection of such datasets should be based on an exploration of the 
characteristics of all publicly available ones. 

4.2. Preparation of data and methods 

The main objective of a multi-label experimentation is to com- 
pare a new algorithm with existing ones. For this, it is essential 
that the same training data are used in all cases, since the model 
obtained depends fundamentally on this condition. Aspects such as 
the rate of committed errors, the classifier’s bias towards certain 
classes, its ability to generalize, etc., are highly influenced by the 
samples used during training. 

During our years in the MLC research field we have had the 
opportunity to find, in relation to data preparation and processing, 
the following mistakes: 

• Comparing the results obtained by running the proposed algo- 
rithm with those previously published for other methods. Un- 
less exactly the same datasets have been used in the experi- 
mentation, with exactly the same pre-processing and partition- 
ing strategy, such comparison will not be valid. Taking the per- 
formance measures published in an article for a certain method 
is highly convenient, but if you train that same method using 
unidentical partitions for training and testing the results will 
differ. 

• Delivering complete datasets to each method and allowing 
them to be partitioned internally. Many tools automate random 

partitioning when evaluating an algorithm. However, in this sit- 
uation, the exact same training partitions would not be used to 
generate the models, which would induce dissimilarities that 
benefit some and harm others. 

• Running the algorithms to be compared but using different 
datasets in some cases. For example, using hold-out with cer- 
tain methods because they are slower and cross validation with 
others, or reducing the set of input attributes for some meth- 
ods and not for others. Obviously in these cases the authors are 
artificially favoring some algorithms over others. 

For a fair comparison of several classifiers, it is therefore es- 
sential to train the models with exactly the same data samples. 
Starting from this premise, from our point of view there are the 
following alternatives: 

• If you want to compare one algorithm with the published re- 
sults of another, without the need to run the latter, it is essen- 
tial to have the data partitions used by its authors. This is only 
possible if, together with the results of such method, these par- 
titions are also made publicly available. This approach is com- 
plicated as soon as it becomes necessary to compare with two 
or more already published methods, since different authors will 
have used disparate data partitions. In this situation the new al- 
gorithm should be run with the appropriate data for each case 
and pairwise comparisons should be made. In our opinion it is 
the least advisable alternative. It should only be used when it 
is impossible to run an existing method, but the data used to 
evaluate its performance is available. 

• In any other case, without having the data originally used by 
other authors, the procedure to follow is always the same. 
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The data must first be prepared, including partitioning, so that 
all algorithms to be tested receive the same set of training 
and testing samples. Then, the code of all methods compared 
should be obtained, preferably from their authors. If this is not 
possible, they should be implemented as accurately as possible 
from the article in which they are described. Finally, all the al- 
gorithms must be executed using the same data and obtaining 
the corresponding predictions. 

Trying to follow these instructions can easily lead to a num- 
ber of obstacles. If you have access to the original data, its for- 
mat may not be appropriate for the tools used to implement the 
new algorithm. In fact, almost every time several methods are go- 
ing to be run, coming from different authors, there is diversity in 
file formats. These are the kind of issues the tools described in 
Sections 5 and 6 strive to overcome. 

4.3. Assessing algorithm performance 

As stated in Section 3.3 , a multi-label classifier can be evaluated 
using a wide range of performance metrics. Each of them offers a 
different quality indicator, so it is essential to use a good set of 
them to obtain the most balanced possible assessment. 

If the experimentation includes results taken directly from pre- 
vious publications, and bearing in mind the assumptions indicated 
in the previous sections, then the selection of measures will be 
given to us. It will be necessary to use the metrics already used 
in these publications, not others. The results obtained by the pro- 
posed method should therefore be used to calculate these mea- 
surements, thus allowing direct comparison with the algorithms 
already published. 

Even if we have exactly the same data partitions to train our 
model, as explained above, and calculate the same set of measures, 
the comparison with other algorithms may not be completely fair. 
The calculation of some of the multi-label performance metrics 
is relatively complex, and there may be differences in the way 
they are computed between different multi-label software pack- 
ages. Consequently, the only way to be absolutely certain that the 
results are comparable would be to ensure that the computation of 
the measures is also carried out in the same way. 

If we are going to run all the algorithms ourselves, we will have 
total freedom in choosing the performance metrics. In this case, as 
recommended in [31] , we should select a broad set of evaluation 
metrics, including both sample-based and label-based measures, as 
well as measures calculated on bipartite and label rankings. In par- 
ticular, it is advisable to include at least one or two metrics from 

each of the following groups: 

Sample-based metrics based on bipartition results. As explained in 
Section 2 , these metrics are computed sample by sample and then 
an average evaluation is obtained. Hamming loss is maybe the most 
common metric in this group; Accuracy, Precision, Recall and F- 
measure being popular as well. Most of them are obtained from the 
confusion matrix for each label. We recommend including always 
Hamming loss and F-measure , since the former one is the comple- 
ment of Accuracy and the latter is the harmonic mean of Precision 
and Recall . 

Metrics based on ranking results. Although many algorithms pro- 
duce a bipartition as result, stating which labels are predicted for 
the data patterns, many others provide a label ranking. In this 
case, the set of predicted labels is obtained after applying a cer- 
tain threshold over this ranking. Ranking-based metrics evaluate 
the performance operating with a label ranking, being One error, 
Ranking loss and Average precision among the most frequently used. 

Label-based metrics. Most metrics obtained from a confusion ma- 
trix, such as Precision and Recall , can be computed by label instead 
of by sample, as described in Section 2 . Since two averaging strate- 
gies exist, named macro-averaging and micro-averaging , two mea- 
surements can be retrieved for most of these metrics. In our opin- 
ion, Macro F-measure and Micro F-measure should be included in 
most evaluations as they provide two additional views on method 
performance. 

The selection of evaluation metrics may be influenced if the 
proposed algorithm addresses a specific problem. For example, if 
the analysis corresponds to methods for working with imbalanced 
data, metrics such as AUC or Macro F-measure would be more ap- 
propriate than Hamming loss or Accuracy , as they are less biased 
towards majority labels. 

4.4. Reaching global conclusions 

When an experimental study is conducted involving multiple 
datasets, several algorithms and various performance metrics, the 
number of indicators to be evaluated is so large that it may be 
difficult to reach an overall conclusion. Usually, a classifier will be 
better than others while working with certain MLDs, but its behav- 
ior will worsen with other datasets. The same is applicable to the 
use of several evaluation metrics. 

A first approach to a global assessment could be to count the 
number of times each algorithm wins or loses against the rest. 
From here, a ranking to determine the position of each method, 
usually grouped by performance metric, is almost immediate. In 
our opinion this approach is better than others we have found 
sometimes in the literature, such as averaging all the results from 

each algorithm. One of them can be the best one when evaluated 
with a certain dataset or metric, but perform horribly in all other 
cases. The authors should strive to show a realistic perspective of 
its behavior, for instance by means of a ranking instead of an aver- 
age, which would hide it. 

The conclusions of an experimental analysis can be reinforced 
by using more formal procedures, carrying out the relevant statisti- 
cal tests. In most cases it is not possible to guarantee conditions of 
normality (the results to be evaluated following a normal distribu- 
tion) and homoscedasticity (the variance being homogeneous). For 
this reason, non-parametric statistical tests are commonly used. 
Depending on the number of methods to be compared, and if such 
comparison is pairwise or multiple, the proper tests have to be 
chosen as explained in [32,33] . 

4.5. Summary, advantages and disadvantages 

To make it easier to follow up on previous advice, it has been 
summarized in Table 1 . The first column indicates the stage of the 
process, second the trap to avoid and third one what to do instead. 
In our opinion, adhering to these recommendations would bring 
several advantages to any MLL study: 

• The selection of the proper datasets, those that presumably 
present the problem that the proposed method aims to solve, 
for instance a high imbalance level, will back the behavior of 
the method. 

• Correctly comparing our results with published ones, either by 
using the same data partitions or by running the other methods 
with our data, will make the study more solid. 

• Choosing a good set of evaluation metrics, specially those de- 
signed to expose strengths and weaknesses of a method while 
facing specific problems, will be more convincing to other re- 
searchers. This confidence in the results can be increased if the 
appropriate statistical tests are conducted. 
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Table 1 

General tips on how to avoid common mistakes during an experimentation in the multi-label field. 

Stage Avoid... Instead, ... 

Data selection using datasets which not present the tackled problem. explore the characteristics of available datasets for proper selection. 

skipping popular datasets for the task. review related works and look for recurring datasets. 

Method preparation comparing your results to previously published ones. perform new runs of each competing method under same conditions. 

partitioning datasets differently for each method. build partitions prior to running methods. 

performing different validations for each method. determine the validation strategy taking into account possible slow methods. 

Algorithm assessment choosing metrics that dismiss the tackled problem. select those which are affected by it. 

Conclusions hiding the behavior of a method behind average values. rank methods according to their performance. 

performing statistical tests without guaranteeing their assumptions. possibly compare methods with non-parametric statistical tests. 

Faced with these benefits, the main disadvantage in following 
these tips is the increased amount of work to be done. Time has 
to be devoted to explore dataset traits, in order to choose the best 
ones, as well as to obtain data partitions and other methods im- 
plementations. Moreover, finding the tools to tackle all this work 
is not always easy. Aiming to mitigate this last obstacle, the tools 
we have developed to overcome these tasks are introduced in the 
following sections. 

5. mldr.datasets: the tool for managing multi-label datasets 

As the previous section has shown, selecting and preparing 
datasets to be used for experimentation are essential steps. How- 
ever, when it comes to obtaining the appropriate datasets, par- 
titioning them and obtaining them in the right format for each 
learning algorithm, multiple obstacles arise. It would be desirable 
to have a tool that facilitates such operations, as well as easing the 
exploration of its characteristics, being able to provide the refer- 
ence for each dataset, etc. That is the motivation behind the devel- 
opment of the mldr.datasets package. 

The first version of this software package for R users was in- 
troduced in [34] . Since then, its functionality has been extended 
by including new multi-label partitioning algorithms, new func- 
tions to export the data to disparate formats, automatic checking 
for data sparsity, etc. The main goal has been to facilitate all the 
tasks needed to select and prepare MLDs for conducting a experi- 
mentation. 

This section provides a didactic description of the above men- 
tioned package, explaining how to complete each of the tasks from 

obtaining a set of data to its exploration, documentation, partition- 
ing and export. 

5.1. Installing mldr.datasets in our computer 

The mldr.datasets software is an R package. As a conse- 
quence, anyone interested in using it needs to have the R inter- 
preter [35] installed in their computer. Assuming that this is the 
case, the installation procedure is the same followed for any pack- 
age available in CRAN ( Comprehensive R Archive Network ), to issue 
the following command at the R console: 

> install.packages(’’mldr.datasets’’) 

This will install the last stable version of the package, which 
is 0.4 at this time. Development versions, with added function- 
ality, are available in GitHub 1 . Assuming that the devtools 

package [36] is installed and loaded, the most recent version of 
mldr.datasets can be always installed from GitHub as shown 
below: 

> install_github(’’fcharte/mldr.datasets’’) 

1 The source code of the package is publicly available at github.com/fcharte/mldr. 

datasets . 

Fig. 3. Help index of the mldr.datasets package. 

Once installed, the package has to be loaded into memory each 
time a new R session is started. This can be done with the usual 
library() or require() R commands. Since this moment the 
user can access the functions provided by the package. The index 
of all available functions (partially shown in Fig. 3 ) can be retrieved 
with the following command: 

> help(package = ’’mldr.datasets’’) 

If you need help with a particular function, you can click on 
its name in the previous index. You can also use the command 
help(’’function.name’’) or, if you have already entered the 
name of the function into the R console or editor, you can prepend 
a question mark to it. In all cases, a description of the function and 
its parameters will be obtained, as shown in Fig. 4 . 

The subsequent sections introduce most of the available func- 
tions in the mldr.datasets package, showing how they can be 
used to perform each type of task. 

5.2. How to load and import multi-label datasets 

The package includes not only the functions mentioned below, 
able to import MLDs from a web repository, but also a set of 10 
already integrated MLDs. They are available immediately, as soon 
as mldr.datasets is loaded into memory. These MLDs are birds 
[37] , cal500 [38] , emotions [39] , flags [40] , genbase [41] , langlog 
[42] , medical [43] , ng20 [44] , slashdot [14] and stackex_chess [45] . 
The following command can be entered into the R console to ob- 
tain a list of built-in datasets: 

> data(package = ’’mldr.datasets’’) 

Each dataset is an R object, specifically an object of class 
mldr . This is the format defined in the homonymous package 2 

[46] which, among other functionality, facilitates the reading of 

2 The mldr package establishes the format of MLDs in R. It provides a user inter- 

face to ease the exploratory analysis and also performs data transformations, such 
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Fig. 4. Help about the random.kfolds() function. 

multi-label data in various formats and a user interface to carry 
out exploratory analysis of MLDs. These are implementation details 
that are not essential for the regular user of mldr.datasets . 
You can access these datasets simply by entering their name in the 
console, as you would with any R object. 

There are many other MLDs available online. Most of them are 
not embedded into the package, but can be downloaded and saved 
locally by means of the following two functions: 

• available.mldrs() : Retrieves the most up to date list of 
additional datasets from the Internet. This function does not 
need parameters. It returns as result an R data.frame con- 
taining the name and description, among other details, about 
available MLDs. 

• get.mldr() : Loads any of the available datasets into mem- 
ory, downloading it from the Internet if it were necessary. Once 
loaded, users will be able to work with it as they would with 
any of the already built-in MLDs. 

Below is an explanation on how to use these functions to com- 
plete each of the tasks associated with loading and downloading 
MLDs. 

5.2.1. Browsing the available datasets 

In addition to the 10 MLDs already integrated in the 
package, a much larger number is available online. The list 
of datasets is maintained and updated independently of the 
mldr.datasets software, so it can be extended in the future. 
The available.mldrs() function is in charge of obtaining the 
most recent list of online MLDs, returning it as a data.frame 

object. 
A data.frame is a data structure made up of several rows 

(records) and columns (fields). In this case each row contains de- 
tails of a dataset, while the columns provide the following data: 

• Name : The name of the MLD. The usual denomination found in 
the literature is used to refer to each MLD. This is the name 
to be given as input to the get.mldr() function explained 
below. 

as binarization and label powerset, among other functions. Please refer to [46] for 

an extended description. 

• Description : A brief description of the MLD’s origin and/or 
nature. 

• Instances : Number of data instances in the MLD. 
• Attributes : Number of input attributes (features) in the 
MLD. 

• Labels : Number of output attributes (labels) in the MLD. 
• URL : Full URL from which the MLD can be downloaded. It is 
the address automatically used by the get.mldr() function 
to download a dataset when needed. 

The result returned by the available.mldrs() function can 
be treated like any other data.frame in R. Fig. 5 shows how to 
get its structure, with the str() command (upper part), and how 

to recover the name and URL from some of the 60 MLDs initially 
available. 

5.2.2. Setting the download directory 

Before downloading any MLDs, it is possible to set the directory 
in which they will be stored locally. For this purpose, the envi- 
ronment option mldr.download.dir is used, whose value indi- 
cates the absolute or relative path of the desired directory. The aim 

is to provide a means for each user to save the downloaded MLDs 
where they want, so that they can load them later into memory 
without having to retrieve them again from the Internet. 

The options() command from R allows to set the value of 
mldr.download.dir . It gets one parameter, indicating the name 
of the variable and the value to be assigned. The bottom of Fig. 6 
shows how to do this, as well as how to check the current value 
through the getOption() command. 

If a value for the previous variable is not set, and the user does 
not specify a download directory when invoking the get.mldr() 

function, the default download path will be used. This corresponds 
to a subdirectory .mldr/datasets that will be created in the 
home folder of the current user. In the case of GNU/Linux the path 
is usually /home/user , while in Windows it would correspond to 
the user’s documents folder, as shown in the upper part of Fig. 6 . 

5.2.3. Downloading new datasets 

In order to download an MLD you first need to know its name. 
It can be retrieved from the Name column of the data.frame re- 
turned by available.mldrs() . This name is the only parame- 
ter required to invoke the get.mldr() function. Optionally, the 
directory where you want to store the downloaded file can be 
specified by means of the download.dir parameter. If this ar- 
gument is not provided by the user, the directory indicated by the 
option mldr.download.dir , as described in the previous sec- 
tion, will be used. 

The get.mldr() function works in three steps: 

1. It starts by determining the download directory. If the parame- 
ter download.dir has been provided by the user, this path is 
used, otherwise the option mldr.download.dir is checked. 
If it has been previously set, this directory is used, resorting to 
the default path otherwise. 

2. The next step is to check whether the requested MLD is already 
in the download directory. If this is the case, simply skip to the 
next step. Otherwise, it is downloaded and stored locally. 

3. Finally, the requested dataset is loaded into memory and re- 
turned as a result. This will be an object of class mldr , as ex- 
plained above. It can then be used like any of the built-in MLDs. 

Fig. 7 shows how to set the download folder, retrieve the names 
of all MLDs available online, and download one of them. Once 
the transfer is completed, the dataset is loaded into memory and 
stored in the imdb variable. 

As a shortcut, in mldr.datasets there are individual func- 
tions defined to make it easier to download each of the MLDs 
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Fig. 5. Browsing the available MLDs. 

Fig. 6. Setting the directory where new MLDs will be stored. 

available online. For example, to download the MLD tmc2007 we 
can use either of the following two commands in the R console, 
obtaining exactly the same result. 

> tmc2007 < - get.mldr(’’tmc2007’’) 

> tmc2007 < - tmc2007() 

The operations described in the next sections are avail- 
able for any mldr class object, be it a dataset obtained with 
mldr.datasets , generated by the mldr package or by any other 
software that produces this object format. 

5.3. Obtaining descriptive meta-data 

All mldr objects have several fields which provide meta-data 
about the MLD they contain. The name and information on these 
fields is as follows: 

• name : Contains the original name of the MLD. Sometimes this 
name does not coincide with the usual name given to the 
dataset. 

• dataset : A data.frame holding the actual data samples of 
the MLD. 

• attributes and attributesIndexes : The former is a 
vector with all the MLD’s attributes, including input features 

and output labels. For each attribute its name and data type is 
provided. The latter states the numeric index of input features 
in the MLD, since labels can be located at the beginning or at 
the end of the dataset. 

• labels : It is a data.frame object with details about each 
label in the MLD (see example in Fig. 8 ), such as its name, num- 
ber of occurrences, frequency, and the IRLbl [11] , SCUMBLE and 
SCUMBLE.CV [12] metrics. 

• labelsets : A vector containing each label combination ( la- 
belset ) appearing in the MLD along with their number of occur- 
rences. 

• measures : This list provides a set of measures aimed to char- 
acterize the MLD. When the mldr package is loaded, the user 
can retrieve this list by means of the standard summary() 

command, as shown in Fig. 9 . They can also be retrieved indi- 
vidually through the syntax mld$measures$measureName . 

• bibtex : Holds the BibTeX entry needed to reference the 
source the MLD is coming from. This information can be also 
retrieved with the toBibtex() function. The returned string 
is ready to be copied to the clipboard, but can also be printed 
into the R console using the cat() command (see Fig. 10 ). 

The measures list is the tool aimed to ease the selection of 
the proper MLDs. Most of them were described in Section 2 . It 
contains 13 different metrics: 

• num.attributes , num.inputs and num.labels : The to- 
tal count of attributes in the dataset, how many of them are 
input features and how many output labels, respectively. The 
first field always is the sum of the other two. 

• num.instances : The number of instances in the dataset. 
• num.labelsets and num.single.labelsets : The former 
indicates how distinct labelsets appear in the MLD, while the 
latter states how many of them appear only once. 

• max.frequency : Provides the number of times that the most 
common labelset occurs in the MLD. 

• cardinality and density : These fields contain the mea- 
sures known as label cardinality ( Card ) and label density ( Dens ). 

• meanIR : Holds the meanIR measure. The IRLbl metric is stored 
in the homonymous column of the labels field described 
above. 
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Fig. 7. Downloading a new MLD and loading it into memory. 

Fig. 8. List of labels in an MLD. 

• scumble and scumble.cv : Provide the SCUMBLE and SCUM- 

BLE.CV metrics for the dataset. 
• tcs : Holds the TCS metric, a evaluation of the theoretical com- 
plexity of the dataset. 

All these metrics are automatically computed each time a new 

mldr object is created, for instance by means of the loading func- 
tions provided by the mldr R package. Jointly, these measures 
would ease for a practitioner the selection of the proper MLDs to 
be included in a experimental study. 

5.4. Partitioning the datasets 

Once the proper set of MLDs has been selected, the next step 
usually consists in partitioning them so that some samples are 
used to train a model, while the remaining ones allow to test its 

performance. The mldr.datasets package provides us with the 
functions needed to accomplish this task. Three different partition- 
ing strategies can be applied: 

• Random: Randomly separates the data samples into a certain 
number of partitions. As a result, the number of patterns for 
each label can be distributed non-uniformly. In some extreme 
cases, this strategy could gather all the instances for a label in 
the same partition. 

• Stratified: Follows the stratified algorithm described in [13] in 
an attempt to distribute the data samples as evenly as possible 
among different partitions. 

• Iterative stratification: The partitioning method introduced in 
[47] has the same goal of the previous one, but it tackles the 
problem iteratively. 
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Fig. 9. Exploring the MLD traits. 

Fig. 10. Getting bibliographic data to cite a dataset. 

For each one of these strategies, there exist three functions in 
the package. The first and more generic family of functions allows 
to create any amount of partitions with a given distribution of in- 
stances. The second group builds two partitions in a hold-out man- 
ner, one for training and one for test. The last family of functions 
generates partitions oriented to performing k-fold cross validation. 
In total, users can access the following 9 functions: 

• random.partitions 

• stratified.partitions 

• iterative.stratification.partitions 

• random.holdout 

• stratified.holdout 

• iterative.stratification.holdout 

• random.kfolds 

• stratified.kfolds 

• iterative.stratification.kfolds 

Regardless of which of the previous methods we use, the pa- 
rameters to be given to the respective function are the same in all 
cases: 

• mld : The only compulsory argument is the mldr object con- 
taining the MLD to be partitioned. 

• r (only for partitions functions): A vector indicating the 
percentages of instances desired in each partition. For example, 
a value of c(35, 25, 40) would indicate three partitions, 
with 35%, 25% and 40% of instances respectively. 

• p (only for holdout functions): Indicates the desired percent- 
age of instances in the training subset. It has a default value of 
60. 

• k (only for kfolds functions): Indicates the desired number of 
folds. By default it is 5, so five different folds of training/testing 
samples would be produced. 

• seed : The seed used to initialize the random generator. Its de- 
fault value is 10. It should be changed if we want to obtain dif- 
ferent sets of folds, for instance to generate two sets of 5 folds 
(2x5fcv). 

• get.indices : By default the partitioning functions generate 
a list with as many elements as partitions requested. Each ele- 
ment will be of class mldr by default for the generic and hold- 
out function; in the case of k-folds functions, each element will 
consist of two mldr objects, one for training and one for test- 
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Fig. 11. Partitioning a dataset obtaining a list of mldr object (above) or a list of samples’ indexes. 

ing. If we assign the TRUE value to this parameter, lists with 
the indexes of the samples will be provided instead of gener- 
ating mldr objects with the data. These indexes can be used 
over the original MLD to select instances, taking up much less 
memory space than several mldr objects. 

The example shown in Fig. 11 partitions the same dataset 
twice. Firstly, a list of five objects is obtained holding two mem- 
bers, train and test . Each one is an mldr object, so the 
same operations previously described for this class of objects are 
applicable. Secondly, the same MLD is partitioned enabling the 
get.indices option. In this case the train and test mem- 
bers are numeric vectors rather than mldr objects. 

5.5. How to export data to other formats 

Although the MLDs in R format can be useful to perform ex- 
ploratory analysis with the mldr package, or conduct some ex- 
perimentation using the mlr package [48] , most users would 
need to export them to other formats. This is the goal of the 
write.mldr() function. Currently it is able to write the content 
of any mldr object to the following formats: 

• MULAN: The data is written in ARFF file format following the 
MULAN [49] multi-label standard: the labels are usually located 
at the end of each data row, and a separate XML file containing 
label names is also generated. 

• MEKA: As for MULAN, the MEKA [50] file format is also ARFF- 
based. However, the number and locations of labels in the data 
is stated in the ARFF header itself, so a separate XML file is not 
needed. 

• KEEL: This machine learning tool [51] also relies on the ARFF 
file format, as the two previous ones. The ARFF header enumer- 
ates the attributes acting as inputs and as outputs. Therefore, 
the labels can be located at any position on the dataset. 

• LibSVM: It is the file format used by the well-known SVM li- 
brary LibSVM [52] . It uses sparse representation, locating the 
labels at the beginning of each data row. 

• CSV: In case none of the previous formats fits the user’s needs, 
they can always export to CSV format and import the data from 

the tool to use. This format is the standard CSV, with the at- 
tributes and labels separated by commas with these at the end. 
A second CSV file with the label names is also generated. 

When calling the write.mldr() function, an mldr object or 
the value returned by one of the partitioning functions described 
in the previous section must be given as the first argument. In the 
first case a single data file will be created (and one with the labels 

if applicable), while in the second case as many files as partitions 
contained in the list will be generated. 

The format to export the MLD in is indicated via the format 

parameter. This should be a string with any of the format identi- 
fiers previously enumerated, i.e. ’’KEEL’’ . A vector with several 
formats can also be given, in which case the dataset is simultane- 
ously written in all of them. 

Many MLDs are sparse, mainly those having hundreds or thou- 
sands of input attributes. This means that only some of these at- 
tributes have a useful value in each row, the remaining ones being 
0. Writing all these zeros in a text file implies a waste of space. 
This is the reason to use the ARFF sparse format, far more compact 
for sparse MLDs. The sparse parameter of the write.mldr() 

function takes the FALSE value by default. Assigning it the TRUE 

value activates this functionality. However, it should only be used 
with truly sparse MLDs, otherwise it will not produce any bene- 
fit. The sparsity() function in mldr.datasets can be used 
to check the sparsity level of any MLD. For instance: 

> sparsity(emotions) 

[1] 0.05834739 

> 

> sparsity(stackex_chess) 

[1] 0.9729319 

As can be seen, the emotions dataset has less than a 6% of 
sparsity, while for stackex_chess the level is above 97%. So the 
former should not be written as sparse, while the latter should be. 

The last parameter accepted by the write.mldr() function 
is basename . It is useful to set the root of the filenames when 
several MLDs are going to be exported, usually as a result of a pre- 
vious partitioning task. The original name of the MLD, stored in 
the name attribute, is used by default. If it is not a valid name, the 
string ’’unnamed_mldr’’ will be used instead. 

In Fig. 12 two typical use cases of write.mldr() are shown. 
First, a sparse MLD is written to MEKA and CSV formats. Second, a 
dataset is partitioned and these partitions are exported to MULAN 

format. 

6. Cometa: the comprehensive multi-label data archive 

By means of the functionality offered by the package 
mldr.datasets any user can examine the characteristics of the 
MLDs, select the most appropriate ones for their study, partition 
and export them to the desired format, and reference them ap- 
propriately. Logically, it would be desirable for such partitions to 
be made publicly available so that third parties can use them for 
comparisons. In fact, the interesting point would be that we could 
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Fig. 12. Exporting a dataset and some partitions. 

Fig. 13. Cometa main page. 

all use the same data partitions, thus simplifying any comparative 
study. This is the goal behind the comprehensive multi-label data 
archive (Cometa). 

Using the functions described in Section 5 , we have taken many 
of the publicly accessible datasets, partitioned them according to 
different strategies, exported them to the most popular file for- 
mats and finally designed a website that acts as a repository of all 
that information. The repository is accessible at https://cometa.ml . 
Its purpose is to make it easier for researchers to use the same 
data partitions when conducting multi-label studies. This section 
describes Cometa’s structure and the steps for creating your own 
Cometa repository with the desired datasets. 

6.1. Browse the MLDs available at Cometa 

The main page of Cometa ( Fig. 13 ) provides several options, 
aimed to ease the access to related software packages, multi-label 
bibliography, the source code of Cometa itself, and the list of 
hosted MLDs. This is accessible through the Browse button 

The list of MLDs initially available in Cometa, partially visible 
in Fig. 14 , is provided in Table 2 . Those marked with a 

√ 
symbol 

are built-in MLDs, available as soon as the mldr.datasets pack- 
age is loaded into memory. The remaining ones can be obtained 
through the get.mldr() function explained in Section 5.2.3 . 

Table 2 

Datasets initially available in Cometa. 

Name MLDs Ref. Field 

bibtex 1 [53] Text 

birds 
√ 

1 [37] Sound/Music 

bookmarks 1 [53] Text 

cal500 
√ 

1 [38] Sound/Music 

corel16k 10 [54] Image 

corel5k 1 [55] Image 

delicious 1 [20] Text 

emotions 
√ 

1 [39] Sound/Music 

enron 1 [56] Text 

EUR-Lex 3 [57] Text 

flags 
√ 

1 [40] Image 

foodtruck 1 [58] Other 

genbase 
√ 

1 [41] Protein/Genetics 

imdb 1 [14] Text 

langlog 
√ 

1 [42] Text 

mediamill 1 [59] Video 

medical 
√ 

1 [43] Text 

ng20 
√ 

1 [44] Text 

nus-wide 2 [60] Image 

ohsumed 1 [61] Text 

rcv1v2 5 [62] Text 

reuters 1 [42] Text 

scene 1 [7] Image 

slashdot 
√ 

1 [14] Text 

stackexchange 6 [45] Text 

tmc2007 2 [63] Text 

yahoo 11 [64] Text 

yeast 1 [5] Protein/Genetics 

6.2. Filtering and searching MLDs 

The dataset browsing page provides for each MLD a set of met- 
rics, such as the number of features, labels, labelsets, the imbal- 
ance ratio, SCUMBLE and TCS measures, etc. That list is dynamic, 
so that the user can change the order simply by clicking the de- 
sired column header. A second click will reverse the order. This 
way looking for MLDs having certain traits, i.e. those with more 
labels or more imbalanced, becomes a simpler process. 

6.3. Details about an MLD 

In order to search a specific MLD or set of MLDs, all the user 
has to do is enter part of its name in the text box located at the 
top-left of the page. It is also valid to introduce a known value for 
any of the metrics shown in the list. The rows in it will be filtered 
as a result, easing the selection of the searched dataset. 

A click on the name of any of the datasets displays its detail 
page (see Fig. 15 ). This is composed of several panels, showing the 
measures that characterize the MLD, information on label concur- 
rency, including a plot 3 , and imbalance levels, the complete list of 
attributes indicating their type, the list of labels and finally, the 
source information necessary to reference it. This additional infor- 
mation should be useful to decide if the MLD is appropriate for the 
study at glance or not. 

At the bottom of the page, a link provides all the information 
displayed on this page in JSON [65] format. This facilitates the au- 
tomated treatment of meta-data related to MLDs. 

6.4. Downloading data partitions 

All the datasets available at Cometa can be downloaded from 

R through the mldr.datasets package. The tip located at the 
top-left of the details page, following the MLD’s name, provides 
the command to use. This will provide the full dataset, without 

3 This kind of plot, among others, can be easily generated by the mldr package. 
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Fig. 14. Browsing the list of datasets. 

Fig. 15. MLD details page. 
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Fig. 16. Selecting the partition strategy, folds and format for downloading the MLD. 

partitioning. This same version of the MLD can be also directly 
downloaded from the page, by clicking the Download button on 
the right. 

To the right of the previous button there is another one whose 
objective is to allow the download of the chosen MLD already par- 
titioned. Each of the datasets in the repository has been parti- 
tioned according to the following parameters: 

• Partitioning strategy : All three partitioning methods supported 
by mldr.datasets (see Section 5.4 ) have been used with ev- 
ery MLD, so the user can choose between random, stratified 
and iteratively stratified partitions. 

• Number of folds : Three configurations are provided for each 
partitioning strategy: hold out, 2x5-fcv and 10-fcv. The first 
consists of two partitions, a training partition with 60% of the 
instances and a test partition with the remaining 40%. The sec- 
ond one is made of two different sets of five folds, with 80% of 
samples for training and 20% for testing. The last configuration 
is a set of ten folds, each having 90% of instances for training 
and the remaining 10% for testing. 

• File format : For each one of the previous nine strategy/folds 
configurations data have been exported to five file formats: 
MULAN, MEKA, KEEL, LibSVM and the mldr format. 

This adds up to a total of 45 settings for each MLD, prepared to 
download and use in any experimental study. All of them are ac- 
cessible through the Download partitions button previously men- 
tioned. It opens a window as the one shown in Fig. 16 , from where 
the a .tar.gz file for each case is available. 

6.5. How to host your own Cometa repository 

Since Cometa is based exclusively on open-source software, 
other researchers can build their own multi-label data repository 
by running the same software. However, installing the required 
software, manually partitioning the datasets and extracting their 
metadata might be a tedious task. In order to relieve them from 

this work, we provide a mostly automatic, menu-based assistant in 
the form of a Docker [66] image 4 . 

The assistant will automatically process datasets, but it will 
need them in mldr format for this. Provided that we are working in 
R, the mldr() or mldr_from_dataframe() functions from the 
mldr package can convert a dataset to mldr format. Afterwards, we 
just need to save this object into a file with the built-in function 
saveRDS() . 

Assuming now that the directory containing the public data for 
the repository will be located in ~/public , we should save our 
datasets in RDS file format inside ~/public/full . At this point, 

4 The Docker image is hosted on the Docker Hub at https://hub.docker.com/r/ 

fdavidcl/cometa/ . 

the Cometa assistant can run by starting the Docker image in in- 
teractive mode and forwarding one port from the host to the 80 
port in the container: 

After downloading the required image, the main menu of the 
Cometa assistant will show some options: 

1. Partition datasets 
2. Create summaries of your data 
3. Modify website configuration 
4. Launch Cometa server 
5. Quit 

These options are intended to be processed in order. 
When choosing the first option, the assistant will scan the 
public/full folder for datasets, partition them according to dif- 
ferent partitioning and validation strategies, and export them in a 
variety of formats into public/partitions . This process can 
take several hours depending on the size of the datasets, but it is 
only needed once. If serving dataset partitions is not desired, this 
option can be skipped safely. 

The second option will again read the original datasets and out- 
put metadata in public/json . Running this option is required 
in order for the datasets to appear on the website. The third op- 
tion will allow the user to modify parameters such as the web- 
site title or its accent color, and the fourth one will start a web 
server hosting the current datasets, which will be accessible at 
localhost:8080 . 

When partitions and metadata have been created, you may 
want to start the web server without requiring human interaction. 
This can be achieved by running Docker in detached mode: 

After this command is run, the program will automatically build 
the website and serve it. That way, the server can be launched at 
system startup if desired. 

7. Concluding remarks 

The use of multi-label classification algorithms is becoming in- 
creasingly widespread, given the breadth of its applications. It is 
therefore important to design increasingly efficient methods that 
are tailored to specific needs. The behavior and performance of 
these new methods must always be validated experimentally. This 
requires appropriate procedures and tools. 
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This paper attempts to help improving the way multi-label ex- 
perimentation is conducted through several contributions. First, we 
have identified the main traps that the practitioner can find while 
performing multi-label experiments, and then a set of good prac- 
tices has been provided. In addition, we have developed and in- 
troduced the tools needed to follow these recommendations, thus 
easing this kind of work. 

In the first sections of this article we have tried to compile a 
set of good practices regarding how a multi-label experimentation 
should be conducted. According to our experience, most mistakes 
are due to incorrect selection or processing of MLDs. Most of the 
pieces of advice provided relate to this aspect. 

Aiming to ease the usual steps followed in a multi-label 
experimentation, we have developed a specific software: the 
mldr.datasets R package. As has been explained in Section 5 , 
the functionality provided by this software makes easier the 
selection, partitioning, documentation and exporting of MLDs. 
mldr.datasets is free software available to any R user, and it 
is open to future extensions by the authors and the community. 

Even those who are not R users can benefit from the function- 
ality of this software package, thanks to Cometa, the repository 
from which 60 MLDs with different partitioning strategies, number 
of partitions and formats can be downloaded. The main objective 
of this repository is to facilitate that new multi-label studies al- 
ways use the same MLD partitions. This would allow future com- 
parisons between algorithms, without the need for each researcher 
to re-run all results for published methods. All that would have to 
be done is to take the same partitions of data used in the refer- 
ence article. Like mldr.datasets , Cometa is free software and 
any user can set up their own repository, as well as contribute to 
Cometa by providing additional datasets. 

As future work, we aim to enlarge the collection of MLDs 
hosted in Cometa, as well as extend the information provided for 
each one of them. The functionality of the mldr.datasets pack- 
age could be also enhanced, for instance allowing any user to up- 
load and process their datasets automatically from the R command 
line. 

Acknowledgments 

The authors are grateful to the editor and anonymous reviewers 
for their suggestions and advice, who have contributed to improv- 
ing the content of this paper. 

This work is supported by the Spanish National Research 
Projects TIN2014-57251-P and TIN2015-68454-R and the Project 
BigDaP-TOOLS - Ayudas Fundación BBVA a Equipos de Investigación 
Científica 2016. 

References 

[1] F. Herrera, F. Charte, A.J. Rivera, M.J. del Jesus, Multilabel Classification, 
in: Problem Analysis, Metrics and Techniques, Springer, 2016, doi: 10.1007/ 
978- 3- 319- 41111-8 . 

[2] E. Gibaja, S. Ventura, A tutorial on multilabel learning, ACM Comput. Surv. 47 
(3) (2015) 52:1–52:38., doi: 10.1145/2716262 . 

[3] A. Clare, R.D. King, Knowledge discovery in multi-label phenotype data, in: 
Proceedings of the Fifth European Conference Principles on Data Mining and 
Knowledge Discovery, 2168, Freiburg, Germany, 2001, pp. 42–53, doi: 10.1007/ 
3- 540- 44794- 6 _ 4 . 

[4] M.L. Zhang, Multilabel neural networks with applications to functional ge- 
nomics and text categorization, IEEE Trans. Knowl. Data Eng. 18 (10) (2006) 
1338–1351, doi: 10.1109/TKDE.2006.162 . 

[5] A. Elisseeff, J. Weston , A kernel method for multi-labelled classification, in: 
Proceedings of the Advances in Neural Information Processing Systems, 14, MIT 
Press, 2001, pp. 6 81–6 87 . 

[6] S. Godbole, S. Sarawagi, Discriminative methods for multi-labeled classifica- 
tion, in: Proceedings of the Advances in Knowledge Discovery and Data Min- 
ing, 3056, 2004, pp. 22–30, doi: 10.1007/978- 3- 540- 24775- 3 _ 5 . 

[7] M. Boutell, J. Luo, X. Shen, C. Brown, Learning multi-label scene classification, 
Pattern Recognit. 37 (9) (2004) 1757–1771, doi: 10.1016/j.patcog.2004.03.009 . 

[8] F. Charte, A. Rivera, M. del Jesus, F. Herrera, REMEDIAL-HwR: tackling multi- 
label imbalance through label decoupling and data resampling hybridization, 
Neurocomputing, 2018 In press, doi: 10.1016/j.neucom.2017.01.118 . 

[9] N. Spolaôr, M.C. Monard, G. Tsoumakas, H.D. Lee, A systematic review of multi- 
label feature selection and a new method based on label construction, Neuro- 
computing 180 (2016) 3–15, doi: 10.1016/j.neucom.2015.07.118 . 

[10] F. Charte, A. Rivera, M. del Jesus, F. Herrera, LI-MLC: a label inference method- 
ology for addressing high dimensionality in the label space for multilabel 
classification, IEEE Trans. Neural Netw. Learn. Syst. 25 (10) (2014) 1842–1854, 
doi: 10.1109/TNNLS.2013.2296501 . 

[11] F. Charte, A.J. Rivera, M.J. del Jesus, F. Herrera, Addressing imbalance in multi- 
label classification: measures and random resampling algorithms, Neurocom- 
puting 163 (0) (2015) 3–16, doi: 10.1016/j.neucom.2014.08.091 . 

[12] F. Charte, A. Rivera, M. del Jesus, F. Herrera, Dealing with difficult minor- 
ity labels in imbalanced mutilabel data sets, Neurocomputing, 2018 In press, 
doi: 10.1016/j.neucom.2016.08.158 . 

[13] F. Charte, A.J. Rivera, M.J. del Jesus, F. Herrera, On the impact of dataset 
complexity and sampling strategy in multilabel classifiers performance, in: 
Proceedings of the Eleventh International Conference on Hybrid Artificial 
Intelligent Systems, HAIS, 9648, Springer, 2016, pp. 500–511, doi: 10.1007/ 
978- 3- 319- 32034- 2 _ 42 . 

[14] J. Read, B. Pfahringer, G. Holmes, E. Frank, Classifier chains for multi-label clas- 
sification, Mach. Learn. 85 (2011) 333–359, doi: 10.1007/s10994- 011- 5256- 5 . 

[15] J. Read , B. Pfahringer , G. Holmes , Multi-label classification using ensembles of 
pruned sets, in: Proceedings of the Eighth IEEE International Conference on 
Data Mining, Pisa, Italy, 2008, pp. 995–1000 . 

[16] E. Hüllermeier, J. Fürnkranz, W. Cheng, K. Brinker, Label ranking by learning 
pairwise preferences, Artif. Intell. 172 (16) (2008) 1897–1916, doi: 10.1016/j. 
artint.20 08.08.0 02 . 

[17] J. Fürnkranz, E. Hüllermeier, E.L. Mencía, K. Brinker, Multilabel classification 
via calibrated label ranking, Mach. Learn. 73 (2008) 133–153, doi: 10.1007/ 
s10994- 008- 5064- 8 . 

[18] D. Xu, Y. Tian, A comprehensive survey of clustering algorithms, Ann. Data Sci. 
2 (2) (2015) 165–193, doi: 10.1007/s40745- 015- 0040- 1 . 

[19] M.L. Zhang, Ml-RBF: RBF neural networks for multi-label learning, Neural Pro- 
cess. Lett. 29 (2009) 61–74, doi: 10.1007/s11063- 009- 9095- 3 . 

[20] G. Tsoumakas , I. Katakis , I. Vlahavas , Effective and efficient multilabel clas- 
sification in domains with large number of labels, in: Proceedings of the 
ECML/PKDD Workshop on Mining Multidimensional Data, Antwerp, Belgium, 
2008, pp. 30–44 . 

[21] T. Megano, K.i. Fukui, M. Numao, S. Ono, Evolutionary multi-objective distance 
metric learning for multi-label clustering, in: Proceedings of the IEEE Congress 
on Evolutionary Computation (CEC), 2015, pp. 2945–2952, doi: 10.1109/CEC. 
2015.7257255 . 

[22] C. Braune, S. Besecke, R. Kruse, Density Based Clustering: Alternatives to DB- 
SCAN, Springer International Publishing, Cham, 2015, pp. 193–213, doi: 10.1007/ 
978- 3- 319- 09259- 1 _ 6 . 

[23] M. Ester , H.P. Kriegel , J. Sander , X. Xu , A density-based algorithm for discover- 
ing clusters a density-based algorithm for discovering clusters in large spatial 
databases with noise, in: Proceedings of the Second International Conference 
on Knowledge Discovery and Data Mining, AAAI Press, 1996, pp. 226–231 . 

[24] N. Cesa-Bianchi , C. Gentile , L. Zaniboni , Incremental algorithms for hierarchical 
classification, J. Mach. Learn. Res. 7 (2006) 31–54 . 

[25] M. Zhang, Z. Zhou, ML-KNN: a lazy learning approach to multi-label learning, 
2007,. Pattern Recognit., 40, 7, 2038–2048, 10.1016/j.patcog.2006.12.019 . 

[26] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, F.E. Alsaadi, A survey of deep neural 
network architectures and their applications, Neurocomputing 234 (2017) 11–
26, doi: 10.1016/j.neucom.2016.12.038 . 

[27] J. Read, F. Pérez-Cruz, Deep learning for multi-label classification, ArXiv 
preprint arXiv:1502.05988 abs/1502.05988 . 

[28] K. Karalasa, G. Tsagkatakisb, M. Zervakisa, P. Tsakalidesa, Deep learning for 
multi-label land cover classification, in: Proceedings of the Remote Sens- 
ing, International Society for Optics and Photonics, 9643, 2015, p. 96430Q, 
doi: 10.1117/12.2195082 . 

[29] Y. Wei, W. Xia, M. Lin, J. Huang, B. Ni, J. Dong, Y. Zhao, S. Yan, HCP: a flexible 
CNN framework for multi-label image classification, IEEE Trans. Pattern Anal. 
Mach. Intell. 38 (9) (2016) 1901–1907, doi: 10.1109/TPAMI.2015.2491929 . 

[30] D. Charte, F. Charte, S. García, M.J. del Jesus, F. Herrera, A practical tutorial 
on autoencoders for nonlinear feature fusion: taxonomy, models, software and 
guidelines, Inf. Fusion 44 (2018) 78–96, doi: 10.1016/j.inffus.2017.12.007 . 

[31] G. Madjarov, D. Kocev, D. Gjorgjevikj, S. Džeroski, An extensive experimen- 
tal comparison of methods for multi-label learning, Pattern Recognit. 45 (9) 
(2012) 3084–3104, doi: 10.1016/j.patcog.2012.03.004 . 

[32] S. Garca , F. Herrera , An extension on statistical comparisons of classifiers over 
multiple data sets for all pairwise comparisons, J. Mach. Learn. Res. 9 (66) 
(2008) 2677–2694 . 

[33] S. García, A. Fernández, J. Luengo, F. Herrera, Advanced nonparametric tests 
for multiple comparisons in the design of experiments in computational in- 
telligence and data mining: experimental analysis of power, Inf. Sci. 180 (10) 
(2010) 2044–2064, doi: 10.1016/j.ins.2009.12.010 . 

[34] F. Charte, D. Charte, A.J. Rivera, M.J. del Jesus, F. Herrera, R ultimate multilabel 
dataset repository, in: Proceedings of the Eleventh International Conference on 
Hybrid Artificial Intelligent Systems, 9648, Springer, 2016, pp. 4 87–4 99, doi: 10. 
1007/978- 3- 319- 32034- 2 _ 41 . 



84 F. Charte et al. / Neurocomputing 289 (2018) 68–85 

[35] R.C. Team, A Language and Environment for Statistical Computing, R Founda- 
tion for Statistical Computing, Vienna, Austria. 2014. http://www.R-project.org/ 
R . 

[36] H. Wickham, W. Chang, devtools: Tools to Make Developing R Packages Easier, 
r package version 1.8.0. 2015. http://CRAN.R-project.org/package=devtools . 

[37] F. Briggs, B. Lakshminarayanan, L. Neal, X.Z. Fern, R. Raich, S.J.K. Hadley, 
A.S. Hadley, M.G. Betts, Acoustic classification of multiple simultaneous bird 
species: a multi-instance multi-label approach, J. Acoust. Soc. Am. 131 (6) 
(2012) 4640–4650, doi: 10.1121/1.4707424 . 

[38] D. Turnbull, L. Barrington, D. Torres, G. Lanckriet, Semantic annotation and 
retrieval of music and sound effects, IEEE Audio, Speech, Lang.Process 16 (2) 
(2008) 467–476, doi: 10.1109/TASL.2007.913750 . 

[39] A. Wieczorkowska, P. Synak, Z. Ra ́s, Multi-label classification of emotions in 
music, in: Proceedings of the Intelligent Information Processing and Web Min- 
ing, 35, AISC, 2006, pp. 307–315, doi: 10.1007/3- 540- 33521-8 _ 30 . 

[40] E.C. Gonçalves, A. Plastino, A.A. Freitas, A genetic algorithm for optimizing the 
label ordering in multi-label classifier chains, in: Proceedings of the Twenty 
Fifth IEEE International Conference on Tools with Artificial Intelligence (IC- 
TAI13), 2013, pp. 469–476, doi: 10.1109/ICTAI.2013.76 . 

[41] S. Diplaris, G. Tsoumakas, P. Mitkas, I. Vlahavas, Protein classification with mul- 
tiple algorithms, in: Proceedings of the Tenth Panhellenic Conference on Infor- 
matics, Volos, Greece, 2005, pp. 448–456, doi: 10.1007/11573036 _ 42 . 

[42] J. Read , Scalable multi-label classification, University of Waikato, 2010 (Ph.D. 
thesis) . 

[43] K. Crammer , M. Dredze , K. Ganchev , P.P. Talukdar , S. Carroll , Automatic code 
assignment to medical text, in: Proceedings of the Workshop on Biological, 
Translational, and Clinical Language Processing, Prague, Czech Republic, 2007, 
pp. 129–136 . 

[44] K. Lang , Newsweeder: Learning to filter netnews, in: Proceedings of the 
Twelfth International Conference on Machine Learning, 1995, pp. 331–339 . 

[45] F. Charte, A.J. Rivera, M.J. del Jesus, F. Herrera, QUINTA: a question tagging as- 
sistant to improve the answering ratio in electronic forums, in: Proceedings of 
the International Conference on Computer as a Tool (EUROCON), IEEE, 2015, 
pp. 1–6, doi: 10.1109/EUROCON.2015.7313677 . 

[46] F. Charte , D. Charte , Working with multilabel datasets in R: the mldr package, 
R J. 7 (2) (2015) 149–162 . 

[47] K. Sechidis, G. Tsoumakas, I. Vlahavas, On the stratification of multi-label data, 
in: Proceedings of the Machine Learnig and Knowledge Discovery in Databases, 
Springer, 2011, pp. 145–158, doi: 10.1007/978- 3- 642- 23808- 6 _ 10 . 

[48] P. Probst , Q. Au , G. Casalicchio , C. Stachl , B. Bischl , Multilabel classification with 
R package mlr, R J. 9 (1) (2017) 352–369 . 

[49] G. Tsoumakas , E.S. Xioufis , J. Vilcek , I. Vlahavas , MULAN: a java library for mul- 
ti-label learning, J. Mach. Learn. Res. 12 (2011) 2411–2414 . 

[50] J. Read, P. Reutemann, MEKA multi-label dataset repository. http://meka. 
sourceforge.net/#datasets . 

[51] I. Triguero, S. González, J.M. Moyano, S. García, J. Alcalá-Fdez, J. Luengo, A. Fer- 
nández, M.J. del Jesús, L. Sánchez, F. Herrera, Keel 3.0: an open source software 
for multi-stage analysis in data mining, Int. J. Comput. Intell. Syst. 10 (1) (2017) 
1238–1249, doi: 10.2991/ijcis.10.1.82 . 

[52] C.C. Chang, C.J. Lin, LIBSVM: a library for support vector machines, ACM Trans. 
Intell. Syst. Technol. 2 (3) (2011) 27:1–27:27, doi: 10.1145/1961189.1961199 . 

[53] I. Katakis , G. Tsoumakas , I. Vlahavas , Multilabel text classification for auto- 
mated tag suggestion, in: Proceedings of the European Conference on Machine 
Learning and Principles and Practice of Knowledge Discovery in Databases 
(ECML PKDD), Antwerp, Belgium, 2008, pp. 75–83 . 

[54] K. Barnard , P. Duygulu , D. Forsyth , N. de Freitas , D.M. Blei , M.I. Jordan , Match- 
ing words and pictures, J. Mach. Learn. Res. 3 (2003) 1107–1135 . 

[55] P. Duygulu, K. Barnard, J. de Freitas, D. Forsyth, Object recognition as machine 
translation: learning a lexicon for a fixed image vocabulary, in: Proceedings of 
the Seventh European Conference on Computer Vision, Part IV. Copenhagen, 
Denmark, 2002, pp. 97–112, doi: 10.1007/3- 540- 47979- 1 _ 7 . 

[56] B. Klimt, Y. Yang, The Enron Corpus: a new dataset for email classification 
research, in: Proceedings of the European Conference on Machine Learning 
(ECML), Pisa, Italy, 2004, pp. 217–226, doi: 10.1007/978- 3- 540- 30115- 8 _ 22 . 

[57] E.L. Mencia, J. Fürnkranz, Efficient pairwise multilabel classification for large- 
scale problems in the legal domain, in: Machine Learning and Knowl- 
edge Discovery in Databases, Springer, 2008, pp. 50–65, doi: 10.1007/ 
978- 3- 540- 87481- 2 _ 4 . 

[58] A. Rivolli, L.C. Parker, A.C. de Carvalho, Food truck recommendation using 
multi-label classification, in: Portuguese Conference on Artificial Intelligence, 
Springer, 2017, pp. 585–596, doi: 10.1007/978- 3- 319- 65340- 2 _ 48 . 

[59] C.G.M. Snoek, M. Worring, J.C. van Gemert, J.M. Geusebroek, A.W.M. Smeul- 
ders, The challenge problem for automated detection of 101 semantic con- 
cepts in multimedia, in: Proceedings of the Fourteenth ACM Annual Interna- 
tional Conference on Multimedia, Santa Barbara, CA, USA, 2006, pp. 421–430, 
doi: 10.1145/1180639.1180727 . 

[60] T.S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, Y. Zheng, NUS-WIDE: a real-world web 
image database from National University of Singapore, in: Proceedings of the 
ACM International Conference on Image and Video Retrieval, 48, ACM, 2009, 
doi: 10.1145/1646396.1646452 . 

[61] T. Joachims, Text categorization with support vector machines: learning 
with many relevant features, in: Proceedings of the Tenth European Confer- 
ence on Machine Learning, Springer-Verlag, 1998, pp. 137–142, doi: 10.1007/ 
BFb0026683 . 

[62] D.D. Lewis , Y. Yang , T.G. Rose , F. Li , RCV1: a new benchmark collection for text 
categorization research, J. Mach. Learn. Res. 5 (2004) 361–397 . 

[63] A.N. Srivastava, B. Zane-Ulman, Discovering recurring anomalies in text reports 
regarding complex space systems, in: Proceedings of the Aerospace Confer- 
ence, IEEE, 2005, pp. 3853–3862, doi: 10.1109/AERO.2005.1559692 . 

[64] N. Ueda , K. Saito , Parametric mixture models for multi-labeled text„ Adv. Neu- 
ral Inf. Process. Syst. (2002) 721–728 . 

[65] http://www.ecma- international.org/publications/files/ECMA- ST/ECMA- 404.pdf 
[66] https://www.docker.com/ Docker: Build, ship and run any Docker Inc., app 

anywhere. 

Francisco Charte received his B.Eng. degree in Computer 
Science from the University of Jaèn in 2010 and his M.Sc. 
and Ph.D. in Computer Science from the University of 
Granada in 2011 and 2015. He is an Assistant Profes- 
sor of Computer Architecture and Computer Technology 
with the Computer Science Department at the Univer- 
sity of Jaèn (Spain). He is coauthor of the book “Mul- 
tilabel Classification-Problem Analysis, Metrics and Tech- 
niques” (Springer, 2016). His main research interests in- 
clude machine learning with applications to multilabel 
classification, high dimensionality and imbalance prob- 
lems, as well as deep learning algorithms. 

Antonio J. Rivera received his B.Sc. degree and his Ph.D. 
in Computer Science from the University of Granada 
in 1995 and 2003, respectively. He is a lecturer of 
Computer Architecture and Computer Technology with 
the Computer Science Department at the University of 
Jaèn (Spain). He is coauthor of the book “Multilabel 
Classification-Problem Analysis, Metrics and Techniques”
(Springer, 2016). His research interests include areas such 
as multilabel classification, imbalance problems, evolu- 
tionary computation, neural network design, time series 
prediction and regression tasks. 

David Charte received his B.Sc degrees in Mathematics 
and Computer Science from the University of Granada in 
2017. He is currently studying for a M.Sc. in Data Science 
and Computer Engineering at the same university, while 
involved in research for the Department of Computer Sci- 
ence and Artificial Intelligence. He is coauthor of several 
pieces of software for Data Science. His research interests 
include unsupervised deep learning techniques and their 
applications, problems with high dimensionality and mul- 
tilabel classification. 



F. Charte et al. / Neurocomputing 289 (2018) 68–85 85 

Marìa J. Del Jesus received the M.Sc. and Ph.D. degrees 
in Computer Science from the University of Granada, 
Granada, Spain, in 1994 and 1999, respectively. She is a 
Professor with the Department of Computer Science at 
University of Jaèn (Spain). She has been the supervisor of 
7 Ph.D. students. She has published more than 65 jour- 
nal papers that have received more than 4500 citations 
(Scholar Google, H-index 31). She is coauthor of the book 
“Multilabel Classification-Problem Analysis, Metrics and 
Techniques” (Springer, 2016). Her current research inter- 
ests include fuzzy rule-based systems, subgroup discov- 
ery, multilabel classification, data preparation, radial ba- 
sis neural networks, knowledge extraction based on evo- 

lutionary algorithms, and data science and big data. 

Francisco Herrera (SM’15) received his M.Sc. in Mathe- 
matics in 1988 and Ph.D. in Mathematics in 1991, both 
from the University of Granada, Spain. He is currently a 
Professor in the Department of Computer Science and Ar- 
tificial Intelligence at the University of Granada. He has 
been the supervisor of 41 Ph.D. students. He has pub- 
lished more than 350 journal papers, receiving more than 
550 0 0 citations (Scholar Google, H-index 118). He is co- 
author of the books “Genetic Fuzzy Systems” (World Sci- 
entific, 2001) and “Data Preprocessing in Data Mining”
(Springer, 2015), “The 2-tuple Linguistic Model. Comput- 
ing with Words in Decision Making” (Springer, 2015), 
Multilabel Classification. Problem analysis, metrics and 

techniques” (Springer, 2016), among others. He currently acts as Editor in Chief of 
the international journals “Information Fusion” (Elsevier) and “Progress in Artifi- 
cial Intelligence (Springer). He acts as editorial member of a dozen of journals. He 
received the following honors and awards: ECCAI Fellow 2009, IFSA Fellow 2013, 
2010 Spanish National Award on Computer Science ARITMEL to the “Spanish Engi- 
neer on Computer Science”, International Cajastur “Mamdani” Prize for Soft Com- 
puting (Fourth Edition, 2010), IEEE Transactions on Fuzzy System Outstanding 2008 
and 2012 Paper Award (bestowed in 2011 and 2015, respectively), 2011 Lotfi A. 
Zadeh Prize Best paper Award (IFSA Association), 2013 AEPIA Award to a scien- 
tific career in Artificial Intelligence, 2014 XV Andalucìa Research Prize Maimnides, 
2017 Security Forum I+D+I Prize, and 2017 Andalucìa Medal (by the regional gov- 
ernment of Andalucìa). He has been selected as a Highly Cited Researcher http: 
//highlycited.com/ (in the fields of Computer Science and Engineering, respectively, 
2014 to present, Clarivate Analytics). His current research interests include among 
others, soft computing (including fuzzy modeling and evolutionary algorithms), in- 
formation fusion and decision making, biometric, data preprocessing, data science, 
deep learning and big data. 


	Tips, guidelines and tools for managing multi-label datasets: The mldr.datasets R package and the Cometa data repository
	1 Introduction
	2 Multi-label learning background
	2.1 MLL foundations
	2.2 Characterization metrics
	2.3 Main MLL tasks
	2.4 MLL evaluation metrics

	3 Conducting multi-label learning experiments
	3.1 Data selection and preparation
	3.2 Competing methods
	3.3 Performance metrics

	4 Tips and pitfalls while performing multi-label experiments
	4.1 Selecting the proper datasets
	4.2 Preparation of data and methods
	4.3 Assessing algorithm performance
	4.4 Reaching global conclusions
	4.5 Summary, advantages and disadvantages

	5 mldr.datasets: the tool for managing multi-label datasets
	5.1 Installing mldr.datasets in our computer
	5.2 How to load and import multi-label datasets
	5.2.1 Browsing the available datasets
	5.2.2 Setting the download directory
	5.2.3 Downloading new datasets

	5.3 Obtaining descriptive meta-data
	5.4 Partitioning the datasets
	5.5 How to export data to other formats

	6 Cometa: the comprehensive multi-label data archive
	6.1 Browse the MLDs available at Cometa
	6.2 Filtering and searching MLDs
	6.3 Details about an MLD
	6.4 Downloading data partitions
	6.5 How to host your own Cometa repository

	7 Concluding remarks
	 Acknowledgments
	 References


