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a b s t r a c t 

Classification with monotonic constraints arises from some ordinal real-life problems. In 

these real-life problems, it is common to find a big difference in the number of instances 

representing middle-ranked classes and the top classes, because the former usually repre- 

sents the average or the normality, while the latter are the exceptional and uncommon. 

This is known as class imbalance problem, and it deteriorates the learning of those under- 

represented classes. However, the traditional solutions cannot be applied to applications 

that require monotonic restrictions to be asserted. Since these were not designed to con- 

sider monotonic constraints, they compromise the monotonicity of the data-sets and the 

performance of the monotonic classifiers. In this paper, we propose a set of new sam- 

pling techniques to mitigate the imbalanced class distribution and, at the same time, main- 

tain the monotonicity of the data-sets. These methods perform the sampling inside mono- 

tonic chains, sets of comparable instances, in order to preserve them and, as a result, the 

monotonicity. Five different approaches are redesigned based on famous under- and over- 

sampling techniques and their standard and ordinal versions are compared with outstand- 

ing results. 

© 2018 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Ranking and evaluation of assets or even individuals are intrinsic characteristics of human nature. Hence, the presence of

ordinal variables is common in tons of real-life data-sets. Credit rating [13,48] , house ranking [50] and employee evaluation

[6,37] are good examples of their presence in present-day applications. 

These problems aim to determine the most valuable items according to their virtues, i. e. classification into ordinal

labels according to ordinal attributes. Additionally, these applications usually require a monotonic restriction between the

inputs and the class. That is, the class prediction of an individual should not decrease with a better value for a certain

variable, fixing the remainder. Otherwise, an unfair evaluation of the individuals can be made. These classification problems

with prior knowledge of the order relations between attributes and the class are known as classification with monotonicity

constraints or monotonic classification [4] . Failure to respect these constraints are referred to as violations of monotonicity

and must be avoided in the class decision of new samples. 

When dealing with monotonic classification problems [4] , we look for those examples that belong to the most remarkable

class, with a higher value. It is reasonable to have fewer samples of really good and remarkable individuals than those
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considered normal or average. For example, in the evaluation of future employees of a company, there will probably be

fewer “excellent candidates” than “average candidates.”

This difference in the number of representatives between classes has proven to cause a great loss of prediction accuracy

in the minority classes [38,44] . This issue is known as a class imbalance problem or imbalanced classification. Multiple

real-life applications present this problem, even those from non-standard classifications, such as Monotonic Classification

[4,6,48] or Multi-task learning [36,37] . The majority of the monotonic problems considered in the literature suffers due to

this issue. Therefore, the imbalance class distribution must be approached in the scope of monotonic classification. 

Traditionally data level approaches [44] have been well accepted because they allow the use of a standard classifier after

balancing the skewed training sets by under-/over- sampling. However, these techniques also have their own drawbacks.

When using under-sampling, there is the risk of losing relevant information from the treated class. On the other hand,

over-sampling can introduce noisy instances. 

These approaches are not designed for monotonic classification [4] and do not take monotonic constraints into con-

sideration. Due to this lack of awareness of monotonicity [4] , these preprocessing techniques can severely deteriorate the

monotonicity of the data-sets and reduce the performance of the classifiers. For example, the possible noisy instances gener-

ated by over-sampling could mean a greater damage in monotonic classification, because they may increase the number of

monotonicity violations in the data-sets. The under-sampling techniques could remove important instances that determine 

the limit of the classes in term of monotonicity. 

Therefore, new sampling approaches must be designed considering the monotonicity constraints. We propose new sam-

pling techniques based on monotonic chains. In monotonic classification, a chain [35] is a set of comparable instances,

that is, they can be sorted. These are very important assets of the classification carried out relevant methods such as KNN

[16] and OSDL [34,35] , because they determine the possible classes without monotonic violations for new instances. Our

techniques perform the sampling using these chains and preserving, as much as possible, the monotonicity of the data-sets.

Additionally, these methods take monotonic noise into consideration, in order to avoid instances that violate monotonicity

during the sampling process. These differences with the traditional methods reduce the deterioration of monotonicity of

sampled data-sets and maintain the improvement of the accuracy for minority classes. 

To do so, we have put together a new scheme for applying both under- and over-sampling to monotonic imbalanced

data-sets. This scheme consists of several good practices, related to the influence of monotonic violations and chains on

sampling, that can be extended to the almost all the sampling techniques in the literature. This scheme has been imple-

mented in five famous under- and over-sampling approaches of the State-of-the-Art of imbalanced classification: Random

Under-Sampling (RUS), Random Over-Sampling (ROS), Synthetic Minority Oversampling TEchnique (SMOTE) [10] , ADAptive 

SYNthetic sampling approach (ADASYN) [27] and Majority Weighted Minority Oversampling TEchnique (MWMOTE) [2] . 

Throughout this paper, two different empirical studies are carried out with exactly the same experimental framework.

The first experiments test the selected sampling techniques in their standard and ordinal versions using 8 monotonic imbal-

anced sets which are very common in the literature. The majority are multi-class and can be considered highly imbalanced

problems. The original and sampled data-sets are classified by five well-known classifiers. Two evaluation metrics are used:

Macro Average Arithmetic (MAvA) [47] evaluates the prediction capability in multi-class imbalanced scenarios and Non-

Monotonic Index (NMI) [4] determines the monotonicity of data-sets and predictions. The obtained results show empirically

the deterioration of the monotonicity degree in data-sets caused by standard and ordinal sampling approaches. 

Then, a second experimental study is performed following the same framework to analyze the behavior of new mono-

tonic sampling techniques. The different predictions obtained are compared in terms of multi-class accuracy and monotonic-

ity. The comparison shows the capacity of monotonicity preservation of the monotonic sampling techniques over the stan-

dard ones. The outcomes are corroborated by the use of non-parametric statistical tests: Friedman ranking test [20,25] and

Bayesian Sign test [5] . 

This paper is organized as follows. In Section 2 , we present the problems approached and their solutions: classification

with monotonic constraints and class imbalance problem. Section 3 is devoted to setting up the bases to adapt sampling

approaches to monotonic scenarios and explain in detail the chain based sampling techniques. In Section 4 , the experimental

framework used in the different empirical studies is presented. Section 5 recalls two experimental studies: an analysis on the

impact of standard and ordinal sampling on monotonic classification and a comparison of the results achieved by monotonic

sampling. Finally, in Section 6 , the main conclusions of this study are given. 

2. Background 

In this section, we introduce the background knowledge of the problems addressed in this paper. 

2.1. Monotonic classification 

Monotonic classification, just as ordinal regression and/or classification, aims to predict an ordinal class label y for new

sample x with ordinal attributes with the help of a labeled set, i.e. f : x → y . In both problems, the classes Y are cate-

gories Y = {L 1 , L 2 , . . . , L C } with a problem imposed arrangement L 1 ≺ L 2 ≺ . . . ≺ L C . However, there is a big difference

between both problems. Ordinal classification just focuses on minimizing the errors of predicted and real labels. Monotonic

classification imposes monotonicity constraints between the input variables and predicted labels, that is, every instance x ′ 
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dominated by x should have a lower or the same assigned class f ( x ′ ) than x class label f ( x ). Formally, x �x ′ → f ( x ) ≥ f ( x ′ ) [30] ,

where x � x ′ ↔ x j ≥ x ′ 
j 
, j = 1 , . . . , A. 

Recently this problem has drawn the attention of data mining practitioners, who have designed monotonic classifiers

based on distinct models, such as, instance-based learning [3,16,24,35] , rules-based methods and decision trees [1,4,39,41] ,

support vector machines [13,33] , neural networks [19,31,52] and ensemble learning [15,26,45] . These monotonic classifiers

avoid monotonicity violations in their predictions. And they can be pure, when their decisions are always monotonic, or par-

tial, if they minimize their violations as much as possible. Some of these monotonic classifiers have to learn from monotonic

data-sets in order to properly predict new samples. Only if all the pairs of example i, j of a training set D are monotonic,

the data-set D is considered monotonic [3] , i.e. x i �x j → y i ≥ y j , ∀ x i , x j ∈ D . 

Even though these constraints are defined in the learning and prediction phases of the classification process, they have to

be taken into consideration in preprocessing phases. Otherwise the monotonicity of the involved training set can be severely

compromised. Few studies have been undertaken in this field [6,7,28] . For example, imbalanced classification in scenarios

with monotonic constraints has not been explored, although it has been for ordinal classification [40,42] . 

2.2. The class imbalance problem 

The class imbalance problem refers to a severe loss of classification accuracy of certain classes due to their under-

representation in the training data-set [38] . That is, some classes have a lot less instances than others, which affects their

identification by standard classifiers. These under-represented classes are known as minority or positives, whilst the rest are

referred to as majority or negative classes. In many real-life applications, the most important classes are usually the most

imbalanced. Therefore, the misclassification of these classes entails greater costs [12] . 

The inaccurate prediction of the minority classes mainly results from the generalization of the standard classifiers used

to infer models and avoid over-fitting. The use of global performance measures, such as accuracy rate, also negatively affects

the learning phase. Therefore, the difference in the number of representatives of each class has a great influence on this

issue. However, there are other issues that aggravate this problem [22,38] , such as noise, overlapping, lack of density and

small disjuncts. 

Many data scientists have shown great interest in the field and several approaches have been designed to deal with it.

These can be categorized into the following three [38] : 

• Data level approaches [10,44] : the affected data-sets are rebalanced by sampling. The equal representation between

classes is reached by generating more examples for the minority class (over-sampling) [10] , removing examples from

the majority class (under-sampling) or both (hybrid methods). 
• The cost-sensitive learning [11,32] considers the costs of the errors of the misclassification of the minority class into

function minimization. 
• The algorithmic approaches [14,46] are modifications of base learning algorithms in order to achieve better performance

with imbalanced data-sets. 

Data level approaches are the most popular solutions to the problem, since they enable the standard classification meth-

ods. Random Over- and Under-Sampling are the most basic procedures that randomly duplicate or remove examples from

the minority or majority classes. Other more complex methods have been proposed, such as SMOTE (Synthetic Minority

Oversampling TEchnique) [10] , ADASYN (ADAptive SYNthetic sampling approach) [27] or MWMOTE (Majority Weighted Mi-

nority Oversampling TEchnique) [2] . These five are remarkable approaches among the State-of-the-Art methods. 

SMOTE [10] generates synthetic instances x g through the linear interpolation of randomly selected instances x and their

nearest neighbors x n from the same minority class (see Eq. (1) ). Similarly, ADASYN [27] also generates new instances through

this interpolation, however, the selection of the examples are not uniformly random. It prioritizes instances near to the

borders of the class according to a distribution of weights. These weights are computed per instance as the ratio of neighbors

with a different class label of the class of the evaluated instance. 

Linear interpolation is carried out using the following formula: 

x g = x + (x n − x ) ∗ α (1)

where α is a random number chosen in the range [0,1]. 

MWMOTE [2] is based on clustering to define the group of instances to be interpolated. First, MWMOTE identifies the mi-

nority instances at the borders, i.e. hard to learn instances, and removes the possible noisy instances. Then, sample weights

are assigned in relation to their closeness to a border and the low density of their clusters. Finally, these instances are

randomly selected according to their weights and interpolated with another sample of the same cluster. 

Additionally, standard global metrics negatively influence the performance and they have to be replaced by more suitable

options: Area Under the ROC Curve [29] or Geometric Mean are commonly used in binary imbalance problems [38,44] .

Macro Average Arithmetic (MAvA) [47] has been frequently chosen for multi-class scenarios and is computed as followed: 

MA v A = 

1 

m 

m ∑ 

i =1 

ACC i (2)

where ACC is the partial accuracy rate for the class i independently. 
i 
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Algorithm 1 Example in pseudo-code of the identification of the type of an example x . 

1: function sampleType ( x - evaluated instance, y - instance x class label, D - data-set) 

2: if ∃ (x i , y i ) ∈ D | x i � x ∧ y > y i ∨ x � x i ∧ y i > y then 

3: Set x as violation of monotonicity 

4: else � Get set of instances with same class as y 

5: S y ← {∀ (x i , y i ) ∈ D | y i = y } 
6: if � x i ∈ S y | x i � x ∨ x � x i then 

7: Set x as a instance at the limit of chain 

8: else 

9: Set x as a instance inside a chain 

10: end if 

11: end if 

12: end function 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Chain based sampling in monotonic imbalanced classification 

The intention of this work is to design proper ways of sampling monotonic data-sets without loosing their monotonicity.

To do so, we propose a new sampling schema based on chains. The main difference is the maintenance of the essential

parts of the chains of each class. That is, the upper- and lower- instances of each class in each chain [35] . 

A monotonic chain is a set S of comparable instances, i.e. those which can be sorted. The upper-instance ↑ x S of the chain

S is the one that dominates all the other samples of the chain. The lower-instance ↓ x S of the chain is dominated by the

rest. The upper- and lower- instances of each class for a whole chain determine the upper and lower bounds of the range

of possible labels without monotonic violations for new instances which are in that chain [16,35] . Formally, the upper- and

lower- instances are defined as the following: 

↑ x S = x ∈ S : ∀ x i ∈ S x � x i (3)

↓ x S = x ∈ S : ∀ x i ∈ S x i � x (4)

Since sampling techniques usually work independently for each class, chains can be segmented in subsets of a certain

class. Then, the instances at the limits of these subsets are the ones that must remain untouched. 

In contrast to traditional methods, monotonic sampling also takes monotonic noisy instances into consideration, avoiding

them so as not to greatly affect the decisions during preprocessing. Even more, our techniques mitigate their impacts when

possible. 

To achieve these objectives, the monotonic sampling techniques classify the instances of each class in three different

groups of relevance. This classification is used to bias the selection of the examples involved in the sampling, promoting

instances at the limits and inside chains and avoiding monotonic noise. The three groups of representatives are detailed in

the following: 

• At the limits of chains: As said before, these are the most important instances of the chains and the classes, because they

determine the ordering limit of each class. Therefore, the sampling techniques prioritize them over the rest. This type of

example is identified when there is no comparable example of the same class that is greater or smaller, i.e. upper- or

lower- limit, respectively. As explained above, chains are treated independently for each class. 
• Inside chains: These representatives give consistency to the chains. The more of this type there is in a chain, the stronger

and more relevant the chain is. When possible, these examples must be conserved during sampling. These are the coun-

terparts of the previous type, so they are identified by finding greater and smaller comparable samples. 
• Violation of monotonicity: These are monotonic discrepancies, that is, instances that are not monotonically consistent

with others. They must be avoided, because they are one of the main reasons for monotonic deterioration of the models.

They are identified by comparison with comparable instances of other classes. Sampling techniques avoid them when

possible. Tolerance to these examples is computed as indirectly proportional to the number of violations of the instances.

When a instance has a high number of violations, there will be only a small possibility of being involved in the sampling.

Algorithm 1 exemplifies with pseudo-code and formal expressions how the types of an instance x are determined. 

With these ideas, we settle the bases to extend the use of chains in nearly every sampling technique, both under-

sampling and over-sampling approaches. 

3.1. Under-sampling for monotonic imbalanced classification 

For monotonic versions of under-sampling methods, it is highly important to preserve the upper- and lower-limits of

the chains. As many as possible of these instances will be prioritized and maintained in the final sampled set until equal

balance is reached. 
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Algorithm 2 Monotonic Random Under-Sampling. 

1: function mRUS ( N - number of instances to select, S y - sampled set of class y , D - data-set) 

2: initialize: S v iolations ← ∅ , S at Limit s ← ∅ , S inChain ← ∅ , P rob ← ∅ , S res ← ∅ 
3: for (x i , y i ) ∈ S y do 

4: if sampleT ype (x i , y i , D ) = monotonicV iolation then 

5: P rob i = 1 . 0 /numV iolations (x i , y i , D ) 

6: S v iolation ← (x i , y i ) 

7: else 

8: if sampleT ype (x i , y i , D ) = at Limit s then 

9: S at Limit s ← (x i , y i ) 

10: else 

11: S inChain ← (x i , y i ) 

12: end if 

13: end if 

14: end for 

15: if Size (S at Limit s ) > N then � Step 1 

16: S res ← uni f ormlyRandomSelection (S at Limit s ) 

17: else � Step 2 

18: S res ← S at Limit s 

19: if Size (S inChain ) > (N − Size (S at Limit s )) then 

20: S res ← uni f ormlyRandomSelection (S inChain ) 

21: else � Step 3 

22: S res ← S inChain 

23: Normalize (P rob) 

24: # Samples = N − Size (S at Limit s ) − Size (S atChains ) 

25: for j ∈ [1 , # Samples ] do 

26: S res ← roul etteSel ection (S v iolations , P rob) 

27: end for 

28: end if 

29: end if 

30: return S res 

31: end function 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Additionally, under-sampling methods could help to mitigate the impact of monotonic violations of the data-set by pur-

posely sampling the monotonic noisy instances. This feature is unique in under-sampling methods, since over-sampling lacks

any similar characteristics. 

Depending on the original under-sampling technique, this knowledge can be introduced in different ways. For weight-

based sampling, a monotonic weight can be given to each instance according the three previously mentioned types of in-

stances. The weights given to instances at the limits of chains are recommended to be higher than the ones given to the

samples inside chains. Non monotonic instances receive a weight of 0 ensuring their exclusion, but only if there are enough

samples of the other two types to achieve class balance. Otherwise, these weights may be indirectly proportional to the

number of monotonic violations caused by the instances. These monotonic weights can be included as a factor of the origi-

nal weighting. See the following subsection for more details. 

However, we have extended the famous Random Under-Sampling. The original method randomly selects a subset of

the majority classes to rebalance the data-set. RUS does not use any weights or probabilities in its process of selection. It

merely chooses the samples in a uniformly random way. Therefore, the monotonic RUS approach (mRUS) is designed as

a hierarchical selection according to the mentioned groups of relevance instead of being purely random. This hierarchical

selection has the following steps: 

• Step 1: If the number of at-the-limits samples is big enough to fulfill the rebalance of the data-sets, a subset of this

group is uniformly and randomly selected. Otherwise, every instance is selected and Step 2 will be executed. 
• Step 2: If the number of instances inside the chains is enough to rebalance the data-sets within the already selected

instances, the same selection procedure is applied to this type of instances. Otherwise, all are selected and Step 3 will

continue with the rebalance. 
• Step 3: Only if needed, monotonic noisy instances will be used to complete the balanced data-set. The selection is not

uniform; it is guided by a probability distribution. The probability to select a certain non monotonic sample is com-

puted as the inverse of the number of monotonic violations. So, instances with more discrepancies have less chance of

being selected, while instances with just one inconsistency have the highest probability. This final selection has been

implemented following a roulette wheel scheme, as seen in Line 26. This procedure computes a cumulative probability
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distribution and generates a random number between 0 and 1. The first cumulative probability greater than this number

indicates the selected instance. 

These steps are exemplified in the following algorithm: 

3.2. Over-sampling for monotonic imbalanced classification 

Over-Sampling techniques are more likely to be weight-based methods. Therefore, their monotonic extensions could eas-

ily include a monotonic weighting according to the three categories of the previously defined instances. These weights can

then be transformed in a probability distribution to guide the selection of the over-sampled instances. The hierarchical ap-

proach used for under-sampling lacks common sense for over-sampling techniques, since they cannot easily implement it. 

As previously mentioned, monotonic noise or non monotonic instances should be excluded from the sampling decisions.

However, they cannot be removed from the final data-set, as in under-sampling. In order to reduce their impact as much as

possible, the probability of them being selected is equal to zero. Then, they will not be replicated. But if the sampled class

is entirely composed of instances with monotonic violations, they cannot be avoided. Then, they will be selected according

to the inverse of their number of violations within the range (0,1]. 

Since instances at the limit of chains seize more valuable information, they should have a significantly higher chance

than those inside chains. At least, the probability of the former instances should double that of the latter. Finally, these

weights are normalized to form a probability distribution. Algorithm 3 shows the implementation of this weight scheme in

pseudo-code. 

According to this weighting approach, we have chosen four well-known over-sampling techniques to design a monotonic

version of them. We have detailed the highlights of each of these methods in the following: 

• ROS: The original Random Over-Sampling technique randomly replicates instances of the minority classes, which could

greatly deteriorate the monotonicity of the data-sets if non monotonic instances are frequently selected. The monotonic

version of ROS (mROS) does not perform a uniformly random selection anymore. It selects the instances following a

roulette wheel selection scheme as in mRUS, but with the previously explained probability distribution computed by

Algorithm 3 . An explanation in pseudo-code of mROS can be found in Algorithm 4 . 

mROS is not so effective for the methods that transform replicas into class membership, such as OSDL [35] or some rela-

beling techniques [17,43] . These methods intend to mitigate the impact of replicas with different classes by fusing them

into probabilities. For data-sets with these inconsistencies, mROS is very effective. On the other hand, mROS achieves

nothing. Therefore, we have designed a different method of replication (Line 7). The replications will have a small vari-

ation in their values, to avoid attaining exactly the same instances. This is done using jittering, that is, by introducing a

small Gaussian noise to the feature values of the selected instance. 

In order to ensure that the derived sample is as close as possible to the selected one, the standard deviation σ of the

Gaussian noise generator must be sufficiently small, so that σ = 0 . 001. Therefore, this small variation of each feature is
Algorithm 3 Monotonic weights function. 

1: function monotonicWeights ( S y - data-set of class, D - data-set) 

2: initialize: P rob[1 .size (S y )] = 0 , S v iolations ← ∅ 
3: for (x i , y i ) ∈ S y do 

4: if sampleT ype (x i , y i , D ) = monotonicV iolation then 

5: P rob i = 1 . 0 /numV iolations (x i , y i , D ) 

6: S v iolations ← i 

7: else 

8: if sampleT ype (x i , y i , D ) = at Limit s then 

9: P rob i = 4 . 0 

10: else 

11: P rob i = 2 . 0 

12: end if 

13: end if 

14: end for 

15: if Size (S v iolations ) ! = Size (S y ) then 

16: for i ∈ S v iolations do 

17: P rob i = 0 

18: end for 

19: end if 

20: Normalize (P rob) 

21: return P rob 

22: end function 



S. González et al. / Information Sciences 474 (2019) 187–204 193 

Algorithm 4 Monotonic Random Over-Sampling. 

1: function mROS ( rep - option of replication (std or 1-NN) , N - number of instances to replicate, S y - sampled set of class 

y , D - data-set) 

2: initialize: P rob ← monotonicW eights (S y , D ) , S res ← S y 
3: for i ∈ [1 , N] do 

4: (x i , y i ) = roul etteSel ection (S y , P rob) 

5: if rep = true then 

6: S res ← (x i , y i ) 

7: else 

8: x g = gaussianRandom (μ = 0 , σ = 0 . 001) + x i 
9: S res ← (x g , y i ) 

10: end if 

11: end for 

12: return S res 

13: end function 

Algorithm 5 Monotonic SMOTE. 

1: function mSMOTE ( k - nearest neighbors, interpolationRatio = 0 . 5 , N - number of instances to replicate, S y - sampled set 

of class y , D - data-set) 

2: initialize: P rob ← monotonicW eights (S y , D ) , S res ← S y 
3: for i ∈ [1 , N] do 

4: (x i , y i ) = roul etteSel ection (S y , P rob) 

5: S nn ← kN N (k, S y ) .getNeighbors (x i , y i ) 

6: P rob nn ← monotonicW eights (S nn , D ) 

7: (x nn , y nn ) = roul etteSel ection (S nn , P rob n n ) 

8: α = random (0 , 1) 

9: x g = x i + interpolationRatio ∗ (x nn − x i ) ∗ α
10: S res ← (x g , y i ) 

11: end for 

12: return S res 

13: end function 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

randomly generated following a Gaussian distribution with a mean μ equal to original feature value and a σ of 0.001

(Line 8). These two versions of mROS are implemented as a parameter of the same method, so the best result is always

chosen according to the features of the classification method. 
• SMOTE [10] : This method generates synthetic instances through interpolation of randomly selected instances and their

nearest neighbors. Its adaption must avoid the selection of monotonic noisy instances, because their interpolations will

probably be noisy. Algorithm 5 represents the method Monotonic SMOTE (mSMOTE). 

mSMOTE follows exactly the same selection procedure as mROS. When a sample is selected (Line 4), its k nearest neigh-

bors are computed and just one is chosen to perform the interpolation. As shown in Line 6, the nearest neighbors are

selected with the same probabilities scheme mentioned before. That is, neighbors at the limits of chains are prioritized

over those that are inside a chain. 

For mSMOTE, the interpolations are limited and ensured to be computed with a maximum distance of a percentage of

the total distance to the selected nearest neighbor. This percentage can be considered to be a parameter of the method,

interpolationRatio . This parameter can be set from 0, meaning no interpolation is performed and thus it works as a mROS

with repetitions, to the value of 1, as the standard linear interpolation. Values in this range modulate “room for error”

during the interpolation process. If we want to be conservative and try to preserve monotonicity as much as possible, we

will try to generate synthetic instances near the one selected, i.e. setting a low value for the parameter. We recommend

setting it to 0.5, as a good trade off between being conservative and covering more of the problem space. The expression

in Line 9 reflects the modification of the standard expression for linear interpolation. 
• ADASYN [27] : The original ADASYN already includes a weighting schema to prioritize samples at the borders of the

minority class. The weight of a instance is obtained as the ratio of nearest neighbors with a different class value. The

instances are selected according to these weights, then, the linear interpolation with their neighbors are performed as

SMOTE. 

Monotonic ADASYN (mADASYN) is similar to mSMOTE. However, since it already computes weights for each instance, a

combination of both schemes has to be defined. This is done by the product of both normalized weights, then they are

normalized again. The following expression shows this transformation: 

P rob i = 

�i ∗ monotonicW eights (x i , D ) (5)

k 
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Table 1 

Summary of the sampling techniques and their suggested param- 

eters. 

Sampling techniques Parameters 

RUS & ROS No parameters 

SMOTE & k = 5 , 

ADASYN & distance = Euclidean 

ADASYNOrd 

MWMOTE & k 1 = 5 , k 2 = 3 , k 3 = 3 , C p = 3 , 

MWMOTEOrd C f = 5 , C max = 2 , distance = Euclidean 

CWOSOrd N N = 5 , N S = 5 , α = 1 , 

C thres = 2 , distance = Euclidean 

mRUS & mROS no parameters 

mSMOTE & Same recommended parameters, 

mADASYN & interpolationRatio = 0 . 5 

mMWMOTE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where �i is the number of neighbors with a different class than x i in the set of k nearest neighbors and

monotonicWeight ( x i , D ) is the monotonic weight of x i defined in Algorithm 3 and normalized in the range (0,1] 
• MWMOTE [2] : The original MWMOTE is a very different approach compared to SMOTE and ADASYN. It uses clustering as

well as several nearest neighbor rules to define the instances S imin from the minority class that are really hard to learn.

To do so, the set S minf is obtained with the minority instances which are not considered to be noise, that is, instances

that have at least one minority instance among their k 1 nearest neighbors. Then, S bmaj is computed as the union of all

k 2 nearest enemies, instances from other classes, of the instances in S minf . Finally, S imin is the result of all k 3 nearest

neighbors belonging to the minority class of S bmaj . Instances in S imin are the only samples that can be selected according

to weight distribution S w 

. 

The weight S w 

for given sample x i is computed with the sum of the information weights I w 

contributed by all the

instances in S bmaj : 

S w 

(x i ) = 

∑ 

x j ∈ S bma j 

I w 

(x j , x i ) (6) 

The information weight is composed of a closeness factor C f ( x j , x i ) and a density factor D f ( x j , x i ). The former determines

the closeness to the decision boundaries, while the latter quantifies the density of the cluster to which the instance x i 
belongs. 

I w 

(x j , x i ) = C f (x j , x i ) ∗ D f (x j , x i ) (7)

Monotonic MWMOTE (mMWMOTE) maintains this algorithmic structure untouched. Similarly as mADASYN, the mono- 

tonic weight distribution is merged with the original distribution S w 

. This is done by multiplying both factors: 

P rob i = S w 

(x i ) ∗ monotonicW eights (x i , D ) (8) 

As a reminder, the selection of the neighbor or corresponding cluster instance to be interpolated with the previously

selected sample x i is also guided using the monotonic weighting in the monotonic methods SMOTE, ADASYN and MW-

MOTE. 

4. Experimental framework 

This section introduces the experimental framework followed in all the experiments conducted in this paper. In order to

study the viability of sampling in monotonic environments, we select five well-known sampling techniques from the-State-

of-the-Art: RUS, ROS, SMOTE [10] , ADASYN [27] and MWMOTE [2] . These were explained in previous sections. 

They were chosen following the study [40] that develops a version of these methods for ordinal regression. Then, we can

also test them within monotonic scenarios. Ordinal versions of ROS and SMOTE do not change much: they are just applied

to all the classes to balance them. For this reason, we have only included one version of RUS, ROS and SMOTE. However,

ADASYN and MWMOTE ordinal extensions include a factor to consider the ordinal rank difference between the evaluated

instances and their neighbors or closest samples. For ADASYN, this factor is introduced in the weights calculation, while for

MWMOTE, it appears in the closeness factor. 

Additionally, in the experiments we have included the new over-sampling technique developed in [40] . CWOSOrd is a

cluster-based oversampling technique that is focused on the more complex and smaller clusters, where it generates more

synthetic samples. The ordering relationship and the distances to other classes samples are used to compute a probability

distribution to guide the random selection of samples for synthetic generation. For more specific details, we refer the readers

to original paper [40] . Table 1 recalls the sampling techniques used and their parameters, including our proposals. 
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Table 2 

Description of the data-sets used. 

Data-set Ins. At. Cl. At. directions %Ins. per Class 

balance 625 4 3 { −, −, +, +} 46.1/ 7.8 /46.1 

car 1728 6 4 All direct 70.1/22.2/ 4.0 / 3.8 

ERA 10 0 0 4 9 All direct 9.1 / 14.2 /18.1/17.2/15.8/ 11.8 / 8.8 / 3.1 / 1.9 

ESL 488 4 9 All direct 0.2 / 2.5 / 7.7 /20.5/23.9/27.6/ 12.8 / 3.9 / 0.9 

LEV 10 0 0 4 5 All direct 9.2 /28.0/40.3/19.7/ 2.8 

SWD 10 0 0 10 4 All direct 3.1 /35.2/39.9/21.8 

windsorhousing 546 11 2 All direct 76.6/ 23.4 

wisconsin 699 9 2 All direct 65.3/ 34.7 

Table 3 

Parameters considered for the algorithms compared. 

Algorithm Parameters 

M k NN [16] k = 5, distance = euclidean, neighborsType = inRange 

OSDL [35] balanced = No, classificationType = median, 

lowerBound = 0, upperBound = 1 

tuneInterpolationParameter = No, weighted = No, 

interpolationStepSize = 10, interpolationParameter = 0.5 

OLM [3] modeResolution = conservative 

modeClassification = conservative 

C4.5-MID [4] R = 1, confidence = 0.25, items per leaf = 2 

MonMLP [31] default parameters, hidden1 = 8 

iter.max = 10 0 0, monotone = all att 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These methods are applied to 8 different monotonic data-sets that have been selected as they are commonly used in

the literature of classification with monotonic constraints. Table 2 shows the characteristics of each data-set: number of in-

stances (Ins.), attributes (At.) and classes (Cl.), monotone direction between each attribute and the class, and the percentage

of representation of each class label in the data-set. As can be seen in the table, the majority of these data-sets are multi-

class and highly imbalanced problems. However, the classification cannot be carried out by class decomposition schemes

[18,21] , such as One-vs-One [23,51] or One-vs-All [9] . Since these algorithms perform the classification in decomposed bi-

nary independent problems, the order and monotonic relations between classes are distorted. 

Therefore, the sampling techniques are applied to the classes depending on whether they are majority or minority classes

for under- or over-sampling, respectively. The sampling is stopped when equal balance is reached. The minority classes are

represented with bold-face font in the column %Ins. per Class at Table 2 , the rest are considered majority classes. 

Then, the resulting data-sets are classified by 5 different multi-class monotonic classifiers. Table 3 recalls the monotonic

classifiers used during these experiments and their parameters. All this process is carried out following a 10-fold stratified

cross validation scheme (10-fcv) with the partitions found in the software KEEL [49] . 

As performance measures, we have selected MAvA and Non-Monotonic Index (NMI). The above mentioned MAvA eval-

uates the prediction capability of the classifiers for multi-class imbalance problems. MAvA results should improve after

applying sampling. Non-Monotonic Index is used to determine the impact of the sampling techniques on the monotonicity

of the monotonic classifier predictions. Non-Monotonic Index (NMI) [4] measures the ratio of instance pairs NMP that vio-

late monotonicity, with respect to the total number of pairs of instances in a predicted set. To compute it, the sets of test

predictions resulting from the 10-fcv classification are merged into only one set. Then, the NMI is computed over this set

following the expression: 

N MI = 

N MP 

N 

2 − N 

where N stands for the total number of instances. 

In order to corroborate the different outcomes of the experiments, we use non-parametric statistical tests: the well-

known Friedman rank test [20,25] and Bayesian Sign test [5] . 

Bayesian Sign test is a pairwise Bayesian non-parametric sign test based on the Dirichlet Process [5] . This test computes

a distribution with the difference of the results obtained by the two compared algorithms ( A vs B ). Then, a decision is made

according to the position of the majority of the distributions in one of the three regions: left (superiority of method B ), rope

(statistical equivalence) and right (superiority of method A ) [5] . 

We have used the R package, named rNPBST [8] , to perform the different tests and to present the graphics in the follow-

ing section. 
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Table 4 

MAvA average results obtained by the selected classifiers with standard and ordinal sampling. 

Table 5 

Friedman ranking for MAvA results obtained by the selected classifiers with standard and ordinal sampling. 

MAvA 

Rank M k NN OLM MID OSDL MonMLP 

1 ADASYN (3.50) MWMOTEOrd (3.31) ROS (2.50) Original (1.50) SMOTE (3.75) 

2 MWMOTE (3.75) MWMOTE (3.93) ADASYN (3.56) RUS (3.62) ADASYN (3.93) 

3 CWOSOrd (3.75) ADASYNOrd (4.06) SMOTE (3.62) SMOTE (4.93) ADASYNOrd (4.18) 

4 SMOTE (4.62) SMOTE (4.37) MWMOTEOrd (4.06) ADASYNOrd (5.00) ROS (4.37) 

5 MWMOTEOrd (4.75) ADASYN (4.50) MWMOTE (5.56) ROS (5.12) MWMOTEOrd (4.68) 

6 RUS (5.25) CWOSOrd (4.56) ADASYNOrd (5.81) ADASYN (5.31) RUS (5.25) 

7 ADASYNOrd (5.37) ROS (5.62) Original (6.00) MWMOTEOrd (5.5) MWMOTE (5.31) 

8 ROS (7.00) Original (7.12) CWOSOrd (6.25) MWMOTE (6.81) CWOSOrd (6.50) 

9 Original (7.00) RUS (7.50) RUS (7.62) CWOSOrd (7.18) Original (7.00) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Experimental studies 

This section is devoted to experimentally showing the influence on monotonicity of standard, ordinal and monotonic

chain based sampling techniques. First, the performance results of several standard and ordinal samplings are analyzed,

paying special attention to their impact on the monotonicity of the prediction of different monotonic classifiers. The fol-

lowing subsection presents the results obtained by our new monotonic sampling scheme. An extensive comparison is made

with the original results of the classifiers and the standard sampling. 

5.1. On the viability of standard sampling techniques in monotonic imbalanced scenarios 

In order to test the feasibility of sampling for monotonic imbalanced data-sets, we must first assure that the prediction

capability has increased after applying them. Table 4 recalls the average MAvA results achieved by each classifier with and

without the resulting set of each preprocessing method. The table cells colored in gray indicate an improvement compared

to the original results obtained by the classifier. Italics font is used to highlight the best performance for each sampling

group; in this case, the comparison of the standard and ordinal version of ADASYN and MWMOTE. 

As shown in Table 4 , nearly all results achieved with balanced sets outperform the classification with skewed data-

sets. Even though it was expected, these improvements are remarkably significant, especially the one obtained with the

combination of ADASYN+M k NN, ROS+MID and ROS+MonMLP. However, OSDL always achieves better results with the original

data-sets. With this outcome, we can deduce that sampling techniques will not work properly for OSDL. Probably, this is

related to its particular way of classification based on stochastic dominance and probability distribution functions extracted

from repeated instances with different class labels [35] . Therefore, we exclude OSDL from the rest of the experiments. 

In addition, Table 5 shows a Friedman ranking per selected classifier of the sampling techniques sorted by their per-

formance in terms of MAvA. Here, the MAvA advantage of sampling can be also appreciated, since the original results are

usually ranked last, with the exception of OSDL. 

There is not one sampling method which is superior to the rest. For some classifiers, certain sampling methods are

well ranked, while for others, they are not. Their good or bad performance strongly depends on the base learner. For ordi-

nal sampling, there is no significant improvement over their standard versions. ADASYN is ranked higher more times than

ADASYNOrd, while, for MWMOTE, the ordinal version is usually ranked better. CWOSOrd is not well ranked for any of the

selected classifiers. 

A better prediction ability thanks to a preprocessing technique is not enough to prove its viability for classification with

monotonic constraints. Its impact on monotonicity must be studied. Table 6 gathers the average NMI retrieved from the

selected classifiers with the different sampling methods. As in the previous Table 4 , the results in gray improve those re-

called purely by the classifier. With exception of SMOTE and ADASYN for OLM, all NMI measured with sampling are much

higher. Therefore, these sampling techniques really deteriorate the monotonicity of the data-sets and, as consequence, the

monotonicity of the monotonic learner. 

This fact can be also observed in the Friedman ranking presented in the Table 7 that composed of all the NMI results.

The original classifiers are nearly always ranked first with a small ranking value compared to the second best. 
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Fig. 1. Bayesian Sign Test heatmap for the sampling MAvA results vs the original MAvA results. 

Table 6 

NMI average results obtained by the selected classifiers with standard and ordinal sampling. 

Table 7 

Friedman ranking for NMI results obtained by the selected classifiers with standard and ordinal sampling. 

NMI 

Rank M k NN OLM MID OSDL MonMLP 

1 Original (2.43) ADASYNOrd (3.31) Original (3.37) Original (3.18) Original (2.50) 

2 ROS (3.81) ADASYN (3.68) MWMOTEOrd (4.00) RUS (4.43) ADASYN (4.37) 

3 ADASYN (4.68) ROS (4.68) SMOTE (4.12) SMOTE (4.81) ADASYNOrd (4.62) 

4 SMOTE (4.87) SMOTE (4.75) ADASYN (4.56) MWMOTE (4.81) SMOTE (4.87) 

5 MWMOTE (5.12) Original (5.12) CWOSOrd (4.87) ADASYN (5.31) MWMOTE (4.87) 

6 CWOSOrd (5.25) RUS (5.5) MWMOTE (5.12) ADASYNOrd (5.37) ROS (5.00) 

7 MWMOTEOrd (5.50) MWMOTEOrd (5.62) ADASYNOrd (5.68) ROS (5.62) MWMOTEOrd (5.37) 

8 ADASYNOrd (5.93) CWOSOrd (6.06) ROS (5.87) MWMOTEOrd (5.62) CWOSOrd (6.00) 

9 RUS (7.38) MWMOTE (6.25) RUS (7.37) CWOSOrd (5.81) RUS (7.37) 
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Fig. 2. Bayesian Sign Test heatmap for the monotonic sampling MAvA results vs the standard sampling MAvA results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Additionally, thanks this study of monotonicity, ordinal sampling methods become impractical, since ADASYN is still

usually better than ADASYNOrd, MWMOTE is now ranked higher than its ordinal version in most cases and once again,

CWOSOrd ranks last in the Friedman ranking. 

With this first experimental study, we can conclude that standard sampling can improve the prediction of the classifiers,

but they impair the monotonicity to a large extent. And the existing ordinal sampling methods do not solve the problem. 

The complete results achieved by these methods in terms of MAvA and NMI can be found in the following experimental

study, for the standard sampling methods, and in Appendix A . They have been removed from this section for the sake of

clarity. 

5.2. Standard and monotonic sampling: results and analysis 

Throughout this empirical study, we analyze the behavior of our chain based sampling techniques. Their performance in

terms of MAvA and NMI are compared with the classifiers with and without the standard sampling methods. Given the bad

performance shown in the previous experimental study using OSDL with sampled data-sets in comparison to the one with

original sets, OSDL has been excluded from this experiment. 

Table 8 recalls the MAvA achieved per data-set with the different configurations of base learners and standard or mono-

tonic preprocessing. The best results between the standard and monotonic versions of each sampling are highlighted in

italics. The gray cells represent an improvement when compared to the classifiers without sampling. 

All the classifiers improve their performance in terms of MAvA by using sampling, both standard and monotonic, for most

of the data-sets. The best sampling methods on average are the standard ROS sampling and Monotonic ADASYN (mADASYN).

RUS and mRUS are the methods which show the least improvement, probably because the under-sampling performed to

balance the class distribution is too aggressive. The monotonic version is slightly better. At first sight, it is difficult to guess

which is the best set of methods in terms of predictability: standard or monotonic sampling. 

Bayesian Sign test has been used to thoroughly analyze the results and to clearly present the significance of the differ-

ences between the evaluated methods with the help of heatmap plots. Fig. 1 represents the probability distributions of the

differences between the sampling methods and the original results of the classifiers. As we can observe, the majority of the

points in nearly all the plots are on the right side of the triangle. This means that the results obtained with sampling are

significantly better than those obtained without sampling. With the exception of RUS ( Fig. 1 a) and mRUS ( Fig. 1 a), the test

assigns an almost 0 probability in favor of the original classifiers. Monotonic RUS ( Fig. 1 a) is still valued, since most of the

distribution is in the right region. 
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Fig. 3. Bayesian Sign Test heatmap for the sampling NMI results vs the original NMI results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 graphically compares the MAvA results of the monotonic versus standard sampling techniques. With a large part

of distributions in the rope regions, there is no significant difference in terms of predicative capability between these two

sampling groups. Monotonic RUS, ROS and MWMOTE ( Fig. 2 a, b and e, respectively) are slightly better than their standard

versions, since their distributions have shifted a bit to the right. 

Table 9 gathers the NMI results reached using the different standard and monotonic sampling methods for every classifier

per data-set. Cells in gray indicate the preservation of monotonicity. Even though there are not a huge amount of cells in

gray, monotonic sampling results are quite similar to the original results when they do not achieve an improvement. It is

worth mentioning that monotonicity is preserved on average for OLM and MID for nearly all monotonic sampling, except

mROS and mRUS, respectively. On average, every monotonic sampling outperforms its counterpart for each classifier and the

mean of all the results. The majority of best results per data-set and type of sampling, marked in italics, are located in the

monotonic columns. These results represent a better preservation of monotonicity using the monotonic sampling compared

to the traditional methods. 

Fig. 3 represents the Bayesian Sign test results for the difference of each of the sampling techniques and the NMI results

obtained without them. At first glance, there is a change in the tendency of the distributions of the standard and the

monotonic methods. Even though all of them have shifted to the left, towards the original results of the classifiers, the

distributions of the monotonic sampling techniques are largely located in the rope region, i.e. the practical equivalence

region. Monotonic RUS is excluded from this good behavior. Additionally, for monotonic MWMOTE ( Fig. 3 j), a good amount

of points are located in the right section, indicating some monotonic improvements as compared to the original results. 

Fig. 4 shows the result of the Bayesian Sign test for the NMI comparison of monotonic sampling vs standard sampling

methods. As we can observe, all the distributions are heavily shifted to the right, emphasizing the superiority of monotonic
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Fig. 4. Bayesian Sign Test heatmap for the monotonic sampling NMI results vs the standard sampling NMI results. 

Table 8 

MAvA results obtained by the selected classifiers with standard and monotonic sampling. 
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Table 9 

NMI results obtained by the selected classifiers with standard and monotonic sampling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sampling over standard ones using NMI as measure. For the monotonic RUS and MWMOTE comparisons ( Fig. 4 a and e),

the majority of the distribution is located in the right part. For the rest, the distributions are more or less shared by the

rope and right sections. However, for monotonic ROS ( Fig. 4 b), ADASYN ( Fig. 4 d) and MWMOTE ( Fig. 4 e), there are barely

no points on the left side, therefore their superiority is significant. 

Recapitulating, the five monotonic sampling techniques based on monotonic chains increase the predictability of the

classifier and, at the same time, to a large extent, improve the standard sampling approaches in terms of monotonicity.

mRUS and mMWMOTE show a marked improvement as compared to the standard versions. 

Among the monotonic sampling methods analyzed, it is difficult to choose the best technique, since the best results

strongly depend on the characteristics of the problem and classifier used. On average, mADASYN results in the best tech-

niques in terms of MAvA, while mROS achieves the best monotonic results. mRUS is the worst on average, but it obtains

fairly good results for those datasets where there is a good amount of representatives of the minority classes, such as car and

wisconsin , especially when combined with OLM and MonMLP. mROS is very interesting for problems with repeated samples

of different classes. Comparing the methods based on linear interpolation, mSMOTE is the best at maintaining monotonicity

and a good trade-off between predictability improvement and monotonicity maintenance. 

6. Concluding remarks 

The imbalanced class problem is a real issue for many real-life applications and commonly used data-sets in classification

with monotonic constraints. However, as shown empirically in this paper, traditional solutions are not valid for those sce-

narios in which monotonic constraints are assumed, since these methods heavily degrade the monotonicity of the data-sets.

In this paper, a new sampling scheme based on monotonic chains was designed to consider the constraints of monotonic-

ity and to be able to be applied to monotonic data-sets. The main objective was to improve the accuracy of those minority

classes, while preserving the monotonicity of the models. We have developed this scheme within 5 different well-known

sampling techniques, one under-sampling and four over-sampling algorithms. These new methods have been empirically

tested with their standard versions, statistically resulting in the same results in terms of prediction enhancement and in

much better preservation of the monotonicity of the predictions. In some cases, they have even improved the monotonicity

of the models compared to the original without sampling. Among the chain based sampling methods, mROS is the best in

terms of monotonicity and mSMOTE is the best in predictability improvement and monotonicity preservation. 
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Appendix A 
Table A.10 

MAvA results obtained by the selected classifiers with standard and ordinal sampling. 

Original RUS ROS SMOTE ADASYN ADASYNOrd MWMOTE MWMOTEOrd CWOSOrd 

balance 0.6343 0.7241 0.6100 0.6436 0.6376 0.6376 0.6637 0.6637 0.6657 

car 0.9134 0.8824 0.9553 0.9696 0.9709 0.9709 0.9660 0.9636 0.9645 

ERA 0.1357 0.1480 0.1338 0.2501 0.2794 0.2588 0.2845 0.2769 0.2911 

ESL 0.4674 0.3986 0.4621 0.4660 0.4711 0.3228 0.4945 0.4915 0.5123 

MKNN LEV 0.3924 0.4182 0.3834 0.4682 0.4737 0.3925 0.4467 0.4414 0.4491 

SWD 0.4004 0.4692 0.4111 0.4608 0.4616 0.4599 0.4034 0.4031 0.4044 

windsorhousing 0.6755 0.6467 0.6755 0.6562 0.6477 0.6477 0.6726 0.6726 0.6526 

wisconsin 0.9625 0.9745 0.9625 0.9699 0.9721 0.9721 0.9709 0.9709 0.9702 

Avg: 0.5727 0.5827 0.5742 0.6106 0.6143 0.5828 0.6128 0.6105 0.6137 

balance 0.6019 0.5243 0.6019 0.6268 0.6200 0.6200 0.6632 0.6632 0.6577 

car 0.8704 0.8424 0.9028 0.8885 0.8885 0.8885 0.8885 0.8909 0.8885 

ERA 0.2423 0.2276 0.2674 0.2962 0.3012 0.2983 0.2716 0.2794 0.2550 

ESL 0.3981 0.3242 0.4070 0.3974 0.4019 0.4069 0.4225 0.4203 0.4253 

OLM LEV 0.4044 0.3801 0.3729 0.4165 0.4075 0.4054 0.4155 0.4109 0.4077 

SWD 0.4834 0.4024 0.4707 0.4834 0.4834 0.4834 0.4830 0.4834 0.4834 

windsorhousing 0.5320 0.6358 0.6352 0.64 4 4 0.6324 0.6324 0.6487 0.6487 0.6293 

wisconsin 0.8418 0.8814 0.8668 0.8567 0.8821 0.8821 0.8551 0.8551 0.8502 

Avg: 0.5468 0.5273 0.5656 0.5762 0.5771 0.5771 0.5810 0.5815 0.5746 

balance 0.5705 0.5531 0.5941 0.5849 0.5674 0.5674 0.5755 0.5755 0.5621 

car 0.4603 0.8191 0.8810 0.8374 0.8786 0.8683 0.8222 0.8422 0.8723 

ERA 0.3182 0.2907 0.3040 0.3059 0.2926 0.2997 0.2867 0.3044 0.2929 

MID ESL 0.4254 0.3213 0.4384 0.4411 0.4608 0.4638 0.4372 0.4430 0.4179 

LEV 0.4731 0.4592 0.5732 0.5367 0.5101 0.5226 0.5157 0.4981 0.4947 

SWD 0.4470 0.4676 0.5542 0.5192 0.4993 0.4 4 41 0.4542 0.4689 0.4566 

windsorhousing 0.70 0 0 0.6912 0.7165 0.6642 0.7064 0.6489 0.6 86 8 0.6966 0.6741 

wisconsin 0.9524 0.9522 0.9566 0.9619 0.9678 0.9490 0.9651 0.9607 0.9593 

Avg: 0.5434 0.5693 0.6272 0.6064 0.6104 0.5955 0.5929 0.5987 0.5912 

balance 0.5159 0.5130 0.5299 0.3980 0.3965 0.3965 0.5106 0.5106 0.5181 

car 0.9179 0.4976 0.4594 0.4648 0.4638 0.4621 0.4562 0.4615 0.4496 

ERA 0.2525 0.2005 0.1990 0.1988 0.20 0 0 0.1987 0.1878 0.1923 0.1967 

ESL 0.4934 0.1470 0.1429 0.1618 0.1612 0.1618 0.1560 0.1560 0.1560 

OSDL LEV 0.4936 0.3532 0.3597 0.3538 0.3545 0.3791 0.3594 0.3606 0.3318 

SWD 0.4588 0.4515 0.4497 0.4344 0.4359 0.4368 0.4334 0.4334 0.4311 

windsorhousing 0.6334 0.5854 0.5400 0.5480 0.5424 0.5424 0.5424 0.5424 0.5392 

wisconsin 0.9617 0.9211 0.9211 0.9211 0.9211 0.9211 0.9211 0.9211 0.9211 

Avg: 0.5909 0.4587 0.4502 0.4351 0.4344 0.4373 0.4459 0.4472 0.4429 

balance 0.9051 0.8523 0.9114 0.8837 0.8918 0.8918 0.8291 0.8291 0.8258 

car 0.6487 0.7788 0.7326 0.7754 0.7564 0.8133 0.6941 0.7508 0.7552 

ERA 0.1723 0.1957 0.2887 0.3084 0.3108 0.2927 0.2886 0.3023 0.2867 

ESL 0.5370 0.4503 0.4941 0.1111 0.1111 0.1111 0.1325 0.1305 0.2985 

MonMLP LEV 0.4839 0.5077 0.5259 0.5561 0.5367 0.5029 0.5451 0.5403 0.5370 

SWD 0.3497 0.4247 0.4740 0.4679 0.4842 0.5270 0.4415 0.4431 0.4419 

windsorhousing 0.5566 0.6637 0.6544 0.6562 0.6359 0.6359 0.6595 0.6595 0.50 0 0 

wisconsin 0.8118 0.9537 0.9588 0.9628 0.9648 0.9648 0.9611 0.9611 0.9221 

Avg: 0.5582 0.6034 0.6300 0.5902 0.5865 0.5924 0.5689 0.5771 0.5709 

Complete Avg: 0.5624 0.5620 0.5694 0.5637 0.5645 0.5570 0.5603 0.5630 0.5587 
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Table A.11 

NMI results obtained by the selected classifiers with standard and ordinal sampling. 

Original RUS ROS SMOTE ADASYN ADASYNOrd MWMOTE MWMOTEOrd CWOSOrd 

balance 0.0 0 01 0.0 0 06 0.0 0 03 0.0 0 04 0.0 0 04 0.0 0 04 0.0 0 04 0.0 0 04 0.0 0 04 

car 0.0 0 0 0 0.0 0 04 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 

ERA 0.0056 0.0081 0.0071 0.0113 0.0146 0.0172 0.0118 0.0130 0.0106 

ESL 0.0012 0.0072 0.0014 0.0013 0.0015 0.0125 0.0011 0.0011 0.0012 

MKNN LEV 0.0010 0.0066 0.0016 0.0019 0.0018 0.0116 0.0019 0.0019 0.0024 

SWD 0.0 0 05 0.0043 0.0 0 08 0.0 0 07 0.0 0 07 0.0 0 07 0.0011 0.0011 0.0010 

windsorhousing 0.0 0 0 0 0.0 0 02 0.0 0 0 0 0.0 0 01 0.0 0 01 0.0 0 01 0.0 0 0 0 0.0 0 0 0 0.0053 

wisconsin 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 

Avg: 0.0011 0.0034 0.0014 0.0020 0.0024 0.0053 0.0020 0.0022 0.0026 

balance 0.0 0 0 0 0.0 0 01 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 03 0.0 0 03 0.0 0 03 

car 0.0 0 0 0 0.0 0 01 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 

ERA 0.0063 0.0040 0.0100 0.0056 0.0058 0.0051 0.0064 0.0057 0.0059 

ESL 0.0025 0.0084 0.0023 0.0023 0.0023 0.0023 0.0018 0.0018 0.0023 

OLM LEV 0.0043 0.0038 0.0028 0.0039 0.0028 0.0027 0.0051 0.0053 0.0053 

SWD 0.0015 0.0062 0.0016 0.0015 0.0015 0.0015 0.0016 0.0015 0.0015 

windsorhousing 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 02 0.0 0 01 0.0 0 01 0.0 0 02 0.0 0 02 0.0 0 04 

wisconsin 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 

Avg: 0.0018 0.0028 0.0021 0.0017 0.0016 0.0015 0.0019 0.0019 0.0020 

balance 0.0017 0.0056 0.0015 0.0012 0.0016 0.0016 0.0025 0.0025 0.0028 

car 0.0034 0.0050 0.0014 0.0013 0.0012 0.0 0 08 0.0014 0.0012 0.0014 

ERA 0.0086 0.0064 0.0115 0.0087 0.0101 0.0103 0.0106 0.0102 0.0103 

MID ESL 0.0023 0.0205 0.0064 0.0041 0.0038 0.0030 0.0044 0.0033 0.0038 

LEV 0.0024 0.0116 0.0037 0.0027 0.0031 0.0031 0.0025 0.0025 0.0030 

SWD 0.0020 0.0089 0.0026 0.0027 0.0029 0.0027 0.0024 0.0020 0.0022 

windsorhousing 0.0035 0.0135 0.0127 0.0094 0.0135 0.0188 0.0094 0.0138 0.0057 

wisconsin 0.0 0 01 0.0 0 01 0.0 0 0 0 0.0 0 01 0.0 0 0 0 0.0 0 02 0.0 0 0 0 0.0 0 0 0 0.0 0 01 

Avg: 0.0030 0.0090 0.0050 0.0038 0.0045 0.0051 0.0042 0.0044 0.0037 

balance 0.0 0 06 0.0016 0.0 0 0 0 0.0058 0.0060 0.0060 0.0022 0.0022 0.0015 

car 0.0 0 0 0 0.0019 0.0025 0.0034 0.0034 0.0033 0.0057 0.0052 0.0035 

ERA 0.0049 0.0 0 09 0.0301 0.0310 0.0299 0.0274 0.0251 0.0302 0.0326 

ESL 0.0 0 06 0.0 0 0 0 0.0963 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 

OSDL LEV 0.0 0 04 0.0051 0.0010 0.0 0 05 0.0 0 06 0.0 0 09 0.0011 0.0068 0.0163 

SWD 0.0 0 09 0.0030 0.0 0 09 0.0 0 09 0.0 0 09 0.0 0 09 0.0 0 08 0.0 0 08 0.0 0 08 

windsorhousing 0.0036 0.0 0 0 0 0.0 0 02 0.0 0 01 0.0 0 02 0.0 0 02 0.0 0 02 0.0 0 02 0.0 0 02 

wisconsin 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 

Avg: 0.0 0 09 0.0020 0.0164 0.0052 0.0051 0.0048 0.0044 0.0057 0.0069 

balance 0.0 0 0 0 0.0 0 01 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 03 0.0 0 03 0.0 0 02 

car 0.0 0 01 0.0 0 06 0.0 0 06 0.0 0 03 0.0 0 03 0.0 0 02 0.0 0 02 0.0 0 02 0.0 0 01 

ERA 0.0026 0.0050 0.0048 0.0063 0.0069 0.0069 0.0056 0.0071 0.0111 

ESL 0.0 0 03 0.0030 0.0016 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0196 0.0190 0.0426 

MonMLP LEV 0.0 0 08 0.0041 0.0027 0.0023 0.0023 0.0035 0.0020 0.0019 0.0035 

SWD 0.0 0 04 0.0044 0.0011 0.0013 0.0021 0.0022 0.0011 0.0011 0.0 0 08 

windsorhousing 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 

wisconsin 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0022 

Avg: 0.0 0 05 0.0021 0.0013 0.0013 0.0015 0.0016 0.0036 0.0037 0.0076 

Complete Avg: 0.0015 0.0040 0.0052 0.0028 0.0030 0.0037 0.0032 0.0036 0.0045 
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