
ARTICLE IN PRESS

JID: KNOSYS [m5G; September 16, 2018;15:4]

Knowledge-Based Systems 0 0 0 (2018) 1–13

Contents lists available at ScienceDirect

Knowle dge-Base d Systems

journal homepage: www.elsevier.com/locate/knosys

Imbalance: Oversampling algorithms for imbalanced classification in R

Ignacio Cordón, Salvador García

∗, Alberto Fernández, Francisco Herrera

DaSCI Andalusian Institute of Data Science and Computational Intelligence, University of Granada, Spain

a r t i c l e i n f o

Article history:

Received 1 March 2018

Revised 14 June 2018

Accepted 25 July 2018

Available online xxx

Keywords:

Oversampling

Imbalanced classification

Machine learning

Preprocessing

SMOTE

a b s t r a c t

Addressing imbalanced datasets in classification tasks is a relevant topic in research studies. The main

reason is that for standard classification algorithms, the success rate when identifying minority class

instances may be adversely affected. Among different solutions to cope with this problem, data level

techniques have shown a robust behavior. In this paper, the novel imbalance package is introduced.

Written in R and C++, and available at CRAN repository, this library includes recent relevant oversampling

algorithms to improve the quality of data in imbalanced datasets, prior to performing a learning task. The

main features of the package, as well as some illustrative examples of its use are detailed throughout this

manuscript.

© 2018 Elsevier B.V. All rights reserved.

1

m

5

w

c

t

s

c

b

b

t

f

b

s

d

u

f

l

a

t

b

p

a

a

a

w

l

i

b

c

m

[

a

i
t

a

c

c

a

a

c

o

o

i

c

h

0

. Introduction

The imbalance classification problem is probably one of the

ost researched problems in the machine learning framework [1–

] . Its classical definition is a binary classification problem where

e are given a set of training instances , labeled with two possible

lasses and a set of unlabeled instances, namely test set , to classify

hem using the information provided by the former one. When the

ize of a class, which usually represents the most important con-

ept to predict, is much lower than the other one, we have an im-

alance classification problem.

In these cases, standard classification learning algorithms may

e biased toward the majority class examples. In order to address

his issue, a common approach is to apply a preprocessing stage

or rebalancing the training data. This can be carried out either

y undersampling, i.e. removing majority class instances, or over-

ampling, i.e., introducing new minority class instances. Since un-

ersampling may remove some relevant instances, oversampling is

sually preferred. Additionally, this procedure is intended to rein-

orce the concept represented by the minority class, so that the

earning algorithm will be guided to avoid misclassifying these ex-

mples.

Plenty of excellent oversampling algorithms arise every day in

he scientific literature, but the software is rarely released. To the

est of our knowledge, there are just few open source libraries and

ackages that include methods and techniques related to imbal-

nced classification.
∗ Corresponding author.

E-mail address: salvagl@decsai.ugr.es (S. García).

p

i

ttps://doi.org/10.1016/j.knosys.2018.07.035

950-7051/© 2018 Elsevier B.V. All rights reserved.

Please cite this article as: I. Cordón et al., Imbalance: Oversampling

Systems (2018), https://doi.org/10.1016/j.knosys.2018.07.035
First, regarding Java we may find a complete module of imbal-

nced classification in the KEEL software suite [6] . It comprises

 very complete collection of external and internal approaches, as

ell as a large number of ensemble methods that work at both

evels.

For Python, there exists a very recent tool-box named as

mbalanced-learn [7] . Similar to KEEL , it includes solutions

ased on preprocessing and ensemble learning.

Finally, for R we may find several packages at CRAN which in-

lude oversampling and undersampling methods. Specifically, we

ust refer to unbalanced [8] , smotefamily [9] , and rose
10,11] .

However, there are two main issues associated with the

forementioned software solutions. On the one hand, only

mbalanced-learn allows a straightforward representation of

he preprocessed datasets. This fact is very important in order to

cknowledge the actual areas that are reinforced for the minority

lass examples. On the other hand, and possibly the most signifi-

ant point, we have observed that none of them contain the latest

pproaches proposed in the specialized literature.

In this paper, we present a novel, robust and up-to-date R pack-

ge including preprocessing techniques for the imbalance classifi-

ation. Named as imbalance , it aims to provide both the state-

f-the-art methods for oversampling algorithms, as well as some

f the most recent techniques which still lack an implementation

n the R language. In this sense, we intend to provide a significant

ontribution to the already available tools that address the same

roblem.

To present this novel package, the rest of the manuscript

s arranged as follows. First, Section 2 presents the soft-
algorithms for imbalanced classification in R, Knowledge-Based

https://doi.org/10.1016/j.knosys.2018.07.035
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
mailto:salvagl@decsai.ugr.es
https://doi.org/10.1016/j.knosys.2018.07.035
https://doi.org/10.1016/j.knosys.2018.07.035

2 I. Cordón et al. / Knowledge-Based Systems 0 0 0 (2018) 1–13

ARTICLE IN PRESS

JID: KNOSYS [m5G; September 16, 2018;15:4]

Fig. 1. PDFOS applied to newthyroid1 dataset.

Table 1

Comparison of the proposed imbalance package to the available R packages for imbal-

anced classification.

Property Imbalance Unbalanced Smotefamily Rose

Version 1.0.0 2.0 1.2 0.0-3

Date 2018-02-18 2015-06-26 2018-01-30 2014-07-15

#Techniques 12 9 6 1

Undersampling ✗
√

✗ ✗

Oversampling
√ √ √ √

SMOTE (& var.)
√ √ √

✗

Advanced OverS.
√

✗ ✗ ✗

Filtering
√ √

✗ ✗

Wrapper
√ √

✗ ✗

Visualization
√

✗ ✗ ✗

Please cite this article as: I. Cordón et al., Imbalance: Oversampling algorithms for imbalanced classification in R, Knowledge-Based

Systems (2018), https://doi.org/10.1016/j.knosys.2018.07.035

https://doi.org/10.1016/j.knosys.2018.07.035

I. Cordón et al. / Knowledge-Based Systems 0 0 0 (2018) 1–13 3

ARTICLE IN PRESS

JID: KNOSYS [m5G; September 16, 2018;15:4]

Fig. 2. PDFOS + NEATER applied to newthyroid1.

Table 2

Code metadata (mandatory).

Nr. Code metadata description Please fill in this column

C1 Current code version 1.0.0

C2 Permanent link to code/repository used of this code version github.com / ncordon / imbalance

C3 Legal Code License GPL (≥ 2)

C4 Code versioning system used git

C5 Software code languages, tools, and services used R (≥ 3.3.0), C++

C6 Compilation requirements, operating environments and dependencies Rcpp, bnlearn, KernelKnn, ggplot2, mvtnorm

C7 If available Link to developer documentation/manual ncordon.github.io / imbalance

C8 Support email for questions nacho.cordon.castillo @ gmail.com

w

T

S

2

are framework and enumerates the implemented algorithms.

hen, Section 3 shows some illustrative examples. Finally,

ection 4 presents the conclusions.
s

s

e

Please cite this article as: I. Cordón et al., Imbalance: Oversampling

Systems (2018), https://doi.org/10.1016/j.knosys.2018.07.035
. Software

The significance of oversampling techniques in imbalanced clas-

ification is beyond all doubt. The main reason is related to a

mart generation of new artificial minority samples in those ar-

as that need reinforcement for the learning of class-fair classifiers.
algorithms for imbalanced classification in R, Knowledge-Based

https://doi.org/10.1016/j.knosys.2018.07.035

4 I. Cordón et al. / Knowledge-Based Systems 0 0 0 (2018) 1–13

ARTICLE IN PRESS

JID: KNOSYS [m5G; September 16, 2018;15:4]

Fig. 3. Original banana dataset.

Fig. 4. Imbalanced banana dataset.

Fig. 5. SMOTE applied to imbalanced banana.

Since the original SMOTE algorithm in 2002 [12] , many different

approaches have been designed to improve the classification per-

formance under different scenarios [13,14] . In this new developed

software package, we have compiled some of the newest oversam-

pling algorithms, which are listed below:

• mwmote . The Majority Weighted Minority Oversampling Tech-

nique (MWMOTE), first proposed in [15] , is an extension of the
Please cite this article as: I. Cordón et al., Imbalance: Oversampling

Systems (2018), https://doi.org/10.1016/j.knosys.2018.07.035
original SMOTE algorithm [12,13] . It assigns higher weight to

borderline instances, undersized minority clusters and exam-

ples near the borderline of the two classes.

• racog , wracog . Rapidly Converging Gibbs (RACOG) and

wrapper-based RACOG (wRACOG), both proposed by [16] , work

for discrete attributes. They generate new examples with re-

spect to an approximated distribution using a Gibbs Sampler

scheme. RACOG needs the number of instances to generate be-
algorithms for imbalanced classification in R, Knowledge-Based

https://doi.org/10.1016/j.knosys.2018.07.035

I. Cordón et al. / Knowledge-Based Systems 0 0 0 (2018) 1–13 5

ARTICLE IN PRESS

JID: KNOSYS [m5G; September 16, 2018;15:4]

Fig. 6. MWMOTE applied to imbalanced banana.

Fig. 7. RWO applied to imbalanced banana.

Fig. 8. PDFOS applied to imbalanced banana.

i

i
forehand. wRACOG requires a target classifier to show no im-

provement to stop generating examples.

• rwo . Random Walk Oversampling (RWO) is an algorithm in-

troduced by [17] , which generates synthetic instances so that

mean and deviation of numerical attributes remain close to the

original ones.

• pdfos . Probability Distribution density Function estimation based

Oversampling (PDFOS) was proposed in [18] . It uses multivariate
 h

Please cite this article as: I. Cordón et al., Imbalance: Oversampling

Systems (2018), https://doi.org/10.1016/j.knosys.2018.07.035
Gaussian kernel methods to locally approximate the minority

class.

Apart from those oversampling methods, we provide a filter-

ng method called neater . The filteriNg of ovErsampled dAta us-

ng non cooperaTive gamE theoRy (NEATER), introduced in [19] , is

ighly based on game theory. It discards the instances with higher
algorithms for imbalanced classification in R, Knowledge-Based

https://doi.org/10.1016/j.knosys.2018.07.035

6 I. Cordón et al. / Knowledge-Based Systems 0 0 0 (2018) 1–13

ARTICLE IN PRESS

JID: KNOSYS [m5G; September 16, 2018;15:4]

o

W

a

p

b

o

S

i

t

3

c

d

c

a

i

r

t

R

i

probability of belonging to the opposite class, based on each in-

stance neighborhood.

The package also includes the method oversample , which is

a wrapper that eases calls to the described and already existing

methods.

To evaluate the oversampling process, we propose a visual

method, called plotComparison . It plots a pairwise comparative

grid of a selected set of attributes, both in the original dataset and

the oversampled one. That way, if a proper oversampling has been

performed, we expect to see larger minority clusters in the result-

ing dataset.

In addition to this, imbalance includes some datasets

from the KEEL [6,20] repository (http://www.keel.es/datasets.php),

which can be used to perform experiments. Additional datasets can

be easily imported under a single constraint: they must contain

a class column (not necessarily the last one) having two different

values.

To conclude this section, we show in Table 1 a comparison

of the main features of this novel imbalance package with

respect to the previous software solutions available at CRAN:

unbalanced [8] , smotefamily [9] , and rose [10,11] . Among

the properties that are contrasted, we included the latest date of

release, the number of preprocessing techniques that are avail-

able, and if it includes different approaches, namely undersam-

pling, oversampling, SMOTE (and variants/extensions), advanced
Please cite this article as: I. Cordón et al., Imbalance: Oversampling

Systems (2018), https://doi.org/10.1016/j.knosys.2018.07.035
versampling (techniques beyond SMOTE), and filtering methods.

e also show whether an automatic wrapper procedure is avail-

ble, and if it includes a visualization of the preprocessed output.

From Table 1 we may conclude that imbalance is a com-

lete solution with many relevant oversampling techniques. It is

y far the one with the largest number of approaches, and the only

ne that includes oversampling approaches beyond the traditional

MOTE scheme. Finally, we must stress the relevance of the visual-

zation feature, which can be very useful for practitioners to check

he areas where the minority class is mainly reinforced (Table 2).

. Examples of use

The following example loads the dataset newthyroid1 , in-

luded in our package, and applies the algorithm PDFOS to the

ataset, requesting 80 new instances. newthyroid1 is a classi-

al dataset that has a series of 5 different medical measurements

s attributes, and classifies every patient in hyperthyroidism (42

nstances) or non-hyperthyroidism (173 instances). Once the algo-

ithm has been applied, we plot a pairwise visual comparison be-

ween first three attributes of the original and modified datasets.

esult can be observed in Fig. 1 , and in Fig. 2 , after applying filter-

ng.
algorithms for imbalanced classification in R, Knowledge-Based

http://www.keel.es/datasets.php
https://doi.org/10.1016/j.knosys.2018.07.035

I. Cordón et al. / Knowledge-Based Systems 0 0 0 (2018) 1–13 7

ARTICLE IN PRESS

JID: KNOSYS [m5G; September 16, 2018;15:4]

nce

is ,

majo

d1 u

data

d da

at

aset

d fi
Load the previously installed imbalance package

library("imbalance")

Load the dataset newthyroid1 , included in imbala

data(newthyroid1)

Compute the imbalance ratio of newthyroid1 (that

proportion of minority examples with respect to

ones)

imbalanceRatio(newthyroid1)

0.1944444

Generate 80 new minority instances for newthyroi

pdfos algorithm

newSamples <- pdfos(

newthyroid1 ,

numInstances = 80

)

Add the new samples to the original newthyroid1

asssign it to a newDataset variable

newDataset <- rbind(

newthyroid1 ,

newSamples

)

Compare the three first variables of the extende

and the original one

plotComparison(

newthyroid1 ,

newDataset ,

attrs = names(newthyroid1)[1:3]

)

Filter synthetic examples from newSamples , so th

only relevant ones remain in the dataset

filteredSamples <- neater(

newthyroid1 ,

newSamples ,

iterations = 500

)

Add the new filtered samples to the original dat

filteredNewDataset <- rbind(

newthyroid1 ,

filteredSamples

)

Compare the three first variables of the extende

dataset and the original one

plotComparison(

newthyroid1 ,

filteredNewDataset ,

attrs = names(newthyroid1)[1:3]

)

Please cite this article as: I. Cordón et al., Imbalance: Oversampling

Systems (2018), https://doi.org/10.1016/j.knosys.2018.07.035
rity

sing

set and

taset

ltered
algorithms for imbalanced classification in R, Knowledge-Based

https://doi.org/10.1016/j.knosys.2018.07.035

8 I. Cordón et al. / Knowledge-Based Systems 0 0 0 (2018) 1–13

ARTICLE IN PRESS

JID: KNOSYS [m5G; September 16, 2018;15:4]

Algorithm 2 RACOG oversampling.

Require: S = { x 1 , . . . , x m

} , positive examples

Require: β , burnin

Require: α, lag

Require: T , requested number of synthetic examples

1: P = approximation of the S distribution

2: S ′ = ∅
3: M =

⌈
T
m

⌉
· α + β

4:

5: for t = 1 , . . . , M do

6: S = GibbsSampler (S, P)

7: if t > β and t mod (α) = 0 then

8: S ′ = S ′ ∪ S

9: end if

10: end for

11:

12: S ′ = Pick T random instances from S ′
13: return S ′ , synthetic examples

Algorithm 3 wRACOG oversampling.

Require: S train = { z i = (x i , y i) } m

i =1
, train instances

Require: S v al , validation instances

Require: wrapper

Require: T , requested number of synthetic examples

Require: α, tolerance parameter

1: S = S +
train

2: P = approximation of the S distribution

3: Build a model with wrapper and S train

4: Initialize S ′ = ∅
5: Initialize τ = (+ ∞

1)
, . . . , + ∞

T)
)

6:

7: while The standard deviation of τ ≥ α do

8: S = GibbsSampler (S, P)

9: S ⊇ S misc = misclassified examples by model

10: Update S ′ = S ′ ∪ S misc

11: Update train set S train = S train ∪ S misc

12: Build new model with wrapper, S train

13: Let s = sensitivity of model over S v al

14: Let τ = (τ2 , . . . , τT , s)

15: end while

16:

17: return S ′ , synthetic examples

f

t

n

F

e

f

p

u

s

n

A

F

The banana dataset, which has been included in the package,

is a binary dataset with 5300 samples and two attributes (apart

from class attribute), artificially developed to represent a banana

when plotted in two dimensions with each class filled with a dif-

ferent color. A straightforward Random Undersampling has yield

an imbalance dataset (with 10% imbalance ratio) from the origi-

nal dataset, both observable in Figs. 3 and 4 , respectively. Origi-

nal dataset has been included as banana-orig in the package;

imbalanced one, as banana . We provide a visual comparison be-

tween results of applying an oversample to reach 50% of imbalance

ratio in banana , and a later filtering using NEATER. Applied over-

sampling techniques are SMOTE (Fig. 5), MWMOTE (Fig. 6), RWO

(Fig. 7) and PDFOS (Fig. 8).

Algorithm 1 MWMOTE oversampling.

Require: S + = { x 1 , . . . , x m

} , minority instances

Require: S − = { y 1 , . . . , y m

} , majority instances

Require: T , requested number of synthetic examples

Require: k 1 , KNN parameter to filter noisy instances of S +

Require: k 2 , KNN parameter to compute boundary U ⊆ S −

Require: K 3 , KNN parameter to compute boundary V ⊆ S +

Require: α, tolerance for the closeness level to the borderline

Require: C, weight of the closeness factor to the borderline

Require: C clust

1: Initialize S ′ = ∅
2: For each x ∈ S + , compute its k 1 KNN neighbourhood, N N

k 1 (x)

3: Let S +
f

= S + − { x ∈ S + : N N

k 1 (x) ∩ S + = ∅}
4: Compute U =

⋃

x ∈ S +
f

N N

k 2 − (x)

5: Compute V =

⋃

x ∈ U
N N

k 3 + (x)

6: For each x ∈ V , compute P (x) =

∑

y ∈ U I α,C (x, y)

7: Normalize P (x) for each x ∈ V , P (x) =

P(x) ∑

z∈ V P(z)

8: Compute

T clust = C clust ·
1

| S +
f
|

∑

x ∈ S +
f

min

y ∈ S +
f
,y
 = x

d(x, y)

9: Let L 1 , . . . , L M

⊆ S + be the clusters for S + , with T clust as thresh-

old

10:

11: for t = 1 , . . . , T do

12: Pick x ∈ V with respect to P (x)

13: Uniformly pick y ∈ L e inside L e � x , where x ∈ L e
14: Uniformly pick r ∈ [0 , 1]

15: S ′ = S ′ ∪ { x + r(y − x) }
16: end for

17:

18: return S ′ , synthetic examples

4. Conclusions

Class imbalance in datasets is one of the most decisive factors

to take into account when performing classification tasks. To im-

prove the behavior of classification algorithms in imbalanced do-

mains, one of the most common and effective approaches is to ap-

ply oversampling as a preprocessing approach. It works by creating

synthetic minority instances to increase the number of representa-

tives belonging to that class.

In this paper we have presented the imbalance package for

R. It was intended to alleviate some drawbacks that arise in cur-

rent software solutions. Firstly, to provide useful implementations

for those novel oversampling methods that were not yet available
Please cite this article as: I. Cordón et al., Imbalance: Oversampling

Systems (2018), https://doi.org/10.1016/j.knosys.2018.07.035
or researchers and practitioners. Secondly, to include a visualiza-

ion environment for the sake of observing those areas of the mi-

ority class that are actually reinforced by means of preprocessing.

inally, to enable a simpler integration of these methods with the

xisting oversampling packages at CRAN.

As future work, we propose to keep maintaining and adding

unctionality to our new imbalance package. Specifically, we

lan to include those new oversampling techniques that are reg-

larly proposed in the specialized literature. In this sense, we con-

ider that there are good prospects to improve the software in the

ear future.

cknowledgments

This work is supported by the Project BigDaP-TOOLS - Ayudas

undación BBVA a Equipos de Investigación Científica 2016.
algorithms for imbalanced classification in R, Knowledge-Based

https://doi.org/10.1016/j.knosys.2018.07.035

I. Cordón et al. / Knowledge-Based Systems 0 0 0 (2018) 1–13 9

ARTICLE IN PRESS

JID: KNOSYS [m5G; September 16, 2018;15:4]

Algorithm 4 RWO oversampling.

Require: S = { x i = (w

(i)
1

, . . . w

(i)
d

) } m

i =1
, positive instances

Require: T , required number of instances

1: Initialize S ′ = ∅
2:

3: for For each j = 1 , . . . , d do

4: if j−ith attribute is numerical then

5: σ ′
j
=

√

1
m

∑ m

i =1

(
w

(i)
j

−
∑ m

i =1 w

(i)
j

m

)2

6: end if

7: end for

8:

9: Assign M = � T /m �
10: for t = 1 , . . . , M do

11: for i = 1 , . . . , m do

12: for j = 1 , . . . , d do

13: if j−th attribute is numerical then

14: Choose r ∼ N(0 , 1)

15: w j = w

(i)
j

− σ ′
j √

m

· r

16: else

17: Choose w j uniformly over { w

(1)
j

, . . . w

(m)
j

}
18: end if

19: end for

20: S ′ = S ′ ∪ { (w 1 , . . . , w d) }
21: end for

22: end for

23:

24: S ′ = Choose T random instances from S ′
25: return S ′ , synthetic positive instances

Algorithm 5 PDFOS oversampling.

Require: S = { x i = (w

(i)
1

, . . . w

(i)
d

) } m

i =1
, positive instances

Require: T , required number of instances

1: Initialize S ′ = ∅
2: Search for h = which minimizes M(h)

3: Find U unbiased covariance matrix of S

4: Compute U = R · R T with Choleski decomposition

5:

6: for i = 1 , . . . , T do

7: Choose x ∈ S

8: Pick r with respect to a normal distribution, i.e. r ∼ N

d (0 , 1)

9: S ′ = S ′ ∪ { x + hrR }
10: end for

11:

12: return S ′ , synthetic positive instances

A

r

l

r

A

t

S

Algorithm 6 NEATER filtering.

Require: S = { z 1 = (x 1 , y 1) , . . . z n = (x n , y n) } , original dataset

Require: S ′ = { ̄z 1 = (̄x 1 , ̄y 1) , . . . ̄z m

= (̄x m

, ̄y m

) } , positive instances

Require: k , number of KNN neighbours.

Require: T , required number of iterations.

Require: α, smooth factor.

1: Initialize E = ∅
2: For each x i ∈ S ′ , compute its neighbourhood N N

k (x i) ⊆ S ∪ S ′
3: For i = 1 , . . . , n initialize δi = (1 , 0) if y i = 1 and δi = (0 , 1) if

y i = −1

4: For i = n + 1 , . . . , n + m do δi = (0 . 5 , 0 . 5)

5:

6: for t = 1 , . . . , T do

7: for i = 1 , . . . , m do

8: Compute total payoff:

u i =

∑

x j ∈ N N k (x i)

g(d(̄x i , x j)) · δi · δT
j

9: Compute positive payoff:

u =

∑

x j ∈ N N k (x i)

g(d(̄x i , x j)) · (1 , 0) · δT
j

10: Assign α = (α + u) / (α + u n +1)

11: Update δn +1 = (α, 1 − α)

12: end for

13: end for

14:

15: for i = 1 , . . . , m do

16: if δi 1 > 0 . 5 then

17: E = E ∪ { (̄x i , 1) }
18: end if

19: end for

20:

21: return E ⊆ S ′ , filtered synthetic positive instances

T

r

o

B

m

s

y

r

i

k

{

P

t

l

i
ppendix A. Installation

To install our package, R language is needed (see https://www.

-project.org/ for further indications on how to install it). Once R

anguage is properly installed, it suffices to do, in an R interpreter:

install.packages("imbalance")

This command will install the latest version of the package di-

ectly from CRAN, which is the official repository for R packages.

ppendix B. Description of the algorithms in the package

Hereafter, the new preprocessing techniques included in

he imbalance package will be further described. To do so,

ection B.1 first provides a short introduction on classification task.
Please cite this article as: I. Cordón et al., Imbalance: Oversampling

Systems (2018), https://doi.org/10.1016/j.knosys.2018.07.035
hen, Sections B.2 –B.6 include the main characteristics of the algo-

ithms together with an explanation of the upsides and downsides

f every oversampling approach.

1. Classification task

Classification problem is one of the best known problems in the

achine learning framework. We are given a set of training in-

tances , namely, S = { (x 1 , y 1) , . . . , (x m

, y m

) } where x i ∈ X ⊂ R

n and

 i ∈ Y , with Y = { 0 , 1 } . X and Y will be called domain and label set ,

espectively. The training set will be considered as independent and

dentically distributed (i.i.d.) samples taken with respect to an un-

nown probability P over the set X × Y , denoting that as S ∼ P

m .

A test set will be a set of i.i.d. instances T =
 (̄x 1 , ̄y 1) , . . . , (̄x k , ̄y k) } , (̄x i , ̄y i) ∈ X × Y, taken with respect to

. We denote T x := { ̄x 1 , . . . , ̄x k } . A classifier h S (depending on

he training set S) is a function th at takes an arbitrary test set ,

acking the labels ȳ i , and outputs labels for each instance. That

s, h (T x) = { (̄x , ̄̄y) , . . . , (̄x , ̄̄y) } . The aim of the classification
S 1 1 k k

algorithms for imbalanced classification in R, Knowledge-Based

https://www.r-project.org/
https://doi.org/10.1016/j.knosys.2018.07.035

10 I. Cordón et al. / Knowledge-Based Systems 0 0 0 (2018) 1–13

ARTICLE IN PRESS

JID: KNOSYS [m5G; September 16, 2018;15:4]

B

t

e

r

f

t

s

n

l

a

B

a

 ∏

u

L

D

d

I

s

w

b

B

e

i

a

B

s

p

problem is to find the classifier that minimizes the labeling error

L P with respect to the true distribution of the data, defined as

follows:

L P (h S) := E

{ (x,y) }∼P
1 [h S ({ x })
 = { (x, y) }]

Where 1 [Condition] returns 1 if Condition holds, and 0 oth-

erwise. Hence, L P represents an average of the error over the do-

main instances, weighted by the probability of extracting those in-

stances.

Since we do not know the true distribution of the data, we will

usually approximate L P (h S) using the average error over a test set

T = { (̄x 1 , ̄y 1) , . . . , (̄x k , ̄y k) } :

L (h S) =

k ∑

i =1

1 [h S ({ ̄x i , })
 = { (̄x i , ȳ i) }

Specifically, imbalance package provides oversampling algo-

rithms. Those family of procedures aim to generate a set E of syn-

thetic positive instances based on the training ones, so that we

have a new classification problem with S̄ + = S + ∪ E, S̄ − = S − and

S̄ = S̄ + ∪ S̄ − our new training set.

B2. MWMOTE

This algorithm, proposed by [15] , is one of the many modifi-

cations of SMOTE [12] , which is a classic algorithm to treat class

imbalance. SMOTE generates new examples by filling empty areas

among the positive instances. It updates the training set iteratively,

by performing:

E := E ∪ { x + r · (y − x) } , x, y ∈ S + , r ∼ N(0 , 1)

But SMOTE has a clear downside: it does not detect noisy in-

stances. Therefore, it can generate synthetic examples out of noisy

ones or even between two minority classes, which if not cleansed

up, may end up becoming noise inside a majority class clus-

ter. MWMOTE (Majority Weighted Minority Oversampling Technique)

tries to overcome both problems. It intends to give higher weight

to borderline instances, undersized minority clusters and examples

near the borderline of the two clases.

Let’s introduce some notations and definitions:

• d (x, y) stands for the euclidean distance between x and y .

• NN

k (x) ⊆S will be the k -neighbourhood of x in S (k closest in-

stances with euclidean distance).

• N N

k
i
(x) ⊆ S i , i = + , − will be x ’s k - minority (resp. majority)

neighbourhood.

• C f (x, y) =

C
α · f

(
d

d(x,y)

)
measures the closeness of x to y , that

is, it will measure the proximity of borderline instances. where

f = x 1 [x ≤α] + C1 [x>α]

• D f (x, y) =

C f (x,y) ∑

z∈ V C f (z,y)
will represent a density factor, such that

an instance belonging to a compact cluster will have higher

�C f (z, y) than another one belonging to a more sparse cluster.

• I α,C (x, y) = C f (x, y) · D f (x, y) , where if x / ∈ N N

k 3 + (y) then

I α,C (x, y) = 0 .

Let T clust := C clust · 1
| S +

f
|
∑

x ∈ S +
f

min
y ∈ S +

f
,y
 = x

d(x, y) . We will also use a

mean-average agglomerative hierarchical clustering of the minor-

ity instances with threshold T clust , that is, we will use a mean dis-

tance:

dist(L i , L j) =

1

| L i || L j |
∑

x ∈ L i

∑

y ∈ L j
d(x, y)

and having started with a cluster per instance, we will proceed by

joining nearest clusters until minimum of distances is lower than

T .
clust

Please cite this article as: I. Cordón et al., Imbalance: Oversampling

Systems (2018), https://doi.org/10.1016/j.knosys.2018.07.035
A few interesting considerations:

• Low k 2 is required in order to ensure we do not pick too many

negative instances in U .

• For an opposite reason, a high k 3 must be selected to ensure

we pick as many positive hard-to-learn borderline examples as

we can.

• The higher the C clust parameter, the less and more-populated

clusters we will get.

2.1. Pros and cons

The most evident gain of this algorithm is that it fixes some of

he weaknesses of SMOTE. And SMOTE is still one of the main ref-

rences that researches use as a benchmark to compare their algo-

ithms. That makes a MWMOTE a state-of-the-art algorithm. Apart

rom that, and although the pseudocode can be quite confusing,

he idea behind the algorithm is easy to understand.

On the other hand, the algorithm relies on the idea that the

pace between two minority instances is going to belong to a mi-

ority cluster, which seems like a reasonable hypothesis, but can

ead to error in certain datasets (e.g., the minority class spread

cross a large number of tiny clusters).

3. RACOG and wRACOG

These set of algorithms, proposed in [16] , assume we want to

pproximate a discrete distribution P (W 1 , . . . , W d) .

The key of the algorithm is to approximate P (W 1 , . . . , W d) as
 d
i =1 P (W i | W n (i)) where n (i) ∈ { 1 , . . . , d} . Chow–Liu’s algorithm is

sed to meet that purpose. This algorithm minimizes Kullback–

eibler distance between two distributions:

 KL (P ‖ Q) =

∑

i

P (i) (log P (i) − log Q(i))

We recall the definition for the mutual information of two ran-

om discrete variables W i , W j :

(W i , W j) =

∑

w 1 ∈ W 1

∑

w 2 ∈ W 2

p(w 1 , w 2) log

(
p(w 1 , w 2)

p(w 1) p(w 2)

)
Let S + = { x i = (w

(i)
1

, . . . , w

(i)
d

) } m

i =1
be the unlabeled positive in-

tances. To approximate the distribution, we do:

• Compute G

′ = (E ′ , V ′) , Chow Liu’s dependence tree.

• If r is the root of the tree, define P (W r | W n (r)) := P (W r).

• For each (u, v) ∈ E arc in the tree, n (v) := u and compute

P (W v | W n (v)).

After that, a Gibbs Sampling scheme is used to extract samples

ith respect to the approximated probability distribution, where a

adge of new instances is obtained by performing:

• Given a minority sample x k = (w

(i)
1

, . . . , w

(i)
d

)

• Iteratively construct for each attribute

w̄

(i)
k

∼ P (W k | w̄

(i)
1

, . . . , w̄

(i)
k −1

, w

(i)
k +1

, . . . , w

(i)
d

)

• Return S = { ̄x i = (̄w

(i)
1

, . . . , w̄

(i)
d

) } m

i =1
.

3.1. RACOG

RACOG (Rapidly Converging Gibbs) builds a Markov chain for

ach of the m minority instances, ruling out the first β generated

nstances and selecting a badge of synthetic examples each α iter-

tions. That allows to lose dependence of previous values.

3.2. wRACOG

RACOG depends on α, β and the requested number of in-

tances. wRACOG (wrapper-based RACOG) tries to overcome that

roblem. Let wrapper be a binary classifier.
algorithms for imbalanced classification in R, Knowledge-Based

https://doi.org/10.1016/j.knosys.2018.07.035

I. Cordón et al. / Knowledge-Based Systems 0 0 0 (2018) 1–13 11

ARTICLE IN PRESS

JID: KNOSYS [m5G; September 16, 2018;15:4]

B

a

g

s

c

t

B

b

v

o

w

c

a

l

w

N

i

m √

d

w

n

B

v

o

A

c

i

B

c

s

n

B

F

m

c

a

h

o

w

B

i

c

e

p

r

M

B

O

k

d

φ

u

U

b

t

M

w

c

R

t

t

s

s

y

f

t

e

3.3. Pros and cons

Clearly, RACOG and wRACOG have the advantage that they

re highly based on statistical evidence/procedures, and they have

uarantees to succeed in their goal. On the contrary, there exists a

ubstantial downside of those algorithms: they only work on dis-

rete variables, which makes them very restrictive with respect to

he set of data they can be applied to.

4. RWO

RWO (Random Walk Oversampling) is an algorithm introduced

y [17] , which generates synthetic instances so that mean and de-

iation of numerical attributes remain as close as possible to the

riginal ones.

This algorithm is motivated by the central limit theorem,

hich states that given a collection of independent and identi-

ally distributed random variables, W 1 , . . . , W m

, with E (W i) = μ
nd V ar(W i) = σ 2 < ∞ , then:

im

m

P

⎡ ⎢ ⎢ ⎢ ⎣

√

m

σ

⎛ ⎜ ⎜ ⎜ ⎝

1

m

m ∑

i =1

W i ︸ ︷︷ ︸
W

−μ

⎞ ⎟ ⎟ ⎟ ⎠

≤ z

⎤ ⎥ ⎥ ⎥ ⎦

= φ(z)

here φ is the distribution function of N (0, 1).

That is, W −μ
σ/

√

m

→ N(0 , 1) probability-wise.

Let S + = { x i = (w

(i)
1

, . . . , w

(i)
d

) } m

i =1
be the minority instances.

ow, let’s fix some j ∈ { 1 , . . . , d} , and let’s assume that j -

th column follows a numerical random variable W j , with

ean μj and standard deviation σ j < ∞ . Let’s compute σ ′
j
=

1
m

∑ m

i =1

(
w

(i)
j

−
∑ m

i =1 w

(i)
j

m

)2

the biased estimator for the standard

eviation. It can be proven that instances generated with w̄ j =

(i)
j

− σ ′
j √

m

· r, r ∼ N(0 , 1) have the same sample mean as the origi-

al ones, and their sample variance tends to the original one.

4.1. Pros and cons

RWO, as it was originally described in [17] , uses the sample

ariance, instead of the unbiased sample variance. Therefore we

nly have guarantees that E (σ ′ 2
j

) −→

m →∞

σ 2
j

. If we had picked τ j =
1

m −1

∑ m

i =1

(
w

(i)
j

− 1
m

∑ m

i =1 w

(i)
j

)2

, instead, E (τ j) = σ 2
j

would hold.

nother downside of the algorithm is its arbitrariness when it

omes to non-numerical variables.

The most obvious upside of this algorithm is its simplicity and

ts good practical results.

5. PDFOS

Due to the complexity of this preprocessing technique, in this

ase we will structure the description of its working procedure into

everal subsections, providing the motivation, background tech-

iques, and finally pros and cons.

5.1. Motivation

Given a distribution function of a random variable X , namely

 (x), if that function has an almost everywhere derivative, then, al-

ost everywhere, it holds:

f (x) = F ′ (x) = lim

h → 0

P (x − h < X ≤ x + h)

2 h

Given a fixed h , that we will call bandwidth henceforth. Given a

ollection of random samples X , X , . . . , X n , namely x , . . . , x n , then
1 1

Please cite this article as: I. Cordón et al., Imbalance: Oversampling

Systems (2018), https://doi.org/10.1016/j.knosys.2018.07.035
n estimator for f could be the mean number of samples in] x −
, x + h [(let’s call this number I h (x 1 , . . . , x n)) divided by the length

f the interval: ̂ f (x) =

I h (x 1 , . . . , x n)

2 hn

If we define ω(x) =

{
1
2 | x | < 1

0 otherwise
and w h (x) = w

(∣∣ x
h

∣∣), then

e could write ̂ f as:

̂ f (x) =

1

nh

n ∑

i =1

ω h (x − x i)

In d dimensional case, we define:

̂ f (x) =

1

nh

d

n ∑

i =1

ω h (x − x i)

5.2. Kernel methods

If we took w =

1
2 1] −1 , 1[, then

̂ f would have jump discontinu-

ties and we would have jump derivatives. On the other hand, we

ould took ω, where w ≥ 0,
∫

 ω(x) dx = 1 ,
⊆X a domain, and w

ven, and that way we could have estimators with more desirable

roperties with respect to continuity and differentiability. ̂ f can be evaluated through its MISE (Mean Integral Squared Er-

or):

ISE(h) = E

x 1 , ... ,x d

∫
(̂ f (x) − f (x)) 2 dx

5.3. The algorithm

PDFOS (Probability Distribution density Function estimation based

versampling) was proposed in [18] . It uses multivariate Gaussian

ernel methods. The probability density function of a d -Gaussian

istribution with mean 0 and � as its covariance matrix is:

�(x) =

1 √

(2 π · det(�)) d
exp

(
−1

2

x �−1 x T
)

Let S + = { x i = (w

(i)
1

, . . . , w

(i)
d

) } m

i =1
be the minority instances. The

nbiased covariance estimator is:

 =

1

m − 1

m ∑

i =1

(x i − x)(x i − x) T , where x =

1

m

m ∑

i =1

x i

We will use kernel functions φh (x) = φU
(

x
h

)
, where h needs to

e optimized to minimize the MISE. We will pursue to minimize

he following cross-validation function:

(h) =

1

m

2 h

d

m ∑

i =1

m ∑

j=1

φ∗
h (x i − x j) +

2

mh

d
φh (0)

here φ∗
h

≈ φ
h
√

2
− 2 φh .

Once a proper h has been found, a suitable generating scheme

ould be to take x i + hRr, where x i ∈ S + , r ∼ N

d (0, 1) and U =
 · R T , R being upper-triangular. In case we have enough guaran-

ees to decompose U = R · R T (U must be a positive-definite ma-

rix), we could use Choleski decomposition. In fact, we provide a

ketch of proof showing that all covariance matrices are positive-

emidefinite:

T

(

m ∑

i =1

(x i − x)(x i − x) T

)

y

=

m ∑

i =1

((x i − x) T y ︸ ︷︷ ︸
z T

i

) T (x i − x) T y ︸ ︷︷ ︸
z i

) =

m ∑

i =1

|| z i || 2 ≥ 0

or arbitrary y ∈ R

d . Hence, we need a strict positive definite ma-

rix, otherwise PDFOS would not provide a result and will stop its

xecution.
algorithms for imbalanced classification in R, Knowledge-Based

https://doi.org/10.1016/j.knosys.2018.07.035

12 I. Cordón et al. / Knowledge-Based Systems 0 0 0 (2018) 1–13

ARTICLE IN PRESS

JID: KNOSYS [m5G; September 16, 2018;15:4]

W

δ

u

δ

δ

u

a

p

B

g

g

e

b

b

w

i

e

w

g

I

e

i

u

δ

δ

δ

p

e

R

B5.4. Search of optimal bandwidth

We take a first approximation to h as the value:

h Silv erman =

(
4

m (d + 2)

) 1
d+4

where d is number of attributes and m the size of the minority

class.

Reshaping the equation of the cross validation function and dif-

ferentiating:

M(h) =

2

m

2 h

d

m ∑

j>i

φ∗
h (x i − x j) +

1

mh

d
φh

√

2 (0)

M

′ (h) = −dh

−1

mh

d
φh

√

2 (0)

− 2

m

2 h

d

[m ∑

j>i

φ∗
h (x i − x j) dh

−1

+

m ∑

j>i

φ∗
h (x i − x j) h

−3 (x i − x j)
T U(x i − x j)

]
And we use a straightforward gradient descent algorithm to

find a good h estimation.

B5.5. Pros and cons

On the one hand, PDFOS makes the assumption that the data

can be locally approximated by a normal distribution. What is

more, it makes the assumption that the same bandwidth gives

good local results in every single point. Another disadvantage of

the algorithm is that not every single covariance matrix has a

Choleski decomposition (a covariance matrix can be shown to be

positive-semidefinite, whereas for the Choleski decomposition to

exist it needs to be a positive-definite matrix).

On the other hand, although it makes some hypothesis, they are

mild assumptions compared to the results it yields. It also has an

enormous theoretical component, which ensures quality results.

B6. NEATER

Once we have created synthetic examples, we should ask

ourselves how many of those instances are in fact relevant to

our problem. Filtering algorithms can be applied to oversampled

datasets, to erase the least relevant instances.

B6.1. Game theory

Let (P, T, f) be our game space. We would have a set of play-

ers, P = { 1 , . . . , n } , and T i = { 1 , . . . , k i } , set of feasible strategies for

the i th player, resulting in T = T 1 × · · · × T n . We can easily assign

a payoff to each player taking into account his/her own strategy

as well as other players’ strategies. So f is given by the following

equation:

f : T −→ R

n

t � −→ (f 1 (t) , . . . , f n (t))

t −i will denote (t 1 , . . . , t i −1 , t i +1 , . . . , t n) and similarly we can de-

note f i (t i , t −i) = f i (t) .

An strategic Nash equilibrium is a tuple (t 1 , . . . , t n) where

f i (t i , t −i) ≥ f i (t ′
i
, t −i) for every other t ′ ∈ T , and all i = 1 , . . . , n . That

is, an strategic Nash equilibrium maximizes the payoff for all the

players.

The strategy for each player will be picked with respect to a

given probability:

δi ∈ i = { (δ(1)
i

, . . . , δ(k i)
i

) ∈ (R

+
0)

k i :

k i ∑

j=1

δ(j)
i

= 1 }

Please cite this article as: I. Cordón et al., Imbalance: Oversampling

Systems (2018), https://doi.org/10.1016/j.knosys.2018.07.035
e define 1 × ��� ×n := and we call an element δ =
(δ1 , . . . , δn) ∈ an strategy profile. Having a fixed strategy profile

, the overall payoff for the i th player is defined as:

 i (δ) =

∑

(t 1 , ... ,t n) ∈ T
δ(t i)

i
f i (t)

Given u i the payoff for a δ strategy profile in the i -th player and

∈ , we will denote

−i := (δ1 , . . . , δi −1 , δi +1 , . . . , δn) (B.1)

 i (δi , δ−i) := u i (δ) (B.2)

A probabilistic Nash equilibrium is a strategy profile x =
(δ1 , . . . , δn) verifying u i (δi , δ−i) ≥ u i (δ

′
i
, δ−i) for every other δ′ ∈ ,

nd all i = 1 , . . . , n .

A theorem ensures that every game space (P, T, f) with finite

layers and strategies has a probabistic Nash equilibrium .

6.2. The algorithm

NEATER (filteriNg of ovErsampled dAta using non cooperaTive

amE theoRy), introduced in [19] , is a filtering algorithm based on

ame theory. Let S be the original training set, E the synthetic gen-

rated instances. Our players are S ∪ E . Every player is able to pick

etween two different strategies: being a negative instance (0) or

eing a positive instance (1). Players of S have a fixed strategy,

here the i th player would have δi = (0 , 1) (a 0 strategy) in case

t is a negative instance or δi = (1 , 0) (a 1 strategy) otherwise.

The payoff for a given instance is affected only by its own strat-

gy and its k nearest neighbors in S ∪ E . That is, for every x i ∈ E , we

ill have u i (δ) =

∑

j∈ N N k (x) (x T
i

w i j x j) where w i j = g
(
d(x i , x j)

)
and

 is a decreasing function (greater distances imply a lower payoff).

n our implementation, we have considered g(z) =

1
1+ z 2 , with d the

uclidean distance.

Each step should involve an update to the strategy profiles of

nstances of E . Namely, if x i ∈ E , the following equation will be

sed:

i (0) =

(
1

2

,
1

2

)
i, 1 (n + 1) =

α + u i ((1 , 0))

α + u i (δ(n))
δi, 1 (n)

i, 2 (n + 1) = 1 − δi, 1 (n + 1)

That is, we reinforce the strategy that is producing the higher

ayoff, in detriment to the opposite strategy. This method has

nough convergence guarantees.

eferences

[1] A. Fernández, S. del Río, N.V. Chawla, F. Herrera, An insight into imbalanced big
data classification: outcomes and challenges, Complex Intell. Syst. 3 (2) (2017)

105–120, doi: 10.1007/s40747- 017- 0037- 9 .
[2] Q. Zou, S. Xie, Z. Lin, M. Wu, Y. Ju, Finding the best classification threshold in

imbalanced classification, Big Data Res. 5 (2016) 2–8, doi: 10.1016/j.bdr.2015.12.
001 .

[3] B. Krawczyk, M. Wo ́zniak, G. Schaefer, Cost-sensitive decision tree ensembles

for effective imbalanced classification, Appl. Soft Comput. 14 (2014) 554–562,
doi: 10.1016/j.asoc.2013.08.014 .

[4] P. Zhou, X. Hu, P. Li, X. Wu, Online feature selection for high-dimensional class-
imbalanced data, Knowl. Based Syst. 136 (2017) 187–199, doi: 10.1016/j.knosys.

2017.09.006 .
[5] H. He, E.A. Garcia, Learning from imbalanced data, IEEE Trans. Knowl. Data

Eng. 21 (9) (2009) 1263–1284, doi: 10.1109/tkde.2008.239 .
[6] I. Triguero, S. González, J.M. Moyano, S. García, J. Alcalá-Fdez, J. Luengo, A. Fer-

nández, M.J. del Jesús, L. Sánchez, F. Herrera, KEEL 3.0: an open source soft-

ware for multi-stage analysis in data mining, Int. J. Comput. Intell. Syst. 10 (1)
(2017) 1238, doi: 10.2991/ijcis.10.1.82 .

[7] G. Lemaitre , F. Nogueira , C.K. Aridas , Imbalanced-learn: a python toolbox to
tackle the curse of imbalanced datasets in machine learning, J. Mach. Learn.

Res. 18 (2017) 1–5 .
algorithms for imbalanced classification in R, Knowledge-Based

https://doi.org/10.1007/s40747-017-0037-9
https://doi.org/10.1016/j.bdr.2015.12.001
https://doi.org/10.1016/j.asoc.2013.08.014
https://doi.org/10.1016/j.knosys.2017.09.006
https://doi.org/10.1109/tkde.2008.239
https://doi.org/10.2991/ijcis.10.1.82
http://refhub.elsevier.com/S0950-7051(18)30385-X/sbref0007
http://refhub.elsevier.com/S0950-7051(18)30385-X/sbref0007
http://refhub.elsevier.com/S0950-7051(18)30385-X/sbref0007
http://refhub.elsevier.com/S0950-7051(18)30385-X/sbref0007
https://doi.org/10.1016/j.knosys.2018.07.035

I. Cordón et al. / Knowledge-Based Systems 0 0 0 (2018) 1–13 13

ARTICLE IN PRESS

JID: KNOSYS [m5G; September 16, 2018;15:4]

[

[8] A.D. Pozzolo , O. Caelen , S. Waterschoot , G. Bontempi , Racing for unbalanced
methods selection., in: H. Yin, K. Tang, Y. Gao, F. Klawonn, M. Lee, T. Weise,

B. Li, X. Yao (Eds.), Lecture Notes in Computer Science, 8206, Springer, 2013,
pp. 24–31 .

[9] W. Siriseriwan, Smotefamily: A Collection of Oversampling Techniques for Class
Imbalance Problem Based on SMOTE, 2018, https://cran.r-project.org/package=

smotefamily .
[10] N. Lunardon , G. Menardi , N. Torelli , ROSE: a package for binary imbalanced

learning, R J. (2014) 8292 .

[11] G. Menardi, N. Torelli, Training and assessing classification rules with im-
balanced data, Data Min. Knowl. Discov. 28 (2014) 92122, doi: 10.1007/

s10618- 012- 0295- 5 .
[12] N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, Smote: synthetic minor-

ity over-sampling technique, J. Arif. Intell. Res. 16 (2002) 321–357, doi: 10.1613/
jair.953 .

[13] A. Fernandez , S. Garcia , F. Herrera , N.V. Chawla , Smote for learning from imbal-

anced data: progress and challenges. Marking the 15-year anniversary, J. Arif.
Intell. Res. 61 (2018) 863–905 .
Please cite this article as: I. Cordón et al., Imbalance: Oversampling

Systems (2018), https://doi.org/10.1016/j.knosys.2018.07.035
[14] S. Das, S. Datta, B.B. Chaudhuri, Handling data irregularities in classification:
foundations, trends, and future challenges, Pattern Recognit. 81 (2018) 674–

693, doi: 10.1016/j.patcog.2018.03.008 .
[15] S. Barua, M.M. Islam, X. Yao, K. Murase, MWMOTE–majority weighted minority

oversampling technique for imbalanced data set learning, IEEE Trans. Knowl.
Data Eng. 26 (2) (2014) 405–425, doi: 10.1109/tkde.2012.232 .

[16] B. Das, N.C. Krishnan, D.J. Cook, RACOG and wRACOG: two probabilistic over-
sampling techniques, IEEE Trans. Knowl. Data Eng. 27 (1) (2015) 222–234,

doi: 10.1109/tkde.2014.2324567 .

[17] H. Zhang, M. Li, RWO-sampling: a random walk over-sampling approach to im-
balanced data classification, Inf. Fusion 20 (2014) 99–116, doi: 10.1016/j.inffus.

2013.12.003 .
[18] M. Gao, X. Hong, S. Chen, C.J. Harris, E. Khalaf, PDFOS: PDF estimation based

over-sampling for imbalanced two-class problems, Neurocomputing 138 (2014)
248–259, doi: 10.1016/j.neucom.2014.02.006 .

[19] B.A . Almogahed, I.A . Kakadiaris, NEATER: filtering of over-sampled data using

non-cooperative game theory, Soft Comput. 19 (11) (2014) 3301–3322, doi: 10.
1109/ICPR.2014.245 .

20] J. Alcalá, A. Fernández , J. Luengo , J. Derrac , S. García , L. Sánchez , F. Herrera , Keel
data-mining software tool: data set repository, integration of algorithms and

experimental anlysis framework, J. Mult.-Valued Log. Soft Comput. 17 (2010)
255–287 .
algorithms for imbalanced classification in R, Knowledge-Based

http://refhub.elsevier.com/S0950-7051(18)30385-X/sbref0008
http://refhub.elsevier.com/S0950-7051(18)30385-X/sbref0008
http://refhub.elsevier.com/S0950-7051(18)30385-X/sbref0008
http://refhub.elsevier.com/S0950-7051(18)30385-X/sbref0008
http://refhub.elsevier.com/S0950-7051(18)30385-X/sbref0008
https://cran.r-project.org/package=smotefamily
http://refhub.elsevier.com/S0950-7051(18)30385-X/sbref0009
http://refhub.elsevier.com/S0950-7051(18)30385-X/sbref0009
http://refhub.elsevier.com/S0950-7051(18)30385-X/sbref0009
http://refhub.elsevier.com/S0950-7051(18)30385-X/sbref0009
https://doi.org/10.1007/s10618-012-0295-5
https://doi.org/10.1613/jair.953
http://refhub.elsevier.com/S0950-7051(18)30385-X/sbref0012
http://refhub.elsevier.com/S0950-7051(18)30385-X/sbref0012
http://refhub.elsevier.com/S0950-7051(18)30385-X/sbref0012
http://refhub.elsevier.com/S0950-7051(18)30385-X/sbref0012
http://refhub.elsevier.com/S0950-7051(18)30385-X/sbref0012
https://doi.org/10.1016/j.patcog.2018.03.008
https://doi.org/10.1109/tkde.2012.232
https://doi.org/10.1109/tkde.2014.2324567
https://doi.org/10.1016/j.inffus.2013.12.003
https://doi.org/10.1016/j.neucom.2014.02.006
https://doi.org/10.1109/ICPR.2014.245
http://refhub.elsevier.com/S0950-7051(18)30385-X/sbref0019
http://refhub.elsevier.com/S0950-7051(18)30385-X/sbref0019
http://refhub.elsevier.com/S0950-7051(18)30385-X/sbref0019
http://refhub.elsevier.com/S0950-7051(18)30385-X/sbref0019
http://refhub.elsevier.com/S0950-7051(18)30385-X/sbref0019
http://refhub.elsevier.com/S0950-7051(18)30385-X/sbref0019
http://refhub.elsevier.com/S0950-7051(18)30385-X/sbref0019
http://refhub.elsevier.com/S0950-7051(18)30385-X/sbref0019
https://doi.org/10.1016/j.knosys.2018.07.035

	Imbalance: Oversampling algorithms for imbalanced classification in R
	1 Introduction
	2 Software
	3 Examples of use
	4 Conclusions
	 Acknowledgments
	Appendix A Installation
	Appendix B Description of the algorithms in the package
	B1 Classification task
	B2 MWMOTE
	B2.1 Pros and cons

	B3 RACOG and wRACOG
	B3.1 RACOG
	B3.2 wRACOG
	B3.3 Pros and cons

	B4 RWO
	B4.1 Pros and cons

	B5 PDFOS
	B5.1 Motivation
	B5.2 Kernel methods
	B5.3 The algorithm
	B5.4 Search of optimal bandwidth
	B5.5 Pros and cons

	B6 NEATER
	B6.1 Game theory
	B6.2 The algorithm

	 References

