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Abstract

With the advent of Big Data era, data reduction methods are highly de-
manded given its ability to simplify huge data, and ease complex learning pro-
cesses. Concretely, algorithms that are able to filter relevant dimensions from
a set of millions are of huge importance. Although effective, these techniques
suffer from the “scalability” curse as well.

In this work, we propose a distributed feature weighting algorithm, which is
able to rank millions of features in parallel using large samples. This method,
inspired by the well-known RELIEF algorithm, introduces a novel redundancy
elimination measure that provides similar schemes to those based on entropy
at a much lower cost. It also allows smooth scale up when more instances
are demanded in feature estimations. Empirical tests performed on our method
show its estimation ability in manifold huge sets –both in number of features and
instances–, as well as its simplified runtime cost (specially, at the redundancy
detection step).

Keywords: Apache spark, Big Data, feature selection (FS), redundancy
elimination, high-dimensional

1. Introduction

Today the world keeps its relentless pace to the Big Data era by generat-
ing quintillion bytes of data daily. We have been surpassed by the challenge
of processing such volume of data in a efficient and resilient way. Although
researchers are devoting huge effort to cope with voluminous data from the in-
stance side, the opposite side has been largely disregarded by the community
despite the more severe implications behind that. Zhai et. al deeply analyzed
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the dark side of volume in [1]. In this study, authors smartly illustrate the
current exponential grow of dimensions in public datasets (millions of features
nowadays), as well as the lack of scalability of standard dimensionality reduction
(DR) algorithms when facing real-world big data.

Recent developments in technology, science and industry have transformed
the explosion of features into reality. Nevertheless, current machine learning
(ML) libraries have lagged behind upward trends, thus demanding an urgent
revision that enables a rapid learning from large-scale data. Although affected
by the same pressing complexity [2], DR techniques are seen as the most certain
solution to the curse of dimensionality. They have been widely employed in
smaller scenarios to simplify data wideness, and sometimes, have even served to
increase subsequent learning performance [3, 4, 5].

From the long taxonomy of DR techniques, the feature selection (FS) family
can be highlighted by their high interpretability, popularity, and simplicity [6, 7].
While FS algorithms requires an implicit parameter to delimit the magnitude of
selection, feature weighting algorithms offer less constrained schemes based on
feature-importance rankings. This subfamily of FS methods is specially relevant
for large-scale contexts where interactive selection of thresholds is restricted.
Additionally, some of the most outstanding models in FS are focused on feature
weighting (e.g.: RELIEF [8]).

Some significant concerns must be addressed by feature selectors in Big Data,
specially those based on pairwise correlations as they rapidly shift to trillions
when facing millions of features. However, Zhai et al. [1] also underpin the
blessing side of the curse showing that in many problems most of features tend
to contribute minimally with the correlation objective, and therefore, might be
discarded.

Several scalable tools and technologies have emerged in the last years to
cope with Big Data. Most of them provide transparent high-level distributed
processing services to end-users. MapReduce [9], and its open-source version
Hadoop [10, 11], were the pioneer programming models in this area. Recently, a
second generation of tools have come along aiming at amending the weaknesses
of the first generation. For instance, disk-intensive specialization in Hadoop has
being gradually shifted by Apache Spark [12, 13], a framework offering faster
memory-based primitives. According to authors, Spark is aimed at accelerating
interactive, online, and iterative procedures; normally present in ML algorithms.

Big Data frameworks have given birth to a myriad of large-scale ML li-
braries, thus enabling standard ML algorithms to perform in huge databases so
far unspoiled. MLlib [14], for example, relies on Spark’s operations to speed
up the transition between iterations in ML. Although the current state of ML-
lib is quite advanced, it lacks from several data preprocessing [15] algorithms.
Focusing on dimensionality reduction, up to date only the χ2 selector, and an
information-theoretic FS framework [16] have been proposed. Still no real scal-
able feature weighting method has been integrated in Apache Spark up to now
(see Section 3.4).

In this work, we propose a distributed design for the feature weighting prob-
lem in huge scales inspired by the RELIEF-F algorithm. Our algorithm, called
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BELIEF, is specially optimized to address large-scale problems with millions of
instances and features. Our main contributions with this work are as follows:

• Bridging the gap of dimensionality reduction algorithms in large-scale ML
libraries, such as MLlib. In this case, we provide an smart solution for the
feature weighting subfield, up to now under-explored.

• Optimization of RELIEF’s main algorithm with two novel procedures: one
that squeezes the amount of data transferred during the neighborhood
discovery step, and another that replaces instance-wise estimation by one
based on the partition scope.

• Built-in redundancy removal to improve selection in problems dominated
by feature redundancy. BELIEF takes advantage of feature distances to
estimate inter-feature redundancy at nearly zero cost. Our solution based
on co-occurrences offers similar schemes to those generated by state-of-
the-art information-based measures.

• Comprehensive empirical evaluation of BELIEF. This method has been
compared to the current state-of-the-art in distributed FS, showing its
advantage in terms of time and precision performance. Datasets with up
to O(107) instances and O(104) features have been added to assess the
theoretical scalability bounds of our proposal.

The main outline of the paper is as follows. First, some theoretical back-
ground information about FS, Big Data, and RELIEF have been captured in
Section 2. Then Section 3 describes how BELIEF works, as well as the main
optimizations introduced to overcome scalability and redundancy problems. De-
tailed empirical results and a thorough analysis investigation are embedded in
Section 4. Finally, Section 5 outlines the concluding remarks derived from this
work.

2. Background

2.1. Feature Selection: problem description and categorization

In data preprocessing, FS algorithms [5] focus on the task of isolating rele-
vant and non-redundant features from the raw set of input features. The pursued
objective here is to obtain a simpler and more sanitized subset of features that
enables a proper generalization with minimum time cost and predictive degra-
dation. Sometimes output models are not only simpler, but more accurate due
to the associated nuances that usually disturb generalization are eliminated [3].

Let ri be an example ri = (ri1, . . . , rin, riy) from TR (the training set),
where riy value is associated with the output class y ∈ C, whereas ri1 value
corresponds to the 1-th feature index, and the i-th sample index in the training
dataset. TR is formally defined as a bag of m examples, whose instances ri are
formed by a set of input features X . Then, the FS problem is trivially defined as
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the task of finding a subset of features Sθ ⊆ X relevant for the mining process
with minimum associated cost.

The current FS state-of-the-art can be roughly summarized in three major
categories according to [17]:

1. Wrapper methods: are FS algorithms that rely on a learning method
to evaluate fitnesses of features [18]. Wrappers can be deemed as ad-hoc
solutions, less prone to perform a proper generalization.

2. Filtering methods: are, on the other hand, independent methods that
utilize external measures, such as separability or statistical dependences,
to evaluate features. Their generality makes them more appropriate to
learn directly from the explicit characteristics of datasets [19].

3. Embedded methods: are integrated methods that exploit a searching
procedure implicit in the learning phase [20].

Filtering usually imply a more general/better generalization due to their
independence from learners. However, they usually are more conservative at
removing features, and require more parameters. Some parameters are crucial
for the learning task (e.g.: the number of selected features). They are also more
efficient than wrappers, which is advantageous in Big Data environments. This
fact explains why most of FS methods implemented in the Big Data literature
are based on filtering techniques [15].

2.1.1. Distance-based feature selection

FS methods can alternatively be divided into two groups regarding the shape
of output generated: either a subset of features, or a rated list of features
(partial or complete) [5]. The latter methods are called rankers, and are one
of the most popular subcategory in filtering methods. Rankers rely on a given
evaluation measure, such as one based on information dependency or distance,
to measure and sort features by predictive importance. Evaluation is performed
independently on each feature in these measures. However, although evaluation
is performed feature-wisely, it is possible that individual scores somehow imply
other features, for example, in redundancy-based measures. Efficient ranking
methods are specially relevant for large-scale learning because of its efficiency
and simplicity.

Distance measures used in FS range from Euclidean distance to more com-
plex distances like Minkowski distance [21]. Distance measures have not only
been bounded to instance-based learning but also applied to class conditional
density functions, such as Directed Divergence and Variance. One of the most
popular FS solution based on distances is the RELIEF algorithm [22], and its
renovated version RELIEF-F [8]. Both are built upon feature distances com-
puted to estimate relevance weights.

RELIEFs are based on the idea that features are deemed relevant as long
as they serve to distinguish close instances from alike classes. In RELIEF, we
consider a feature Xj ∈ X relevant if for a given instance ri its near-hit (same
class) neighbor nh is closer than its near-miss (distinct class) neighbor nm in the
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space defined by Xj. Feature-wise distances (diff) are accumulated in a weight
vector w of size |X | as defined in Equation 1. The parameter s describes the
size of the sampling set used in the estimation. The larger s, the more reliable
is the approximation. This gives us a ranking where we tag as relevant those
features whose associated weight exceeds an user-defined relevance threshold τ :

w[Xj ] = w[Xj ]− diff(nhij , rij)/s+ diff(nmij, rij)/s (1)

RELIEF-F [23] extended the original idea of miss-hit by expanding the neigh-
borhood to all classes present in a given multi-class problem (Equation 2). In-
stead of relying on a single miss, RELIEF-F considers k contributions for each
opponent class NMc. All contributions are weighted using their respective prior
class likelihood as follows:

w[Xj ] = w[Xj ]−
k∑

i=1

diff(nhij, rij)

s× k
+
∑

c 6=y

k∑

i=1

[P (c)× diff(NMcij, rij)]

s× k
(2)

Beyond the multi-problem amendment, RELIEF was extended to deal with
noise and missing data [23]. Complexity in all RELIEF versions is shared and
determined by the neighbor search process, by definition O(s×m× |X |).

RELIEF is a reliable estimator whose effectiveness was proven by Kira et al.
in [22], among others [24]. Authors showed that under some assumptions the
expected weights for relevant features were much larger than those irrelevant.
Nevertheless, RELIEF presents some drawbacks like the absence of an explicit
mechanism for redundancy elimination. RELIEF directly obviates the final
selection set might be fulfilled by both relevant and redundant features, such as
those correlated or even duplicated (see Section 2.1.2).

2.1.2. Redundancy elimination in RELIEF models

In recent decades, several variations of RELIEF-F have been proposed. Most
of them are focused on providing a solution to the redundancy problem, but
there also exist others coping with noise. Here, we outline the most relevant
contributions on the redundancy topic, as well as discuss about their possible
adaptation to the Big Data environment.

In [25], authors add a posterior phase based on K-means in order to filter out
redundancy. K-means discovers cluster of correlated features, and selects those
with highest scores as the pivotal elements. Correlation is then the distance
measure elected for this algorithm.

Yang et al. [26] proposed the application of Gram-Schmidt orthogonal trans-
formation to detect feature-pair correlations. The idea is to project one of the
two feature vectors into the orthogonal dimension, and to re-compute relevance.
Authors state that the cosine between the two original features highly influences
the new relevance score, and therefore, it determines the correlation between
both features. Based on cosine, the algorithm can estimate the redundancy
relationship each pair of features.

Conditional RELIEF [27] (CRELIEF) amplifies the original distance-based
score idea to one based on three interrelated measures: effectiveness (default),
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reliability, and informativeness. The latter factor addresses the redundancy
problem by relating effectiveness with reliability of higher ranked features. Ad-
ditionally, authors argue about the necessity of neighbors, and propose to sub-
stitute them by random tuples of instances.

Wrapper solutions have also found its niche in the redundancy elimination
topic. In [28], Fu et. al proposes to polish RELIEF’s output by applying Sup-
port Vector Machine Recursive Feature Elimination as secondary stage. The
algorithm starts by dividing the original dataset into several groups in which a
single instance of SVM is trained on each one. Feature scores are then normal-
ized and eventually aggregated.

Contrary to the solution above, EN-RELIEF [29] carries out an initial phase
of redundancy removal through a regularized linear model. Elastic Net was
chosen as the former solution because of its two-norm penalization (L1 and L2).
After a post-RELIEF phase, EN-RELIEF generates a sparse vector reflecting
the correlation between predictors.

Leaving aside wrappers, all filtering methods described above depends on
one way or another on correlation to draw redundancy relationships between
features. Notice that the correlation sketch is generated by considering every
pair interaction between features which gives us a total of |X |2 iterations. In a
Big Data context, this is unacceptable as the exponential growth of dimensions is
a fact nowadays (see Section 2.2). Consequently, memory and time requirements
of current redundancy elimination models should be softened either by reducing
the amount of pairwise comparisons, or by alleviating their cost.

2.2. Big Data overview: novel distributed processing tools and techniques and
“the curse of dimensionality”

Outstanding technologies, algorithms and tools are required to efficiently
process what we call Big Data. The Big Data term was defined by Gartner [30]
using the 3Vs concept, namely, high volume, velocity and variety information
that require new processing schemes. The V’s list was extended with 2 addi-
tional Vs (veracity and value) after a while.

Gartner’s scheme was intended to reflect the increasing number of examples
in real-world problems, not envisaging the upcoming phenomenon of Big Dimen-
sionality at least in the first epochs. This phenomenon, also called the “Curse
of Dimensionality” [1], revolves around the problem of exponential growth of
features and its combinatorial impact in novel datasets.

Little attention have been paid to the curse by ML community despite the
exponential growth of dimensions is a fact in most of public data repositories
(UCI or libSVM [31, 32]) where it currently measures in the scale of millions.

Despite explosion of correlations sharply affects FS algorithms, Zhai et al.
proved in their study [1] FS is in fact an affordable bless for large-scale process-
ing. Studies on the News20 dataset show that features become more sparsely
correlated as the dimensionality growths, which imply that the amount of corre-
lation to be accounted is much lower than previously thought. Even so selecting
relevant features from the raw set of potentially irrelevant, redundant and noisy
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features, while complying with the time and storage requirements, is one of the
main challenges for scientists and practitioners nowadays.

Big Data processing techniques and tools enable large-scale processing of
data within tolerable elapsed times and precision ranges. Google was pioneer
in this field by giving birth the MapReduce [9] framework in 2003. MapReduce
automatically distributes the load among one or several machines in a easy and
transparent way. Unlike other grid computing systems, MapReduce inherently
addresses several technical nuances previously controlled by the user. The long
list of duties assumed by MapReduce ranges from fault tolerance to network
communication, among others.

The final user solely needs to implement two primitives (Map and Reduce)
following a key-value scheme. During the Map stage, mappers threads read key-
value pairs from local partitions, and transform them into a set of intermediate
tuples eventually distributed according to a partitioning scheme (Equation 3).
Normally coincident keys are sent to the same node. The Reduce phase read
processed pairs and aggregated them to generate a summary result (Equation 4).
For extra information about MapReduce and other distributed tools, or the
design of distributed algorithms, please refer to [33] and [34].

Map(< key1, value1 >) → list(< key2, value2 >) (3)

Reduce(< key2, list(value2) >) →< key3, value3 > (4)

Despite MapReduce’s popularity in the ML field, the appropriateness of this
framework for interactive or iterative processes has been highly criticized [35].
Disk-intensive processing in MapReduce makes it inappropriate or even inap-
plicable for most of current algorithms.

Apache Spark [36, 13] is a fast and general engine for large-scale data pro-
cessing designed to overcome the drawbacks presented by Hadoop. Thanks to
its built-in memory-based primitives, Spark is able to query data repeatedly
deeming it suitable for iterative learning. According to the creators, Spark’s
engine is able to run up to 100 times faster than Hadoop in some cases.

Resilient Distributed Dataset (RDD) is the keystone structure on which
Spark builds its workflow. RDD operators accompass and extend several dis-
tributed models like MapReduce by providing novel and more complex opera-
tors. They range from simple filtering and mapping processes to complex joins.
As in MapReduce, Spark’s primitives locally transform data within partitions,
trying to maintain the data locality property as far as possible. RDDs also
allows practitioners to customize data persistence, partitioning and data place-
ment, broadcast read-only variables, track accumulators, and so on. For a full
description of Spark operations, see [13].
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3. BELIEF: an efficient distributed design for distance-based feature
selection

In this section we present BELIEF, a distributed distance-based feature se-
lection algorithm inspired by the popular RELIEF algorithm. BELIEF has
been implemented under the Apache Spark development framework to ensure
that the two major iterative steps in RELIEF (neighbors searches and weight
estimation) are optimized to their fullest degree in the distributed environment.

Neighbor searches are solved in BELIEF by replicating the sample to all
the nodes so that distances are completely computed in local (Section 3.1).
Neighborhood information for each instance is sent in form of locations to the
partitions so that complete instances are not required to be sent. Secondly,
BELIEF leverages the previous scheme to create a novel feature weighting es-
timation procedure where contributions are not instance-wisely anymore, but
partition-wise. This mechanism extremely reduces the communication between
partitions (Section 3.2).

Besides the time performance enhancements, BELIEF also provides an effi-
cient redundancy removal technique which leverages already computed feature
distances to provide redundancy-based weights (Section 3.3).

Algorithm 1 describes BELIEF’s main procedure. It starts by dividing the
sample set S into several disjoint batches. Batches are employed in BELIEF
for two reasons: to avoid the maximum size allowed by Spark’s broadcasting be
surpassed, and to create a feedback procedure between iterations which shorten
the list of features to be considered in redundancy calculations. After the split
phase, each batch feeds the relevance and redundancy functions. Partial rele-
vance and redundancy matrices are then aggregated and passed to the Sequen-
tial Forward Selection (SFS) algorithm which will select features according to
Equation 8.

3.1. Nearest neighbor search in BELIEF

As we mentioned before, the complexity order of RELIEF, and subsequently
BELIEF, is mainly conditioned by the constant seek of neighbors (ℓ = O(s ·m)).
Once two examples are paired, weight computations are performed for each
feature (ℓ∗ = O(s ·m · |X|)).

Despite the widely recognized usefulness of RELIEF and other NN-based
algorithms, neighbor searches are always compromised by each problem size
because of two reasons:

• Execution time: for each search the entire dataset must be revisited. The
task is not straightforwardly paralellizable (wide dependencies between
partitions). The process becomes even more expensive in case sorting
of k > 1 neighbors is required, which implies to maintain a dedicated
structure, such as a bounded heap O(k · log(k)).

• Memory consumption: As each pairwise computation must be taken into
account in searches, the entire dataset is recommended to be allocated

8



Algorithm 1 BELIEF selection: Main procedure

Input: D Dataset
Input: s Sample size
Input: b # batches
Input: k # neighbors
Input: |S| # features to be selected
Output: S Set of selected features
1: B ← sample(D, s).split(b)
2: nfeat← |X|
3: O ← vector(nfeat) ◮ Marginal likelihood
4: P ← matrix(nfeat, nfeat) ◮ Joint likelihood
5: J ← vector(nfeat) ◮ Feature weights
6: for batch ∈ B do

7: query ← broadcast(batch)
8: NN ← broadcast(neighborhood(D, query, k)) ◮ Algorithm 2
9: Jp, Op, Pp ← weightEstimation(D, query,NN, k) ◮ Algorithm 3

10: J ← J + Jp; O ← O +Op; P ← P + Pp

11: end for

12: Iα ← computeMCR(O, P ) ◮ Equation 7
13: S ← SFS(J, Iα, |S|) ◮ Equation 8
14: return(S)

in heap memory. Otherwise, I/O disk operations will dominate global
runtime.

The drawbacks mentioned above motivate novel designs for NN search which
leverage the distributed technologies presented in Section 2.2, specially those
based on in-memory operations.

In this work, we implement distributed searches following the scheme pre-
sented in kNN-IS [37]. Assuming TR and TS are split and saved in p disjoint
partitions distributed across a cluster of Z nodes. The MapReduce model di-
vides the process into two stages: each mapper reads p∗ ≤ p local partitions
from TR and the entire TS, computes the distances between each training par-
tition and TS. Each reducer collects the local neighbors to each tuple partition-
instance and aggregates them by selecting the closest neighbors to them. In our
case, TS is replaced by the sampling set in BELIEF.

kNN-IS has proven to be efficient in several real-world problems, however,
it presents several bottlenecks to be analyzed. Firstly, the high communication
cost derived from the replication of TS to each node (memory consumption:
O(|TS|·|X | per node); and secondly, the number of pairs sent to the reducers can
become extremely large p ·k · |TS|, although in this case it is not needed to send
the complete instance but only the output variable (classification/prediction)
and the distance value. In our case, complexity burden is even worse as TS
is replaced by the sampling set in BELIEF. Additionally, BELIEF requires the
entire feature vector instead of only the output value.

The reduce step is then revisited in our proposal where entire instances are
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demanded. However, sending millions of input arrays across the network nar-
rows as invalid, specially in high-dimensional scenarios. The solution adopted
consists of sending a lightweight structure that defines the location of candidates
in the partitioned dataset. The locator structure is defined as: an integer index
pointing at its enclosing partition Ig, and another index Il for its local position
within that partition. This trick reduces the memory and network consumption
to O(|TS| · k · p), where |TS| = s.

Once candidates are filtered, locators information is broadcasted to every
node so that a single map phase can perform BELIEF’s core estimations. Al-
gorithm 2 lists the MapReduce process that describes this process. The follow-
ing Section explains how the connection between neighbor searches and feature
weight estimation.

Algorithm 2 Selection of nearest neighbors for the sample

Input: D Dataset
Input: S Sample set with size s (broadcasted).
Input: k # number of neighbors
Output: Neighbors locators < index, list(< indexP, indexN >) >
1: map partitions < indexP, P > ∈ D

2: for < index, input > ∈ S do

3: for < indexN, inputN > ∈ P do

4: d← computeDistances(inputN , input)
5: if isTopNN(d) then
6: addNN(index)(indexP, indexN, d)
7: end if

8: end for

9: emit(< index, addNN(index) >) ◮ addNN composed by:
< indexP, indexN, d >

10: end for

11: end map

12:

13: reduce < index, list(neighbors) >∈ D

14: topNN ← selectTopNN(list(neighbors))
15: emit(< index, topNN >) ◮ topNN composed by pairs: < indexP, indexN >

16: end reduce

17: return(SL)

3.2. Global weights estimation in BELIEF

The instance-wise estimation model integrated in RELIEF-F have proven to
work well in small medical scenarios, such as tumor detection [23] or treatment
of myopia [8]. However, its translation to big data scenarios is not straightfor-
ward because of the reasons exposed previously. Specifically, sending millions
of arrays each time we need to update weights renders as extremely inefficient.

In this paper we propose to re-invent the original RELIEF formula, and
to shift from an instance-wise estimation to a more scalable solution based on
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aggregating partial weights in a partition-wise manner. The pre-conditions we
impose for the sake of scalability for this new formulation are:

• For each local process, each sampled instance will have only access to its
local neighbors. No communication is allowed between processes. As the
entire sample is replicated to all partitions, there will not be degradation
in predictive performance.

• Instance-wise output contributions are not longer allowed. A compound-
ing feature-wise solution for each data partition will be the new output.

In order to comply with the previous statements we define a new scheme for
distance-based weight estimation, which is indeed applied in a single pass:

w[Xj ] =

|C|∑

i=1

DDij

DCi

× P (Ci)−

|C|∑

i=1

EDij

ECi

× P (Ci) (5)

where DD and ED are |C| × |X | matrices that summarize the accumulated
feature distance between all sampled instances and its neighbors with distinct
and equal class, respectively. DC and EC are |C| × 1 matrices that counts
the number of neighbors involved in the calculation of previous DD and ED
matrices, respectively.

Matrix computation and weight estimation are computed through two dif-
ferent MapReduce processes described in Algorithm 3. The first phase relies on
Equation 2 to compute neighbors’ locations. Then, it creates the feature-class
matrices which are updated with distance information. Matrices are eventu-
ally aggregated at the subsequent reduce phase. Finally, another MapReduce
process (with no reducers) is programmed to apply Equation 5 to each set of
matrices.

BELIEF’s approach gains scalability and efficiency power with respect to
RELIEF, while precision performance remains similar. Although in BELIEF
the estimation scope is extended beyond individual instances, our solution keeps
unaltered the main idea behind RELIEF. Conceptually the BELIEF method
differs from its predecessor in several aspects:

1. In RELIEF each matrix cell would involve an exact k number of neighbors,
whereas in BELIEF we resort to standard k-NN search to avoid searches
in too broad areas. By weighting each cell value by its neighborhood size
this problem is partially addressed.

2. Class likelihood weighting has been extended in BELIEF to the negative
part (right side of Equation 5). We understand this model is much more
natural and separable for further computations than that presented by
RELIEF.

3. As mentioned before, the main improvement introduces revolves around
the use of single-pass estimation based on individual feature-class contri-
butions. Though there is substantial shift between both models, BELIEF
mimics the same idea based on class separability held in RELIEF. Also
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Algorithm 3 RELIEF’s feature weight estimation

Input: D Dataset
Input: S Sample set with size s (broadcasted).
Input: NL Neighbor locators (broadcasted)
Output: Weight by feature
1: map partitions < indexP, P > ∈ D

2: DD ←matrix(|C|, |X|); ED ←matrix(|C|, |X|)
3: DD ←matrix(|C|, 1); EC ←matrix(|C|, 1)
4: for < index, input, label > ∈ S do

5: indices← NL.getLocalLocators(index, indexP )
6: for i ∈ indices do

7: for j ∈ |X| do
8: distance← diff(P (i).getInput(j), input(i)(j))
9: if P (i).label 6= label then

10: DD(label)(j)← distance

11: else

12: ED(label)(j)← distance

13: end if

14: end for

15: if P (i).label 6= label then

16: DC(label)← DC(label) + 1
17: else

18: EC(label)← EC(label) + 1
19: end if

20: end for

21: end for

22: for j ∈ |X| do
23: matrices←< DD(∗)(j), ED(∗)(j), DC(j), EC(j) >
24: emit(< j,matrices >)
25: end for

26: end map

27:

28: reduce < feature, list(matrices) >
29: sumMatrices(list(matrices))
30: end reduce

31: map < feature,matrices >

32: weight← applyBELIEF(matrices)
33: emit(< feature,weight >)
34: end map

notice that some repetitive factors in Equation 1 can be easily removed
since they appear in each instance-wise sum, for example, class likelihood
or the sample size s. In fact, s provides nothing relevant beyond a simple
normalization.
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3.3. mCR (minimum Collision-based Redundancy): an efficient redundancy re-
moval technique for BELIEF

In Section 2.1.2, we have enumerated different techniques that enable re-
dundancy elimination in RELIEF-F algorithms. Nevertheless, as stated in this
section, all these techniques have been designed for small scenarios.

A possible scalable solution for redundancy control may be one based on
information theory. An uncertainty measure widely used in the literature is
Mutual Information (MI) [38], which expresses the loss of uncertainty of one
variable Xi after knowing other random variables. MI can be rewritten in
entropy terms as follows:

I(Xi;Xj) = H(Xi)−H(Xi|Xj)

=
∑

a∈Xi

∑

b∈Xj

P (a, b) log
P (a, b)

P (a)P (b)
.

(6)

where Xi and Xj are two discrete random variables with marginal probability
mass functions P (a) and P (b), respectively. H represents Shannon entropy, and
P (a, b) a joint mass function.

In FS, those features that bears similar information according to MI are
considered as redundant, and consequently can be discarded. Some relevant
FS filters, like minimum Redundancy Maximum Relevance [39], rely on these
information-based measures to make a trade-off with relevancy.

The main drawback of information theoretical techniques is their high com-
plexity. All available combinations between each pair of features (joint likeli-
hood), and all single occurrences in each single feature (marginal likelihood) are
accounted for weight estimation, which supposes an unbearable cost in some
large-scale scenarios [16].

From the previous formulation we can deduce that entropy is mainly dom-
inated by those co-occurrences more recurrent in the series. Influence of iso-
lated values is then almost negligible. Furthermore, since concrete values in
co-occurrences are no longer accounted after being subsumed by the formula,
we suggest replacing standard MI by a measure based on directly measuring
the number of “collisions” or co-occurrences. This though may imply loss of
information and proficiency, it will surely simplifies matrices and computations.
After applying Shannon’s entropy to the new “collision” variable, we obtain Iα:

Iα(Xi;Xj) = PC(Xi) log
PC(Xi, Xj)

PC(Xi)PC(Xj)
. (7)

where PC represents the likelihood of coincidence within any pair of input
feature and/or a single one. We call this measure minimum Collision-based
Redundancy (mCR).

mCR can be easily integrated with BELIEF by normalizing both measures
and summing their contributions. In our experiments we rely on minmax nor-
malization and a weighting factor θ to relate both factors. mCR is designed to
be integrated in a Sequential Forward Selection process [21] where we start with
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an empty set of features S, and select the best feature in each epoch according
to a criteria J until |S| features are selected. Ranks for non-selected features
are updated in each iteration taking as reference the last feature selected, and
following the formula:

J(Xi) = w(Xi)− θ
∑

Xj∈S

Iα(Xj ;Xi), (8)

where θ is the factor that weights the impact of redundancy (mCR) and rele-
vance (BELIEF).

One of the most relevant advantages in mCR is that it leverages prior dis-
tance values computed in the previous step to construct PC matrices. No extra
cost is then associated to mCR beyond the annotation of joint coincidences.
Although the number of annotations is infrequent, if this fact is left unmanaged
mCR will endure the same problems presented by information-based measures
(Section 2.1.2).

In order to control the magnitude of accounted collisions, we introduce a
new parameter that limits the number of features considered. The idea is to
only update PC(Xi, Xj) iff one of them is ranked in top-(|S| · η) features by
the previous BELIEF phase. It makes sense to leave high irrelevant features
aside as they will surely not overtake relevant features in the ranking after the
redundancy update. We propose a default value of 2.0 for η.

mCR is thought to be applied for discrete features where collisions can be
easily accounted. However, most of real-world problems partially or entirely
consists of continuous features. For continuous scenarios, we propose an al-
ternative solution that replaces 0,1 updates (1 collision hit, 0 otherwise) by a
percentage that measures the magnitude of collision, called collision rate CR
and defined as follows:

CR = 1− [(r1i − r2i)/ ↑ CRXi
] (9)

where r1 and r2 are two neighbors selected by BELIEF, ↑ CRXi
the maximum

collision rate for Xi with ↑ CR = 6σi for all the input features, and σi the
standard deviation for Xi.

This decision is motivated by the Chebyshev’s inequality rule which states
that 89% of values in most probability distributions are within three standard
deviations of the mean. Given that we only focus on the higher collision rates,
Chebyshev’s inequality let us to safely ignore outliers, namely, those with the
lowest collision values. Another possible solution is to define ↑ CR equal to the
maximum range for each feature, however, this option is highly affected by the
shape of distributions.

In order to reduce some effort on annotating coincidences, we establish an
upper limit κ for collision rates so that values below κ are directly skipped.
Accepted rates are then utilized to update PC matrices following the scheme
[0 ∪ [κ, 1]]. On the other hand, we apply a Z-score normalization to simplify
↑ CR = 6σ = 6 which improves the homogeneity between features, and at the
same time the performance of neighbor searches.
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3.4. Other RELIEF adaptations for Big Data tools

In [40], authors proposed a distributed ReliefF-based solution for Apache
Spark, called DiReliefF. Despite the algorithm has been successfully tested on
real large-scale datasets, authors made some assumptions about the estimation
sample which can be deemed as unfair. Namely, they assert that tiny samples
with few hundreds of instances are enough to properly estimate class separability
in problems formed by millions of instances. As an example, authors states that
6.25 × 10−7% of data in the ECBDL14 problem (see Section 4.1) is enough
to correctly underpin feature weights. From our point of view, this premise
seems unrealistic as the chance of properly representing millions of instances
with such small sample renders as negligible. Experiments focusing on proving
the reliability of previous premise will be performed in Section 4.4.

Previous assumptions served as a basement for the optimizations introduced
in DiReliefF. For instance, neighborhoods in DiReliefF are computed and moved
across the network in their original shape. Although intuitive this procedure im-
pose a high communication cost whenever the number of features or estimation
samples increases. Similar cost is imposed by the last step in DiReliefF when
neighborhoods are pushed to the driver node to perform feature-side averages.
Again this process is simple, but hardly scalable and resource-wasting.

For the above reasons, we think a novel distributed design of ReliefF based on
realistic network optimizations, and further enriched with redundancy control
techniques can be of great interest for the literature.

4. Empirical evaluation

4.1. Experimental framework

BELIEF has been tested on four large-scale classification datasets, grouped
in two categories according to their format and shape. ECBDL14 and epsilon
are dense datasets with tabular format, a large number of examples, and a
medium number of features. url and kddb are two sparse dataset (from the
libSVM repository) formed by millions of key-value pairs.

ECBDL14 is a binary imbalance dataset with an oversampled training set
of 65 millions of instances and 631 input features. It is specially remarkable
the relevance and difficulty of ECBDL14 given the high imbalance ratio present
in the original training set (98%). The remaining datasets are hosted in the
LibSVM dataset repository [32]. Their origin, format, and other information
can be found in the project’s website.1. Table 1 provides basic information
about the size and magnitude of all problems.

For comparison purposes we have included a distributed exact version of
the minimum Redundancy Maximum Relevance algorithm (DmRMR) [39, 16],
implemented in Apache Spark. DmRMR inclusion aims at showing pros and
cons of both alternatives, as well as demonstrate the validity of BELIEF. The

1http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Table 1: Basic information about the datasets. Included: number of examples for training
and test sets (#Train Ex., #Test Ex.), number of features (#Atts.), number of output labels
(#Cl) and sparsity condition (binary).

Data Set #Train Ex. #Test Ex. #Atts. #Cl. Sparse

epsilon 400 000 100 000 2000 2 No

ECBDL14 65 003 913 2 897 917 630 2 No

url 1 916 904 479 226 3 231 961 2 Yes

kddb 19 264 097 748 401 29 890 095 2 Yes

same argument was proven in [24] where the standard version of both algorithms
were compared in a large list of small synthetic datasets.

FS schemes are evaluated using two classification algorithms belonging to
the MLlib library [14]: Support Vector Machines (SVM) and Decision Trees
(DT). SVMs in Spark internally optimizes the Hinge Loss using Orthant-Wise
Limited-memory Quasi-Newton optimizer, whereas DTs perform recursive bi-
nary partitioning optimizing an information gain measure (Gini impurity or
InfoGain). Parameter configuration for BELIEF is shown in Table 2. Default
values for classifiers are left alone. Since all selectors and predictors are based on
iterative processes, we cached all the training sets in memory at the beginning.

Table 2: Parameters configuration for selectors

Method Parameters

BELIEF k = 3, 5, 10

BELIEF sampling rate (s) = 0.01, 0.02, 0.25, 0.5

BELIEF batch size (bs) = 0.1, 0.25

BELIEF |S| = 10, 50, 100

DmRMR |S| = 10, 50, 100

BELIEF & DmRMR Spark partitions = 920

The default level of parallelism was established to 2 times (920) the number
of virtual threads available in the cluster (460), thus following the guidelines
stated by Spark’s creators 2.

F1 score (harmonic mean of precision and recall) and prediction accuracy are
the two evaluation metrics elected to assess the utility of the selection schemes.
To evaluate time performance we rely directly on the overall cluster prediction
and feature selection time in seconds.

The cluster involved in the large-scale experiments is composed by 20 slave
nodes and 1 master node. The computing nodes hold the following features: 2
CPU processors x Intel Xeon E5-2620, 6 real cores per CPU, 2.00 GHz, 15 MB
cache, QDR InfiniBand Network (40 Gbps), 2 TB HDD, 64 GB RAM. All of
them running the following software: Apache Spark and MLlib 2.2.0, Hadoop

2http://spark.apache.org/docs/latest/programming-guide.html#parallelized-

collections
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2.6.0 (HDFS replication factor 2, HDFS default block size 128 MB), 460 virtual
threads, 960 RAM GB.

For reproducibility purposes the code have been opensourced and uploaded
to GitHub https://github.com/sramirez/spark-RELIEFFC-fselection. In
the close future we will send a request for its integration in the main Spark API.

4.2. BELIEF (and mCR) evaluation on small controlled environments

Analysis starts with the evaluation of BELIEF and mCR in small and syn-
thetic problems where relevancy and redundancy is known and well-defined,
thus being easier to study algorithms’ behaviors. The same study proposed in
a FS review [24] is replicated here in a smaller scale. Table 3 shows the main
characteristics of the synthetic datasets used [24], as well as, the composition
and nature (relevant/redundant/noise) of synthetic features.

Table 3: Basic information about the synthetic datasets from [24]. From left to right: dataset
name, number of rows, number of columns, list of relevant and redundant features, and the
baseline accuracy obtained with no FS. (*) SD3 presents six groups of 10 features created to
be redundant among themselves; the other 4,000 features are irrelevant. The ideal output is
that with one feature from each group.

Dataset # features # samples Relevant Redundant Baseline acc.

Corral-100 99 32 1-4 – 56.25%

XOR-100 99 50 1,2 – 52.00%

Parity-3+3 12 64 1-3 4-6 50.00%

SD3 4060 75 G1-G6 * 33.33%

Madelon 500 2400 1-5 6-20 50.13%

Besides accuracy evaluation, we furthermore analyze the composition of the
FS schemes generated by using a scoring measure proposed in [24]:

Suc. = [
Srel

Xrel

− ζ
Sred

Xred

]× 100 (10)

where Srel, Xrel is the number of relevant features in S and X , respectively.
The remaining variables stand for redundant features. The Suc. score described
above was designed to penalize redundant features, and to reward relevant se-
lections.

Tables 4 – 8 contains diverse performance information concerning composi-
tion, accuracy and success obtained by schemes in mRMR, BELIEF and BE-
LIEF + mCR in five datasets. Specially relevant is the column # red which
indicates the degree of redundancy cleaning achieved by each measure. Results
shed some light about the potential of the conjunction mCR and BELIEF. This
combination overcomes its competitors in 3/5 datasets, being specially relevant
in 2/3 datasets with redundant features.

Furthermore, a pairwise comparison between the two BELIEF alternatives
shows a great advantage on using mCR over the standard method. Figure 1
clearly shows this advantage by depicting the difference between the best record
achieved by each configuration. In 9/10 records mCR performs better or equal
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Table 4: Evaluation results for Corral-100. From left to right: the method name, the total
number of features selected, and which and how many relevant, redundant and irrelevant are
selected. The right-most part contains the prediction results using Näıve Bayes, Decision Tree,
and Logistic Regression. Highlighted results in bold indicate the best outcome for each FS
scheme.

Feature Selection Accuracy

Method # sel. Rel. # rel. # red. # irrel. Success NB DT LR

BELIEF 4 1,3 2 - 2 0.50 0.7105 0.6605 0.6716

10 1-3 3 - 7 0.75 0.8077 0.6405 0.6216

BELIF+mCR 4 3 1 - 3 0.25 0.6155 0.7266 0.7627

10 1-3 3 - 7 0.75 0.7466 0.7516 0.7066

mRMR 4 3 1 - 3 0.25 0.6072 0.7266 0.7716

10 1-4 4 - 6 1.00 0.7655 0.6316 0.8438

Table 5: Evaluation results for XOR-100. From left to right: the method name, the total
number of features selected, and which and how many relevant, redundant and irrelevant are
selected. The right-most part contains the prediction results using Näıve Bayes, Decision Tree,
and Logistic Regression. Highlighted results in bold indicate the best outcome for each FS
scheme.

Feature Selection Accuracy

Method # sel. Rel. # rel. # red. # irrel. success NB DT LR

BELIF 2 - 0 - 2 0.00 0.7440 1.0000 0.6204

10 - 0 - 10 0.00 0.7197 0.8383 0.7840

BELIF+mCR 2 - 0 - 2 0.00 0.7440 1.0000 0.6204

10 - 0 - 10 0.00 0.7190 0.9040 0.6840

mRMR 2 - 0 - 2 0.00 0.4854 0.7157 0.6957

10 - 0 - 10 0.00 0.7116 0.6173 0.6866

Table 6: Evaluation results for Parity-3+3. From left to right: the method name, the total
number of features selected, and which and how many relevant, redundant and irrelevant are
selected. The right-most part contains the prediction results using Näıve Bayes, Decision Tree,
and Logistic Regression. Highlighted results in bold indicate the best outcome for each FS
scheme.

Feature Selection Accuracy

Method # sel. Rel. # rel. # red. # irrel. success NB DT LR

BELIEF 3 1,2 2 1 0 0.63 0.3045 0.2902 0.2902

5 1-3 3 2 0 0.93 0.3045 0.8914 0.2645

BELIEF+mCR 3 1-3 3 0 0 1.00 0.3245 0.8914 0.2645

5 1-3 3 2 0 0.93 0.3045 0.8914 0.2645

mRMR 3 - 0 0 3 -0.11 0.6195 0.5160 0.6170

5 2,3 2 0 3 0.56 0.5795 0.4704 0.6295
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Table 7: Evaluation results for SD3. From left to right: the method name, the total number
of features selected, and which and how many relevant, redundant and irrelevant are selected.
The right-most part contains the prediction results using Näıve Bayes, Decision Tree, and
Logistic Regression. Highlighted results in bold indicate the best outcome for each FS scheme.
Rows with asterisk mean that a previous discretization phase is performed to enable NB
prediction.

Feature Selection Accuracy

Method # sel. # rel. # red. # irrel. success DT LR NB

BELIEF 6 1 5 0 0.17 0.5205 0.5171 -

20 2 8 10 0.33 0.4927 0.6344 -

BELIEF+mCR 6 1 1 4 0.17 0.5447 0.6033 -

20 2 7 11 0.33 0.4821 0.7053 -

mRMR 6 2 0 4 0.33 0.8815 0.8758 0.7831

20 4 3 13 0.67 0.6562 0.9423 0.7921

BELIEF * 6 2 4 0 0.33 0.5780 0.5080 0.1225

20 3 16 1 0.50 0.7073 0.7058 0.6470

BELIEF+mCR * 6 1 0 5 0.17 0.7240 0.7788 0.6796

20 4 10 6 0.67 0.6644 0.8006 0.6928

Table 8: Evaluation results for Madelon. From left to right: the method name, the total
number of features selected, and which and how many relevant, redundant and irrelevant are
selected. The right-most part contains the prediction results using Näıve Bayes, Decision Tree,
and Logistic Regression. Highlighted results in bold indicate the best outcome for each FS
scheme. Rows with asterisk mean that a previous discretization phase is performed to enable
NB prediction.

Feature Selection Accuracy

Method # sel. Rel. # rel. # red. # irrel. success DT LR NB

BELIEF 5 - 0 0 5 0.00 0.6890 0.6180 -

20 - 0 0 20 0.00 0.7664 0.6045 -

BELIEF+mCR 5 - 0 0 5 0.00 0.6890 0.6180 -

20 - 0 0 20 0.00 0.7953 0.6082 -

mRMR 5 1 1 0 4 0.20 0.6338 0.6083 0.6180

20 1-5 5 5 10 1.00 0.6742 0.6101 0.6074

BELIEF * 5 - 0 0 5 0.00 0.6337 0.5761 0.5761

20 1-2 2 0 18 0.40 0.6778 0.6128 0.6195

BELIEF+mCR * 5 - 0 0 5 0.00 0.6337 0.5761 0.5761

20 1-5 5 0 15 1.00 0.6732 0.6177 0.6058
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than the standard version. Indeed mCR is not only successful in redundant data
(> 50% leap in Parity-3+3), but also effective in redundancy-free problems (e.g.:
XOR data).

What it is clear is that mCR perfectly fits its role of redundancy regulator
as reflected in Tables 6, 7, and 8. From those tables we can notice the large
number of redundant features embraced by standard BELIEF, and how mCR
sharply downsizes this set. This fact is also reflected in the success formula,
where mCR still performs better.

Corral.2

XOR.1

Parity.2

Madelon.1

Madelon.2
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Figure 1: 10-fcv accuracy pairwise comparison BELIEF+mCR vs. BELIEF for several prob-
lems and selection schemes. Bars represent the difference between the best marks for each
configuration. Row names are composed of the dataset name plus a number (FS configuration,
1: smaller selection, 2: large selection).

4.3. BELIEF evaluation on large environments

Once tested the robustness of mCR in small environments, we move to test
its performance in large-scale scenarios. As a starting point, in previous sec-
tions we showed how mCR stands as a prominent alternative for small problems.
Henceforth we aim at proving that BELIEF stands in large-scale FS as a com-
petitive alternative when compared with the current state-of-the-art.

Starting from a small sampling rate, we provide fine-grained information
about the discriminative power of BELIEF in supervised learning. Table 9
shows F1 scores obtained by BELIEF, BELIEF+mCR and DmRMR in 1%
sampled. Note that with such small subgroup, BELIEF options are still able to
overcome or at least not to be surpassed by DmRMR. Only in kddb, DmRMR is

20



better than BELIEF but with a difference < 1%. This fact makes sense as high-
dimensional problems have always been a stumble for NN-based algorithms.
Conversely, a quantum leap can be noticed in ECBLD14 when applying the
tuple BELIEF + mCR.

Table 9: F1-score results after selection and prediction (sampling rate: 0.01, classifier: SVC).
In the first column, each block represents a dataset and different parameter configurations for
BELIEF. Each of the other columns stand for a single valid FS combination, mixing different
thresholds and algorithms. Beliefc indicates BELIEF + mCR. Best score by dataset and
threshold is highlighted in bold, the overall best score by dataset is underlined, and the best
BELIEF score is marked in italic.

Method/Config. mRMR Beliefc Belief mRMR Beliefc Belief mRMR Beliefc Belief
100 feat. 50 feat. 10 feat.

epsilon-k5-bs0.25-0 0.7910 0.6597 0.7190 0.7802 0.6175 0.6992 0.6961 0.5973 0.6331
epsilon-k5-bs0.1-0 0.7365 0.7491 0.6909 0.7194 0.6329 0.6647
epsilon-k3-bs0.25-0 0.6445 0.6761 0.6149 0.6487 0.5589 0.3338
epsilon-k3-bs0.1-0 0.6018 0.6625 0.5872 0.6525 0.5135 0.5052
epsilon-k10-bs0.25-0 0.7641 0.7956 0.7247 0.7778 0.6830 0.7050
epsilon-k10-bs0.1-0 0.7320 0.8027 0.7214 0.7910 0.6925 0.7067

baseline-0feat. 0.8976
ecbdl-k5-bs0.25-0 0.4541 0.9749 0.4599 0.4631 0.4729 0.4669 0.5047 0.6650 0.6802
ecbdl-k5-bs0.1-0 0.9749 0.4612 0.4761 0.4694 0.6643 0.6802
ecbdl-k3-bs0.25-0 0.4565 0.4606 0.4885 0.4787 0.6650 0.6803
ecbdl-k3-bs0.1-0 0.9749 0.4606 0.4756 0.4725 0.6651 0.6802
ecbdl-k10-bs0.25-0 0.4521 0.4583 0.4689 0.4709 0.6643 0.6802
ecbdl-k10-bs0.1-0 0.4494 0.4496 0.4675 0.4696 0.6643 0.6643
baseline-0feat. 0.4376
url-k5-bs0.25-0 0.9640 0.9611 0.9605 0.9591 0.9253 0.9263 0.9448 0.9270 0.9269
url-k5-bs0.1-0 0.9608 0.9603 0.9258 0.9393 0.9268 0.9274
url-k3-bs0.25-0 0.9610 0.9598 0.9399 0.9397 0.7016 0.5368
url-k3-bs0.1-0 0.9598 0.9603 0.9412 0.9414 0.5464 0.6869
url-k10-bs0.25-0 0.9605 0.9596 0.9270 0.9274 0.9268 0.9268
url-k10-bs0.1-0 0.9590 0.9600 0.9257 0.9276 0.9268 0.9268
baseline-0feat. 0.9876
kddb-k5-bs0.25-0 0.8413 0.8349 0.8349 0.8093 0.8327 0.8349 0.8349 0.8349 0.8349

kddb-k5-bs0.1-0 0.8343 0.8187 0.8327 0.8327 0.8349 0.8349

kddb-k3-bs0.25-0 0.8187 0.8349 0.8349 0.8327 0.8349 0.8349

kddb-k3-bs0.1-0 0.8349 0.8349 0.8327 0.8155 0.8349 0.8349

kddb-k10-bs0.25-0 0.8187 0.8187 0.8327 0.8349 0.8349 0.8349

kddb-k10-bs0.1-0 0.8349 0.8349 0.8327 0.8327 0.8349 0.8349

baseline-0feat. ?

Focusing on BELIEF versions, we can assert that BELIEF+mCR comes to
be more advantageous or similar in 3/4 datasets. Its poor outcomes in epsilon
may be caused by the high noisiness contained in this dataset. Additionally,
redundancy among input features in epsilon is negligible.

Table 10 presents similar accuracy results but relying on tree learning to
measure predictive power. Outcomes here seem not too illustrative since they
tend to reproduce the same behavior shown in Table 9, but with lower scores.

4.4. Sampling rate impact on BELIEF

In this section we inspect precision and runtime performance as sampling
rate augments, as well as, to analyze the possible negative impact of an ex-
cessively small rate. Figures 2 and 3 contain information about the impact of
sampling size on accuracy (F1-score). In Figure 2, we can observe the stability
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Table 10: F1-score results after selection and prediction phases (sampling rate: 0.01, clas-
sifier: DT). In the first column, each block represents a dataset and different parameter
configurations for BELIEF. Other columns mean a single combination, mixing different selec-
tion thresholds and algorithms. Best score by dataset and threshold is highlighted in bold,
overall best score by dataset is underlined, and the best BELIEF score is marked in italic.

Method/Config. mRMR Beliefc Belief mRMR Beliefc Belief mRMR Beliefc Belief-10
100 feat. 50 feat. 10 feat.

epsilon-k5-bs0.25-0 0.6616 0.6227 0.6516 0.6616 0.6081 0.6516 0.6545 0.6008 0.6269
epsilon-k5-bs0.1-0 0.6550 0.6595 0.6391 0.6595 0.6335 0.6455
epsilon-k3-bs0.25-0 0.6062 0.6386 0.5949 0.6341 0.5591 0.4994
epsilon-k3-bs0.1-0 0.5771 0.6332 0.5769 0.6297 0.5129 0.4982
epsilon-k10-bs0.25-0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
epsilon-k10-bs0.1-0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
baseline-0feat. 0.6616
ecbdl-k5-bs0.25-0 0.3864 0.4010 0.3481 0.3864 0.3994 0.3373 0.3225 0.4374 0.4732
ecbdl-k5-bs0.1-0 0.3577 0.4209 0.4328 0.4136 0.4366 0.4716
ecbdl-k3-bs0.25-0 0.3609 0.3511 0.4798 0.3373 0.4374 0.4779
ecbdl-k3-bs0.1-0 0.3978 0.3478 0.4327 0.3355 0.4373 0.4729
ecbdl-k10-bs0.25-0 0.4379 0.3608 0.4368 0.3566 0.4368 0.4716
ecbdl-k10-bs0.1-0 0.3800 0.4070 0.3458 0.4178 0.4388 0.4388
baseline-0feat. 0.3789
url-k5-bs0.25-0 0.9635 0.9573 0.9573 0.9586 0.9587 0.9424 0.9568 0.9375 0.9375
url-k5-bs0.1-0 0.9574 0.9574 0.9586 0.9425 0.9375 0.9375
url-k3-bs0.25-0 0.9573 0.9573 0.9490 0.9490 0.7671 0.8075
url-k3-bs0.1-0 0.9577 0.9577 0.9490 0.9490 0.8073 0.8055
url-k10-bs0.25-0 0.9573 0.9573 0.9428 0.9457 0.9375 0.9373
url-k10-bs0.1-0 0.9577 0.9577 0.9608 0.9425 0.9395 0.9395
baseline-0feat. ?
kddb-k5-bs0.25-0 0.8376 0.8349 0.8349 0.8372 0.8349 0.8349 0.8367 0.8349 0.8349
kddb-k5-bs0.1-0 0.8349 0.8349 0.8349 0.8349 0.8349 0.8349
kddb-k3-bs0.25-0 0.8349 0.8349 0.8349 0.8349 0.8349 0.8349
kddb-k3-bs0.1-0 0.8349 0.8349 0.8349 0.8349 0.8349 0.8349
kddb-k10-bs0.25-0 0.8349 0.8349 0.8349 0.8349 0.8349 0.8349
kddb-k10-bs0.1-0 0.8349 0.8349 0.8349 0.8349 0.8349 0.8349
baseline-0feat. ?
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of scores as sampling augments. According to the graph, only 1% of data is
enough to properly estimate weights in most of cases (except in epsilon). Time
measurements recorded in Figure 3 also confirm low rates in BELIEF provides
lower reaction times compared to DmRMR.
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Figure 2: Evolution of F1 measure as sampling rate is increased. For each dataset the most
accurate record is depicted. MRMR-B stands for DmRMR with 100 features selected.
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Figure 3: Evolution of runtime performance as sampling rate is increased. For each dataset the
most accurate record is depicted. MRMR-B stands for DmRMR with 100 features selected.

In case we rather focus on rapid solutions, Figures 4 and 5 depict empirical
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results for the most agile configurations in BELIEF and DmRMR. According to
these results, we can underpin BELIEF again as the most effective and efficient
alternative for low-rate scenarios. For 1% sampled data, BELIEF obtains sub-
stantial benefits with respect to DmRMR regarding time performance. Beyond
a higher accuracy, low-rate solutions plus offer faster response times than Dm-
RMR. Higher rates seems to be not interesting because of their high runtime
cost and lack of accuracy improvement.
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Figure 4: Evolution of F1 measure as sampling rate is increased. For each dataset the most
rapid record is depicted. MRMR-A stands for DmRMR with 10 features selected.

In order to study the impact of sampling over-reduction on feature weighting,
we have compared the precision results obtained by our smallest scheme (1%
of sampling) against those proposed in DiReliefF [40], with only 100 instances.
Results on both datasets show a clear drop on F1 score when using extremely
small rates, such as only 100 instances from datasets with millions. Then, we can
assert with some certainty proper sampling rates render as essential to obtain
fair estimations. A solution that allows scaling of sampling set is thus required.

5. Concluding Remarks

In this paper, we have presented BELIEF, a feature weighting algorithm
capable of accurately estimating feature importance in large samples –both in
number of features and examples–. With this new proposal we aimed at solving
the performance deficiencies shown by RELIEF and its distributed versions
when facing big datasets, concretely, large estimation samples. By restricting
network communication among partitions, and the scope of main computations
(moving from instance-wise to partition-wise) in RELIEF, we have managed to
create a proper distributed version able to naturally scale up as requested.

24



100

1000

10000

0.0 0.1 0.2 0.3 0.4 0.5
Sampling rate

T
im

e 
(s

)

dataset
ECBDL14
epsilon
kddb
url

type
MRMR−A
RELIEF−A

Figure 5: Evolution of runtime performance as sampling rate is increased. For each dataset
the most rapid record is depicted. MRMR-A stands for DmRMR with 10 features selected.
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lected (sparse and dense). And the selection number was bounded to the most demanding
configuration, namely, only 10 features.
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Aside from the fully-scalable model, we have addressed lack of redundancy
management techniques in RELIEF models by proposing a built-in redundancy
removal procedure that detects and eliminates duplicities in selections. Our
solution (mCR) relies on feature co-occurrences (collisions) already computed
to estimate strong dependencies among input features at barely no time cost.
Experiments performed on small data confirmed that no substantial difference
between schemes generated by mCR and other information-based models exists
beyond a higher cost imposed by the latter ones.

Extended tests comprising several real-world datasets –up to O(107) in-
stances and O(104) features– have asserted as well the relevance of BELIEF
in large environments. Results shed light about BELIEF’s predominance in
terms of runtime performance and precision of schemes when compared to al-
ternative models such as DiReliefF. As future work, we plan to incorporate
some mechanisms to further expedite neighbor searches in BELIEF. They will
be based on locality sensitivity hashing tables, or metric trees.
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