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A B S T R A C T

Nowadays the phenomenon of Big Data is overwhelming our capacity to extract relevant knowledge through
classical machine learning techniques. Discretization (as part of data reduction) is presented as a real solution to
reduce this complexity. However, standard discretizers are not designed to perform well with such amounts of
data. This paper proposes a distributed discretization algorithm for Big Data analytics based on evolutionary
optimization. After comparing with a distributed discretizer based on the Minimum Description Length
Principle, we have found that our solution yields more accurate and simpler solutions in reasonable time.

1. Introduction

Among all Data Mining tasks, Data Preprocessing [1,2] stands as
one of the most important steps in the knowledge discovery process. As
input data must be provided in a suitable structure and format for a
subsequent high-quality mining process, Data Preprocessing becomes
essential in most of data analytic problems. Preparation techniques aim
at cleaning negative factors present in current databases –missing,
noise, inconsistent and superfluous data–. Conversely, data reduction
family is applied to simplify data and their inherent complexity, while
maintaining their original structure. Discretization [3,4], as part of data
reduction, has received increasing attention in last years. It transforms
quantitative data into qualitative data by performing a non-overlapping
partitioning of continuous attributes, and then associating a set of
discrete values to the resulting partitions.

Although the Data Mining discipline has been successfully applied
for several years [5], in this new era of Big Datum [6,7], the capabilities
of traditional mining systems have been surpassed by the exponential
growth of databases. Learning from large-scale datasets has become a
labored or even impracticable task when classical algorithms are used.
As in standard mining, Big Data preprocessing [8] plays an essential
role in improving the quality of large-scale data. This importance can
be deemed even greater in Big Data scenario since large amounts of
data usually implies more noise. Novel scalable, and efficient discreti-
zers [4], developed on recent distributed paradigms and tools [9], are
thus required to face the Big Data discretization problem. Up to date,
only one distributed solution for Big Data discretization [4] has been
presented in the literature.

Data discretization can be deemed as an optimization problem,
where partial solutions can be coded via binary representation. Given
the previous problem, an evolutionary-based metaheuristic [10] can be
useful at dealing with binary-based optimization. Although quite
effective, evolutionary algorithms are known for being time-consuming
and hardly scalable, specially when large-scale problems are faced [11].
A distributed solution based on evolutionary heuristics would bring us
an scalable and effective solution for Big Data discretization [12].

Evolutionary algorithms (EA) have shown their usefulness on
several optimization-based learning problems, see the following over-
views for several mining contexts, such as: rule learning [13], evolu-
tionary fuzzy systems [14], clustering [15], or multi-objective learning
[16]. Recently, we can find novel evolutionary and bio-inspirited
approaches for learning, such as: data discretization [17], rule induc-
tion [18], feature selection [19], clustering [20], or diverse applications,
like face recognition [21].

In this paper we propose a novel design for a distributed multi-
variate discretizer for Apache Spark [22] based on an evolutionary
points selection scheme. Our approach, called Distributed Evolutionary
Multivariate Discretizer (DEMD), has been inspired by the EMD
discretizer [17]. EMD is an evolutionary-based discretizer with binary
representation and a wrapper fitness function. Although both algo-
rithms share some common aspects (like representation and fitness
function), DEMD goes beyond a simple parallelization, and offers an
approximative, scalable and resilient solution to deal with the Big Data
discretization problem. Alike EMD, in DEMD, partial solutions are
generated locally, and eventually fused to produce the final discretiza-
tion scheme. Up to our knowledge, our proposal is the first evolutionary

http://dx.doi.org/10.1016/j.swevo.2017.08.005
Received 28 December 2016; Received in revised form 19 April 2017; Accepted 19 August 2017

⁎ Corresponding author at: Department of Computer Science and Artificial Intelligence, CITIC-UGR, University of Granada, 18071 Granada, Spain.
E-mail addresses: sramirez@decsai.ugr.es (S. Ramírez-Gallego), salvagl@decsai.ugr.es (S. García), J.M.Benitez@decsai.ugr.es (J.M. Benítez), herrera@decsai.ugr.es (F. Herrera).

Swarm and Evolutionary Computation 38 (2018) 240–250

Available online 23 August 2017
2210-6502/ © 2017 Elsevier B.V. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/22106502
http://www.elsevier.com/locate/swevo
http://dx.doi.org/10.1016/j.swevo.2017.08.005
http://dx.doi.org/10.1016/j.swevo.2017.08.005
https://doi.org/10.1016/j.swevo.2017.08.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2017.08.005&domain=pdf


approach in dealing with the large-scale discretization problem.
In order to show the usefulness of our solution, a thorough

experimental evaluation has been performed using several huge
datasets (up to O (10 )7 instances and O (10 )4 features). A distributed
discretizer based on the Minimum Description Length Principle (called
DMDLP) [4] has also been included for comparison purposes.
Experiments on these real-world datasets have shown that DEMD
obtains more accurate and simpler discretization schemes than its
competitor.

The remainder of this paper is organized as follows. Section 2
briefly explains some concepts about Big Data, and the environment of
tools and paradigms around this phenomenon. Section 3 introduces the
discretization task, some related concepts, as well as a brief description
of EMD. Section 4 discusses the complexity problems faced, as well as
the solution adopted by our proposal. Section 5 describes the experi-
mental framework carried out, and the results derived from these
experiments. Lastly Section 6 gives the conclusions derived from this
work.

2. Big Data: concepts, paradigms and tools

In this section, the Big Data phenomenon is introduced through the
scheme of 5Vs. Here we also present the distributed frameworks,
paradigms and tools which have served to address Big Data problems
in a distributed manner.

Humongous amounts of information are stored in data centers now,
ready to be processed. The efficient extraction of valuable knowledge
from these datasets raises a considerable challenge for data scientists.
Gartner [23] introduced the popular concept of Big Data in 2001. In its
report, Gartner defines this concept as the conjunction of the 3Vs: high
volume, velocity and variety information that require a new large-scale
processing. This list was extended with 2 extra terms: veracity and
value.

One of the most relevant frameworks in Big Data analytics is the
MapReduce framework [24]. This framework, devised by Google in
2003, allows us to automatically process huge data by distributing the
complexity burden among a cluster of machines. Final users only have
to design their tasks specifying the Map and Reduce functions.
Partitioning and distributing of data, job scheduling or fault-tolerance
are responsibility of the platform.1

One of the most popular open-source implementation of
MapReduce is Apache Hadoop [25,26]. Despite of being well-used
and very popular, Hadoop seems not to work well with iterative and
online processes [27]. In general, it is not intended for those programs
that continuously reads data and need to keep them in memory.

The MapReduce model offers two primitives –Map and Reduce–,
which correspond with two execution stages in the whole process.
Firstly, the master node retrieves the dataset (split into several chunks)
from the distributed file system so that each node reads those data
chunks allocated in its local disk. Each node then starts one or more
Map threads to process the raw chunks. The result is a set of key-value
pairs (intermediate pairs), which are also stored in disk. After all Map
tasks have ended, the master node starts the Reduce phase by
distributing those pairs with coincident keys to the same node. Each
Reduce task combines those matching pairs to yield the final output.
Fig. 1 depicts a simplified scheme of MapReduce and its two main
functions.

Related to the Hadoop Ecosystem, Apache Spark [28,22] has
emerged as a new revolutionary tool capable of outperforming
Hadoop for certain cases (100x faster). This is possible due to the in-
memory primitives available in Spark. This platform allows users to
persist data into memory and to read them rapidly, making it suitable
for iterative and online jobs.

3. Discretization: theoretical background

In this section, the problem of discretization, as well as some
optimizations are presented. Additionally, a brief description of EMD is
also given.

3.1. Definitions

Discretization is a data preprocessing technique that generates
disjoint intervals from continuous features. The resulting intervals are
associated to a set of discrete values to yield nominal data. A complete
description and taxonomy of discretization algorithms can be found in
[3,4].

Given a dataset D with n examples, a set of features F, the subset of
continuous features FC F⊂ , and o target classes, a discretization
process would divide a continuous feature c into kc disjoint and
discrete intervals, yielding the following discretization scheme:

D d d d d d d= {[ , ], ( , ],…, ( , ]}c k k0 1 1 2 −1c c (1)

where d0 and dkc are the minimum and maximum value, respectively.
Note that all values in Dc are sorted in ascending order. Likewise,

CP d d d= { , ,…, }c k1 2 −1c (2)

is defined as the set of cut points of feature c, andCP denotes the whole
set of cut points for all the continuous features in D.

Optimal discretization can be considered as a NP-hard problem
[29], where the search space is basically composed by all the different
values (for all features) in the training set. To alleviate the subsequent
complexity, it can be considered a reduced subset of points, formed by
the boundary points among classes.

Let c has its values sorted in ascending order, and valc be a function
that returns the value for c, given an example in D. Given two examples
a b D, ∈ with different classes, such that val a val b( ) < ( )c c . If there is no
sample c D∈ such that val a val c val b( ) < ( ) < ( )c c c , a boundary point
can be defined as the half-point value between val a( )c and val b( )c . The
set of boundary points for c is denoted as BPc, whereas the complete set
as BP.

Boundary points has shown to form the optimal intervals for most
of the evaluation measures [30], thanks to that the previous definition
always search the maximum separability between classes. Additionally,
a reduced subset of points offers significant savings in complexity, as
shown in [17]. This fact is specially relevant in Big Data, where the
performance is a determining factor.

3.2. Evolutionary multivariate discretizer

An important contribution to the discretization field is EMD [17],
an evolutionary-based discretizer that uses a wrapper fitness function
to evaluate binary solutions. This approach goes beyond deterministic
algorithms, and offers the possibility of improving the discretization
schemes generated by tuning several parameters. EMD follows a

Fig. 1. Scheme of the MapReduce paradigm.

1 For a complete review of this model and other distributed models, please check [9].
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multivariate approach to leverage the existing dependencies among
different features.

EMD utilizes the operators and mechanisms defined in CHC [31] to
tackle the cut points selection problem. CHC is a well-known evolu-
tionary algorithm specially designed for binary optimization, which
looks for a proper balance between exploration and exploitation. Our
algorithm includes several features from CHC in order to achieve this
balance, such as: incest prevention (via mating threshold) or chromo-
some reboot.

EMD consists of two steps that are constantly repeated in each
iteration. Firstly, pairs of chromosomes are fused using a crossover
operation. Intermediate population is then randomly paired to gen-
erate new offspring. Afterwards a survival competition decides what is
the best solution from the set of parent and offspring. The result is a
new population which will be mixed and selected in further steps.

Like CHC, EMD implements HUX, a heterogeneous crossover
operation to recombine chromosomes. HUX is specially designed to
generate maximally distant offspring from two parents by exchanging
half of the different points according to the Hamming distance.
Regarding the mutation operator, EMD replaces it by a rebooting
process which randomly changes 35% of the bits in the best chromo-
some in order to create new templates. This reseeding process will be
applied whenever the population gets stuck for a number of evalua-
tions.

This discretizer uses a binary chromosome representation to
annotate the selection (1) or not-selection (0) of all the boundary
points in BP. There is therefore an unique correspondence between
each gene and each boundary point. Finally, all points marked as
selected in the best chromosome will be included in S.

In order to evaluate the different binary solutions (chromosomes),
EMD defines a wrapper fitness function that aggregates two factors: the
classification error on training and the number of cut points selected.
This function has showed more promising accuracy results and simpler
solutions than those based on inconsistency measures [32]. The
objective of this EA is the minimization of this function, which is
defined as follows:

Fitness P α P
BP

α Δ( ′) = · | ′|
| |

+ (1 − )·
(3)

where P′ is the subset of selected points, Δ the error obtained after
classifying the discretized data, and α a weight factor for these two
factors.

In EMD, the classification error is computed as the average mean
error yielded by two classifiers: Naïve Bayes [33] and an unpruned
version of C4.5 [34].

EMD also introduces a reduction mechanism to speed up the
convergence of our method, which is based on the reduction of the
chromosome size. In our solution, this is done by maintaining those
points selected more than a determined number of evaluations (the
most relevant ones). In each reduction phase, several points are
removed according to a counter that indicates the number of selections
by point.

This reduction mechanism fixes the long delays associated to the
application of EAs when facing huge problems. As any optimization
problem, the cut points selection problem offers multiple valid solu-
tions (local optima). It is thus convenient to reach some local optima in
order to avoid long executions.

4. Distributed evolutionary multivariate discretizer

This section explains the design of our distributed discretization
solution for Big Data. Our algorithm splits both the set of cut points
and instances into partitions, and evaluates them through a cross-
evaluation system. With this distributed scheme we maximize the
resource usage throughout the entire process. If a point is selected by
one of the evaluation processes, it counts as a single vote. All these

votes are aggregated to obtain the final score per point. Finally, the final
discretization scheme is obtained through a voting scheme.

Section 4.1 starts discussing the main concerns that affect our
distributed approach: a large number of instances and cut points. In
Section 4.2, the main procedure in charge of partitioning the instances
are feature, and aggregating the partial solutions is presented. Section
4.3 illustrates the process of computing boundary points. Section 4.4
exposes how the chromosomes are evaluated in a distributed manner
by using EMD.

4.1. Discussion about the DEMD's distributed design

This section presents the main problems that our proposal needs to
overcome to produce discretization schemes efficiently. The two
problems to consider are: a high number of cut points to evaluate,
and therefore, long chromosomes to evaluate; and a huge amount of
instances to use in this evaluation phase.

The first problem is related to the high complexity derived from EA
problems. In the cut points selection problem, discretizers are mainly
affected by the number of boundary points to evaluate (long chromo-
somes). In particular, this problem is influenced by two factors: the
number of instances and features present in the problem. Another
hidden factor that influences the complexity is the number of distinct
points present in each feature. If this value is high, the algorithm will
have to process a high number of boundary points.

In order to keep the multivariate philosophy and to alleviate the
complexity derived from these two problems, our distributed proposal
has introduced some major changes with respect to the sequential
version. The first change we propose is to divide the complete set of
features into partitions so that the evaluation of points is performed in
a parallel way. This modification has also demonstrated to maintain the
effectiveness of the original method.

For the second problem (high number of instances), we propose to
partition the set of instances into a set of equal-sized partitions. Each
data partition will serve to evaluate different parts of the chromosome.
Once the partitions have been evaluated following the EMD scheme
(Section 3.2), the subsequent partial solutions are aggregated through a
voting scheme (complete description in Section 4.4). This modification
has showed to work well with large datasets, even when the generated
schemes are approximative.

Regarding the evaluation, Naïve Bayes has been elected to evaluate
the candidate solutions in the fitness function because of its simplicity
and efficiency in its close-form expression [35] (linear order).
Nevertheless, users can introduce another classifier/s to customize
the distributed approach.

To implement our method, some extra primitives from Spark's API
have been used. Spark primitives implement more complex operations
than those proposed by MapReduce. Some of them are: mapPartitions,
broadcast, sortByKey, Map and reduceByKey.2

DEMD includes several user-defined input parameters, which are
described in Table 1.

4.2. Main discretization procedure

Procedure 1 explains the main procedure of our discretization
algorithm. Hereafter we will use the term partition to describe the data
partitions, and the term chunk to describe the feature partitions. This
procedure is in charge of distributing the initial cut points (computed
in Section 4.3) among the set of chunks. The partitions already created
are associated with these chunks so that each chunk is evaluated on the
instances contained in one or more partitions. After the parallel
selection process is performed (in Section 4.4), this procedure creates

2 For a complete description of Spark's operations, please refer to Spark's API: https://
spark.apache.org/docs/latest/api/scala/index.html.
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the final matrix of selected cut points.
The first step computes the boundary points BF( ) in a distributed

way using the function getBoundary (line 1, Section 4.3). Each tuple in
BF consists of a feature ID fid( ) and a list of points. Based on this
variable, DEMD creates FI (feature information), and BP (boundary
points per feature). All this information will serve us to create the
chromosome chunks.

Procedure 1. Main discretization procedure.

Input: D dataset
Input: M Feature indexes to discretize
Input: uf Multivariate user factor
Input: alp Alpha parameter
Input: ne Number of evaluations
Input: sr Sampling rate
Input: vp Percentage of selected points
Output: Cut points by feature

1: BF getBoundary D M← ( , )
2: BP FI← (); ← ();
3: for all fid l BF< , > ∈ do
4: BP fid l( ) =
5: FI add Feature fid l size. ( ( , . ))
6: end for
7: FI broadcast sortBySize FI← ( ( ))
8: BP broadcast BP← ( )
9: nbp totalSize BP← ( )
10: ds nbp D npartitions← / .
11: ms max FI size ds← ( (0). , )
12: df max uf ms ds← ( , / )
13: ncp nbpoints df ds← /( * )
14: windows makeGroups FI ncp← ( , )
15: CH ← ()
16: for all w windows∈ do
17: p shuffle w← ( )
18: for i i p size= 0 → < . do
19: CH i add p i( ). ( ( ))
20: end for
21: end for
22: CH broadcast CH← ( )
23: SD stratifiedSampling D sr← ( , )
24: SP select SD CH uf alp sr vp← ( , , , , , )
25: TH ← ()
26: for chid lf SP< , > ∈ do
27: ind chunk CH chid← 0; ← ( )
28: for feat chunk∈ do
29: for i i feat size= 0 → < . do
30: if lf i ind true( + )== then
31: point BP feat id i ind← ( . )( + )
32: TH feat id add point( . ). ( )
33: end if
34: end for
35: ind ind feat size← + .
36: end for
37: end for
38: return TH( )

The procedure divides the evaluation of cut points using subsets of
features (called chunks) (lines 2–13). To do that DEMD first sorts all
features by the number of boundary points contained in each one
(ascending order). Then, DEMD computes the number of chunks ncp( )

in which the entire list of boundary points will be divided. ncp is
computed using several variables which are related according to Eq.
(4).

ncp np max uf ms ds ds= /( ( , / )· ) (4)

where np is the total number of boundary points, ds the current
proportion of points by data partition, uf the split factor specified by
the user, and ms the maximum between the largest feature size and ds.

Usually each feature is contained in a single chunk, but it may
change in case the user specifies a greater value, or the largest feature
surpasses the default size since points belonging to the same feature
can not be separated. In the latter case, a finer-grained division will be
performed, which means more chunks. This scenario normally entails a
quicker evaluation, but a loss in effectiveness.

The evaluation procedure starts to distribute points between the
chunks CH( ) (lines 14-21). In each iteration, a group of nc features is
collected and randomly distributed among the chunks. The loop ends
when there is no feature to collect. This mechanism will enable a fairly
distribution of boundary points, without points from the same feature
in different chunks, and with a similar number of features per chunk.

Once the distribution of points is completed, a stratified sampling
process (by class) is performed on D (line 23). The resulting sample SD
is used to evaluate the boundary points in a distributed manner.
According to the multivariate factor (max uf ms ds( , / )), each partition
randomly selects as many chunks as indicated by these factor (usually
only one). Then, each partition is responsible of evaluating the points
contained in their associated chunks (line 24). The selection phase is
described in detail in Section 4.4.

Each selection process returns its aggregated partial solution (the
best chromosome per chunk), and saves the tuples (chunk ID, best
solution) in SP. All these partial results are then summarized using a
voting scheme, considering the threshold (vp). Finally, the main
procedure processes the binary vectors to obtain the final matrix of
cut points (TH ) (line 26-38). This procedure fetches the features in each
chunk, and its correspondent points. If a given point has been selected,
it is added to the final matrix. If not, this is omitted.

An illustrative scheme of the entire process is detailed in Fig. 2. In
this example, there are four features with different amounts of
boundary points (8, 5, 4,10). Boundary points are then uniformly
distributed into three chunks where features may be mixed, like in
chunkC1. Afterwards chromosome chunks are grouped with seven data
partitions following a correspondence table that relates chunks and
partitions according to the multivariate factor. Once local evaluation
threads have ended, partial discretization results (binary vectors) for
the same chromosome part are aggregated by summing votes. Most-
voted points in each chunk according to vp (proportion of points to
select) are selected, and adapted to create the global selection matrix.

Table 1
DEMD's parameters. For each parameter, name, description and range are shown.

Parameter Description Range

D Input dataset (RDD) –

M Feature indexes to discretize f[0, ]
uf Ratio between the number of feature chunks and the

number of data partitions
[1, ∞)

alp Weight factor for the fitness function [0, 1]
ne Number of chromosome evaluations to be performed in

each process
[100, ∞)

sr Percentage of instances used in evaluation [0, 1]
vp Percentage of points selected in each aggregation

process
[0, 1]

S. Ramírez-Gallego et al. Swarm and Evolutionary Computation 38 (2018) 240–250

243



4.3. Computing the boundary points

Procedure 2. Function to generate the boundary points
(getBoundary).

Input: D dataset
Input: M Feature indexes to discretize
Output: The set of boundary points (feature index, point value).

1: CB←
2: map s D∈
3: v zeros c← (| |)
4: ci classIndex v← ( )
5: v ci( ) ← 1
6: for all A M∈
7: EMIT A A s v< ( , ( )), >
8: end for
9: end map
10: D reduce CB sumVectors← ( , )
11: S sortByKey D← ( )
12: FP firstByPart S← ( )
13: BP←
14: map partitions PT S∈
15: la lp lq next PT<( , ), > ← ( )
16: for all a p q PT<( , ), > ∈ do
17: if a la< > then
18: EMIT la lp< , >
19: else if isBoundary q lq( , ) then
20: EMIT la p lp< , ( + )/2>
21: end if
22: la lp a p< , > ← < , >
23: end for
24: index getIndex PT← ( )
25: if index npartitions S< ( ) then
26: a p q FP index<( , ), > ← ( + 1)
27: if a la< > then
28: EMIT la lp< , >
29: else
30: EMIT la p lp< , ( + )/2>
31: end if
32: else
33: EMIT la lp< , >
34: end if
35: end map
36: return BP groupByKey( . ())

Procedure 2 getBoundary( ) describes the function that computes
border points in data. This procedure consists of three steps. Firstly,
the distinct points (D) in the dataset are calculated by removing
duplicated elements. Secondly, the resulting points are sorted (S) and
distributed by feature index so that all the points from the same feature
will not be separated. Finally, the boundary points BP( ) in each feature
are evaluated sequentially.

The procedure starts by launching a parallel process on each partition
(taking advantage of data locality) with the aim of computing the distinct
points CB( ) (lines 1-9). Once the points are sorted (D) and the first point
by partition is distributed FP( ), DEMD evaluates whether each points
belong to any border as follows (lines 13–36): for each point, it checks
whether the feature index is distinct from the index of the previous point;
if it is so, DEMD generates a tuple with the feature index of the last point
as key, and its correspondent value as value. By doing so, the last point
from the current feature is always kept as the last threshold. If there are
more points in this feature, the procedure evaluates whether the current

point accomplishes the boundary condition with respect to the previous
point. If it is so, this generates a tuple with the feature index as key, and
the midpoint between these two points as value.

The last point in each partition is considered as an special case
(lines 25–34). These points are compared with the first point in the
following partition (broadcasted). If the feature indexes are different,
the procedure emits a tuple with the last point. If not and the point is
boundary, DEMD emits a tuple with the midpoint between these two
points. Finally, all the tuples generated in each partition are joined into
a RDD of boundary points, which is returned to the main procedure.

The previous process is depicted in Fig. 3. In this figure we can see
three partitions with six different points. The points are sorted by key
(feature index and point value) to perform the evaluation. The first
point for each partition is sent to the following partition to perform the
evaluation of the last points. As result, three boundary points are
generated, some are midpoints and some are the last points in features.

4.4. Distributed cut points selection

Procedure 3 explains the distributed operations used to aggregate
the solutions generated by each local evaluation process, and to decide
the final discretization scheme. Note that local evaluation of points is
performed by launching a single instance of EMD on each data
partition (Section 3.2). This process consists of two steps: the first
one starts a selection process (map) on each pair chunk-partition and
aggregates the subsequent solutions to produce the final number of
votes. The second step is aimed at selecting the most voted points by
chunk according to the threshold vp( ) defined by the user.

Fig. 2. A simplified representation of the DEMD process. F represent the features, C the
chromosome chunks, P the dataset partitions to evaluate, and Pt the boundary points.
The selected points have been highlighted in bold.
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Procedure 3. Function to perform the evolutionary selection process
(select).

Input: SM Sampled boundary points
Input: CH Feature chunks
Input: uf Multivariate user factor
Input: alpha Alpha parameter (evolutionary process)
Input: ne Number of evaluations (evolutionary process)
Input: sr Sampling rate
Input: vp Percentage of selected points
Output: Cut points by feature

1: PO shuffle seq CH size← ( (0, . ))
2: R←
3: map partitions index DT SM< , > ∈
4: chid PO index CH size← ( % . )
5: C CH chid← ( )
6: npoints totalSize chunk← ( )
7: CP FD← (); ← ()
8: for i i chunk size= 0 → < . do
9: FD i DT i( ) ← ( )
10: CP i C i( ) ← ( )
11: end for
12: BI EMD FD CP alpha ne← ( , , , )
13: CO ← ()
14: for i i BI size= 0 → < . do
15: if BI i( )== 1 then
16: CO i( ) = 1
17: else
18: CO i( ) = 0
19: end if
20: end for
21: EMIT chid CO< , ( , 1)>
22: end map
23: CO R reduceByKey sum← . ( ())
24: SL←
25: map chid AC c CO< , ( , ) > ∈
26: S sort AC← ( )
27: ps AC size vp← . *
28: BA take S ps← ( , )
29: EMIT chid BA< , >
30: end map
31: return SL( )

Firstly, each chunk is associated with one or more data partitions
using PO, which is a table formed by tuples (chunk ID, data partition).
For each tuple, a map operation is started (lines 3–22). This map
operation starts by creating a data matrix with the instances contained
on each partition and those features present in the chunk. Afterwards,
the procedure executes an evaluation thread on each submatrix FD( ) in
order to evaluate the corresponding boundary points CP( ). As result,
the best chromosome (a binary vector) in the population is returned
BI( ).

The binary vector will be transformed into a numeric vector to
annotate number of selections (CO) (lines 13–22). The final result
emitted by the partition is a tuple with the identifier of the chunk as
key, and the vector count –number of times each point has been
selected– and a chunk count –maximum number of partitions in which
has been evaluated– as value. This procedure will indicate the selection
ratio for each point. The partial values generated above are aggregated
by reducing the tuples by key.

Secondly, the procedure starts a map operation (lines 25–30) to
select the most voted points by chunk SL( ). The procedure orders all the
points by number of votes, and selects in order as much points as

specified by vp. The result is a tuple with chunk ID as key, and the
selection vector as value. Finally, previous results will eventually be
transformed to a matrix of points in the main procedure.

4.5. Computational and communication complexity analysis

In this section we analyze the computational and communication
complexity for all procedures presented. Big O notation is used to
specify the upper limit for the run-time and communication cost of
each procedure.

• Boundary points (line 1 – Algorithm 2): complexity here is
determined by the computation of distinct points: O ( )D M

nc
| |·| | for

run-time, and O D M(| |·| |) for communication. nc represents the total
number of cores used to distribute the complexity burden.

• Selection process (line 24 – Algorithm 3): a single evolutionary
selection process is executed on each partition. The overall compu-
tational complexity is linear: O ne( · )D BP df

nc
| |·| |· , and it is mainly

bounded by Naive Bayes's complexity O D BP( (| |·| |)). The procedure
communicates O BP(| |) integer data.

• Main algorithm (Algorithm 1): all sequential operations here are
linear O BP( (| |)), as well as the communication processes between the
nodes and the master node O BP( (| |)).

Notice that, in most of cases, the number of boundary points to be
processed and communicated is much lower than the number of
original points according to the Table 6 (#Pt.). This fact allows us to
say that our algorithm can perform efficiently in many large-scale
problems.

5. Experimental framework and results

This section describes the experimental framework carried out and
analyzes the results derived from these experiments. The aim of these
experiments is to prove the benefit derived from using our discretiza-
tion solution. DMDLP, an distributed discretizer based on entropy
minimization, is included in the experiments for comparison purposes.

5.1. Datasets and methods

In these experiments, we have used four large-scale classification
datasets as benchmarks. The largest dataset in our framework is
ECBDL14. This dataset was used as benchmark at the international
conference GECCO-2014, in an classification competition for Big Data.
This consists of 32 million instances with a high imbalance ratio: 98%
of negative instances. To equalize both classes, the MapReduce version
of the Random OverSampling (ROS) technique [36] was used to
replicate the minority class (henceforth called ECBDL14R). This
version has been used in the experiments instead of the original one.

From the LibSVM dataset repository [37], the dataset epsilon has
been used as example of artificially created (and noisy) dataset with
many features and boundary points. The rest of datasets (higgs and
susy) have been taken from the UCI Machine Learning Repository [38].
susy is also an imbalanced problem with a ratio of 34%. All datasets
presented in this section are two-class problems.

Table 2 gives a short description of these datasets. For each one, the
number of examples for training and test (#Train Ex., #Test Ex.), the
total number of attributes (#Atts.), and the number of classes (#Cl) are
shown. In order to reduce the number of candidate points, all data has
been rounded up to four decimal places. It affects to problems like
higgs or epsilon where the number of decimal places is large enough.

Naïve Bayes has been elected as the reference classifier to assess the
quality of solutions. Namely, the distributed version of Naïve Bayes in
MLlib [39] have been chosen for the experiments. In Table 3, the
recommended parameters (according to their authors' specification)
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for this algorithm3 is shown.
The distributed discretizer DMDLP [4] has been included in the

experiment for comparison purposes. The parameter values for both
discretizers are also defined in Table 3. For some special cases, some
modifications to these parameters have been introduced, as explained
in Section 5.4. For all experiments, five executions for each pair
method-dataset have been launched to assess the quality of the
solutions generated by our non-deterministic algorithm. The details
of all runs are reported in Appendix A.

As evaluation measures, three standard metrics have been used to
assess the performance of the discretizers and the quality of the
subsequent solutions. The classification accuracy and the Area Under
Curve Receiver Operating Characteristic (AUC-ROC) have been used
for quality evaluation of test set. The overall discretization time has also
been used to measure the quickness of discretizers.

A cluster of machines of twenty computing nodes and a master
node was used to accomplish the experiments. All nodes hold the
following features: 2 processors x Intel Xeon CPU E5-2620, 6 cores per
processor, 2.00 GHz, 15 MB cache, QDR InfiniBand Network
(40 Gbps), 2 TB HDD, 64 GB RAM. The software installed on these
machines was the following: Hadoop 2.5.0-cdh5.3.1 from Cloudera's
open-source Apache Hadoop distribution,4 Apache Spark and MLlib
1.5.0, 460 cores (23 cores/node), 960 RAM GB (48 GB/node). The

source code of DEMD, designed to be integrated in MLlib, can be
downloaded from the correspondent author’ GitHub account.5

5.2. Analysis of classification performance

In this section, the classification performance of our discretizer is
evaluated against two classifiers and several huge datasets. The
discretization schemes generated by our solution and another alter-
native are used as a preprocessing step before the classification phase.

In Table 4, the average classification results on test after applying
Naïve Bayes are shown. Before classifying, the datasets have been
discretized in a preprocessing stage using both discretizers. As can be
seen in this table, the accuracy results yielded by our method outper-
forms those yielded by DMDLP in 4 out of 5 cases. This is specially
remarkable for ECBDL14R (the biggest dataset), with a difference of
several tenths. Notice that a slight improvement in accuracy in these
large-scale problems could imply a high number of instances is
correctly classified (1300 instances for susy).

Likewise, we have measured the impact of discretization in
classifying two imbalanced datasets: ECBDL14R and susy. Table 5
shows the AUC results on the test set. No remarkable difference
between both methods can be seen in this table, but only a slight
advantage for DMDLP.

Beyond the improvement in accuracy, our solution has shown to
yield simpler discretization schemes, with far lower number of points.
These simpler solutions, apart from being much more understandable
for experts, also have a positive impact on the learning process (from

Table 2
Summary description of datasets. For each one, the number of examples in training and
test (#Train Ex., #Test Ex.), the total number of features (#Atts.), and the number of
continuous features (#Cont.) are shown.

Dataset #Train Ex. #Test Ex. #Atts. #Cont.

ECBDL14R 65,003,913 2,897,917 630 539
higgs 8,800,000 2,200,000 28 28
susy 4,000,000 1,000,000 18 18
epsilon 400,000 100,000 2000 2000

Fig. 3. Distributed computation of boundary points. P represents the partitions. The points broadcasted have been highlighted in bold.

Table 3
Parameters of the algorithms used.

Method Parameters

DEMD α = 0.5, sr = 1.0, vp = {0.25, 0.5, 1.0}, ne = 10, 000
Distributed MDLP Max cut points = 15, max by partition = 100,000

Naïve Bayes Lambda = 1.0

3 https://spark.apache.org/docs/latest/api/scala/index.html.
4 http://www.cloudera.com/content/cloudera/en/documentation/cdh5/v5-0-0/

CDH5-homepage.html. 5 https://github.com/sramirez/.
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both time and accuracy points). This is essential in Big Data environ-
ments where efficiency and simplicity are a plus. Table 6 illustrates the
simplicity of these solutions. The results prove that the most accurate
solutions for DEMD are also those with a lower number of points,
except for susy.

5.3. Analysis of efficiency

Another aspect when evaluating discretizers is the efficiency in
generating the discretization schemes. This is specially important in
Big Data environments, where the quickness is an important factor.
This section presents a comparison between DEMD and DMDLP, in
terms of time used to obtain the discretization model.

Table 7 illustrates this comparison by presenting the average time
results for both algorithms. For all cases, DMDLP performs much
faster than our method due to its greedy iterative nature. Nevertheless,
our solution offers competitive results. All of them far below a limit of
one hour, which are quite reasonable in Big Data analytics.

5.4. Case study: explosive growth of chromosomes and use of
sampling

An overwhelming number of candidate points and instances to
evaluate are the two most important problems when dealing with large-

scale datasets and EAs. This section aims at showing how our approach
can be tuned to deal with these problems, quite common in some big
datasets.

The number of candidates points to be evaluated straightly
determines the chromosome size that has to be managed by the EA.
In classical learning problems, this size can range to 15,000, as we
verified in a our study [17] where a long list of UCI datasets was
analyzed. Big datasets though presents a complexity (number of points)
much higher than presented in small/medium datasets, as shown in
Table 8. Despite some preprocessing stage has been applied to these
datasets (as presented in 5.1), the chromosome size can go to several
millions of genes. This is the case of epsilon, in which the EA starts with
3,013,813 points to evaluate.

Table 8 shows the value of the factors and variables which are
implied in the data partitioning and the creation of point chunks. It is
specially remarkable the epsilon case where the number of chunks
corresponds with the number of data partitions (460). This case
represents the simplest case of voting so that all chunks will be
evaluated by a single data partition, which implies a clear degradation
on the overall performance of the discretizer. In the experiments, the
multivariate factor variable uf was changed for epsilon in order to cope
with this problem (marked with an asterisk in the table). uf was then
established to 30, a similar value to that present in susy (the closest
problem in number of points to epsilon).

EAs are also affected by the sample size. In our case, the wrapper
classifier used in our EA needs to evaluate each solution using the
complete set of instances. Even after partitioning the points into
chunks, the size of chromosomes remains quite complex for the fitness
evaluation. In order to make feasible this evaluation for big datasets
(like ECBDL14R), some simplification techniques could be applied to
alleviate this complexity. One of them is the stratified sampling of
instances. In our algorithm, this technique is applied just after
computing the candidate points so as to only use this sample to
evaluate solutions.

According to the previous idea, a stratified sampling was applied on
ECBDL14R, the biggest dataset in terms of number of instances. The

Table 4
Classification test accuracy by discretizer and dataset.

Method ECBDL14R higgs epsilon susy

DEMD - 0.25 Avg 0.6912 0.5960 0.6734 0.7133
Std-Dev 0.0127 0.0131 0.0106 0.0077

DEMD - 0.5 Avg 0.7215 0.5680 0.6752 0.7175
Std-Dev 0.0141 0.0256 0.0098 0.0102

DEMD - 1.0 Avg 0.7500 0.5630 0.6718 0.7406
Std-Dev 0.0107 0.0261 0.0185 0.0033

DMDLP Avg 0.7272 0.5933 0.7047 0.7393
Std-Dev 0.00 0.00 0.00 0.00

Table 5
Test AUC by discretizer and dataset.

Method ECBDL14R susy

DEMD - 0.25 Avg 0.5113 0.7006
Std-Dev 0.0007 0.0076

DEMD - 0.5 Avg 0.5128 0.7048
Std-Dev 0.0007 0.0060

DEMD - 1.0 Avg 0.5143 0.7157
Std-Dev 0.0006 0.0032

DMDLP Avg 0.5131 0.7126
Std-Dev 0.00 0.00

Table 6
Number of cut points generated by discretizer and dataset. The best solution for each
dataset according to Naïve Bayes is highlighted in bold, whereas the best one for DEMD
is highlighted in italic.

Method ECBDL14R higgs epsilon susy

DEMD - 0.25 210 248 240 247
DEMD - 0.5 462 496 495 494
DEMD - 1.0 959 1000 990 988

DMDLP 8624 410 1718 267

Table 7
Discretization time by discretizer and dataset (in seconds).

Method ECBDL14R higgs epsilon susy

DEMD - 0.25 Avg 1178.70 733.26 1850.80 268.84
Std-Dev 25.66 60.54 15.95 3.42

DEMD - 0.5 Avg 1181.42 771.75 1858.94 271.20
Std-Dev 18.23 74.46 13.21 7.23

DEMD - 1.0 Avg 1169.80 764.68 1861.83 271.22
Std-Dev 20.97 51.01 22.92 6.26

DMDLP Avg 975.80 36.01 117.44 23.45
Std-Dev 0.00 0.00 0.00 0.00

Table 8
Information derived from data and chromosome partitioning tasks. For each dataset, the
original chromosome size (#Pt.), the computed multivariate factor (Mvf.), the maximum
feature size (Mfs.), the final chunk size (Cs.), and the number chunks generated (#Ch.)
are shown.

Dataset #Pt. Mvf. Mfs. Cs. #Ch.

ECBDL14R 41,937 10.82 985 985 42
higgs 514,524 52,96 59,214 59,214 8
susy 573,792 33.71 42,046 42,046 13
epsilon 3,013,813 1.00 2555 2555 460

epsilon* 3,013,813 30.00 76,650 76,650 15

* Epsilon without uf multivariate factor set to 30.

S. Ramírez-Gallego et al. Swarm and Evolutionary Computation 38 (2018) 240–250

247



sampling rate sr was then established to 0.1 in order to equalize the
performance of our solutions for all datasets used (see Table 7).
Furthermore, the accuracy results confirms that even using a reduced
sample of instances, there is a considerable improvement in classifica-
tion results.

6. Conclusions

In this paper, we have presented DEMD, a distributed multivariate
discretization algorithm for Big Data based on evolutionary optimiza-
tion under Apache Spark. Our solution is aimed at optimizing the cut
points selection problem by selecting accurate and simple solutions. In
this version, a new system of cross-evaluation between partitions of
instances and points has been introduced. Despite its non-determinis-
tic nature, this kind of evaluation offers promising discretization
schemes.

The experimental results obtained on big datasets (up to O (10 )7

instances and O (10 )4 features) have shown the improvement on

accuracy and simplicity when using DEMD. Our approach also allows
to tune the simplicity/accuracy rate of the generated solutions using
several parameters.

Our future work will concentrate on showing that evolutionary
computation can also be useful in dealing with other Big Data
preprocessing tasks [12], such as feature or instance selection. We will
also envision that our approach can be adapted to the streaming
environment where discretization schemes evolve over time, and
concept drifts might affect them [40].
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Appendix A. Detailed classification results on test

In this section, we present the detailed results (by execution) derived from test classification. Tables A.9, A.10, A.11, and A.12 show the acurracy
results for all datasets, whereas Tables A.13 and A.14 show the results on AUC for the two imbalanced problems used in the experiments
(ECBDL14R and susy).

Table A.9
Test accuracy obtained for ECBDL14R.

Method - vp Ex. #1 Ex. #2 Ex. #3 Ex. #4 Ex. #5 Avg Std-Dev

DEMD -
0.25

0.6923 0.696 0.6832 0.6757 0.7089 0.6912 0.0127

DEMD - 0.5 0.7172 0.7262 0.7434 0.7068 0.7137 0.7215 0.0141
DEMD - 1.0 0.7456 0.7619 0.7483 0.7587 0.7353 0.7500 0.0107

DMDLP 0.7272 – – – – 0.7272 0.0000

Table A.10
Test accuracy obtained for higgs.

Method - vp Ex. #1 Ex. #2 Ex. #3 Ex. #4 Ex. #5 Avg Std-Dev

DEMD -
0.25

0.6172 0.587 0.5926 0.5844 0.5987 0.5960 0.0131

DEMD - 0.5 0.5741 0.5891 0.5614 0.5884 0.5271 0.5680 0.0256
DEMD - 1.0 0.5249 0.5507 0.5705 0.5927 0.5762 0.5630 0.0261

DMDLP 0.5933 – – – – 0.5933 0.0000

Table A.11
Test accuracy obtained for epsilon.

Method - vp Ex. #1 Ex. #2 Ex. #3 Ex. #4 Ex. #5 Avg Std-Dev

DEMD -
0.25

0.6599 0.6871 0.6668 0.6737 0.6797 0.6734 0.0106

DEMD - 0.5 0.6679 0.6646 0.6837 0.6728 0.6870 0.6752 0.0098
DEMD - 1.0 0.6403 0.6839 0.681 0.6838 0.6698 0.6718 0.0185

DMDLP 0.7047 – – – – 0.7047 0.0000
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Table A.12
Test accuracy obtained for susy.

Method - vp Ex. #1 Ex. #2 Ex. #3 Ex. #4 Ex. #5 Avg Std-Dev

DEMD -
0.25

0.7188 0.7160 0.7004 0.7121 0.7192 0.7133 0.0077

DEMD - 0.5 0.7322 0.7234 0.7086 0.7086 0.7147 0.7175 0.0102
DEMD - 1.0 0.7413 0.7445 0.7406 0.7354 0.7411 0.7406 0.0033

DMDLP 0.7393 – – – – 0.7393 0.0000

Table A.13
Test AUC obtained for ECBDL14R.

Method - vp Ex. #1 Ex. #2 Ex. #3 Ex. #4 Ex. #5 Avg Std-Dev

DEMD -
0.25

0,5112 0,5118 0,5109 0,5103 0,5121 0,5113 0,0007

DEMD - 0.5 0,5125 0,513 0,5139 0,5122 0,5122 0,5128 0,0007
DEMD - 1.0 0,5142 0,515 0,5146 0,5143 0,5133 0,5143 0,0006

DMDLP 0.5131 – – – – 0.5131 0.0000

Table A.14
Test AUC obtained for susy.

Method - vp Ex. #1 Ex. #2 Ex. #3 Ex. #4 Ex. #5 Avg Std-Dev

DEMD -
0.25

0,7072 0.7068 0.6892 0.7028 0.6968 0.7006 0.0076

DEMD - 0.5 0.7110 0.7065 0.6954 0.7032 0.7081 0.7048 0.0060
DEMD - 1.0 0.7152 0.7212 0.7128 0.7148 0.7144 0.7157 0.0032

DMDLP 0.7126 – – – – 0.7126 0.0000

S. Ramírez-Gallego et al. Swarm and Evolutionary Computation 38 (2018) 240–250

249

http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref1
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref1
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref2
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref2
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref3
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref3
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref3
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref4
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref4
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref4
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref4
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref5
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref6
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref6
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref6
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref7
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref7
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref8
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref8
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref9
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref9
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref9
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref9
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref10
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref10
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref10
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref11
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref11
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref12
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref12
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref12
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref13
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref14
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref14
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref15
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref15
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref15
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref16
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref16
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref16
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref17
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref17
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref18
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref18
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref18
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref19
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref19
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref19
http://dx.doi.org/10.1016/j.swevo.2016.07.001
http://dx.doi.org/10.1016/j.swevo.2016.07.001
https://spark.apache.org/
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref21
http://hadoop.apache.org/
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref22
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref22
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref23
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref23


[30] T. Elomaa, J. Rousu, General and efficient multisplitting of numerical attributes,
Mach. Learn. 36 (1999) 201–244.

[31] L.J. Eshelman, The CHC adaptive search algorithm: how to have safe search when
engaging in nontraditional genetic recombination, in: FOGA, 1990, pp. 265–283.

[32] M. Dash, H. Liu, Consistency-based search in feature selection, Artif. Intell. 151 (1–
2) (2003) 155–176.

[33] K.J. Cios, W. Pedrycz, R.W. Swiniarski, L.A. Kurgan, Data Mining: A Knowledge
Discovery Approach, Springer, 2007.

[34] J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers
Inc, 1993.

[35] S.J. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 2nd ed., Pearson
Education, 2003.

[36] S. Río, V. López, J. Benítez, F. Herrera, On the use of mapreduce for imbalanced big

data using random forest, Inf. Sci. 285 (2014) 112–137.
[37] C.-C. Chang, C.-J. Lin, LIBSVM: a library for support vector machines, ACM Trans.

Intell. Syst. Technol. 2 (2011) 27:1–27:27 (datasets available at 〈http://www.csie.
ntu.edu.tw/cjlin/libsvmtools/datasets/〉).

[38] K. Bache, M. Lichman, UCI machine learning repository, 2013. 〈http://archive.ics.
uci.edu/ml〉.

[39] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman,
D. Tsai, M. Amde, S. Owen, D. Xin, R. Xin, M.J. Franklin, R. Zadeh, M. Zaharia,
A. Talwalkar, Mllib: machine learning in apache spark, J. Mach. Learn. Res. 17 (34)
(2016) 1–7.

[40] S. Ramírez-Gallego, B. Krawczyk, S. García, M. Woźniak, F. Herrera, A survey on
data preprocessing for data stream mining: current status and future directions,
Neurocomputing 239 (2017) 39–57.

S. Ramírez-Gallego et al. Swarm and Evolutionary Computation 38 (2018) 240–250

250

http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref24
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref24
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref25
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref25
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref26
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref26
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref27
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref27
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref28
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref28
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref29
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref29
http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref31
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref31
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref31
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref31
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref32
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref32
http://refhub.elsevier.com/S2210-6502(16)30572-7/sbref32

	A distributed evolutionary multivariate discretizer for Big Data processing on Apache Spark
	Introduction
	Big Data: concepts, paradigms and tools
	Discretization: theoretical background
	Definitions
	Evolutionary multivariate discretizer

	Distributed evolutionary multivariate discretizer
	Discussion about the DEMD's distributed design
	Main discretization procedure
	Computing the boundary points
	Distributed cut points selection
	Computational and communication complexity analysis

	Experimental framework and results
	Datasets and methods
	Analysis of classification performance
	Analysis of efficiency
	Case study: explosive growth of chromosomes and use of sampling

	Conclusions
	Acknowledgements
	Detailed classification results on test
	References




