
Neurocomputing 239 (2017) 39–57

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

A survey on data preprocessing for data stream mining: Current status

and future directions

Sergio Ramírez-Gallego

a , ∗, Bartosz Krawczyk

b , Salvador García

a , Michał Wo ́zniak

c ,
Francisco Herrera

a , d

a Department of Computer Science and Artificial Intelligence, CITIC-UGR, University of Granada, Granada 18071, Spain
b Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
c Department of Systems and Computer Networks, Wrocław University of Science and Technology, Wyb. Wyspia ́nskiego 27, Wrocław 50-370, Poland
d Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia

a r t i c l e i n f o

Article history:

Received 28 December 2016

Revised 31 January 2017

Accepted 31 January 2017

Available online 14 February 2017

Communicated by Zidong Wang

Keywords:

Data mining

Data stream

Concept drift

Data preprocessing

Data reduction

Feature selection

Instance selection

Data discretization

Online learning

a b s t r a c t

Data preprocessing and reduction have become essential techniques in current knowledge discovery sce-

narios, dominated by increasingly large datasets. These methods aim at reducing the complexity inherent

to real-world datasets, so that they can be easily processed by current data mining solutions. Advan-

tages of such approaches include, among others, a faster and more precise learning process, and more

understandable structure of raw data. However, in the context of data preprocessing techniques for data

streams have a long road ahead of them, despite online learning is growing in importance thanks to the

development of Internet and technologies for massive data collection. Throughout this survey, we sum-

marize, categorize and analyze those contributions on data preprocessing that cope with streaming data.

This work also takes into account the existing relationships between the different families of methods

(feature and instance selection, and discretization). To enrich our study, we conduct thorough experi-

ments using the most relevant contributions and present an analysis of their predictive performance,

reduction rates, computational time, and memory usage. Finally, we offer general advices about existing

data stream preprocessing algorithms, as well as discuss emerging future challenges to be faced in the

domain of data stream preprocessing.

© 2017 Elsevier B.V. All rights reserved.

1

k

s

v

c

i

r

t

T

n

m

f

b

m

i

s

c

f

t

a

s

f

n

u

a

m

c

a

h

0

. Introduction

Data preprocessing [1,2] is one of the major phases within the

nowledge discovery process. Despite being less known than other

teps like data mining, data preprocessing actually very often in-

olves more effort and time within the entire data analysis pro-

ess (> 50% of total effort) [3] . Raw data usually comes with many

mperfections such as inconsistencies, missing values, noise and/or

edundancies. Performance of subsequent learning algorithms will

hus be undermined if they are presented with low-quality data.

hus by conducting proper preprocessing steps we are able to sig-

ificantly influence the quality and reliability of subsequent auto-

atic discoveries and decisions.

Data preparation, as part of preprocessing [1] , is aimed at trans-

orming raw input into high-quality one that properly fits the min-
∗ Corresponding author.

E-mail addresses: sramirez@decsai.ugr.es (S. Ramírez-Gallego),

krawczyk@vcu.edu (B. Krawczyk), salvagl@decsai.ugr.es (S. García),

ichal.wozniak@pwr.edu.pl (M. Wo ́zniak), herrera@decsai.ugr.es (F. Herrera).

o

v

i

a

ttp://dx.doi.org/10.1016/j.neucom.2017.01.078

925-2312/© 2017 Elsevier B.V. All rights reserved.
ng process to follow. Preparation is considered as a mandatory

tep and it includes techniques such as integration, normalization,

leaning and transformation.

Presently, the amount generated data is growing exponentially

ollowing the emergence of Big Data phenomenon [4,5] . Con-

emporary datasets grow in three dimensions –features, examples

nd cardinality– making complexity reduction a mandatory step if

tandard algorithms are to be used. Data reduction techniques per-

orm this simplification by selecting and deleting redundant and

oisy features and/or instances, or by discretizing complex contin-

ous feature spaces. This allows to maintain the original structure

nd meaning of the input, but at the same time obtaining a much

ore manageable size. Faster training and improved generalization

apabilities of learning algorithms, as well as better understand-

bility and interpretability of results, are among the many benefits

f data reduction.

With the advent of Big Data comes not only an increase in the

olume of data, but also the notion of its velocity. In many emerg-

ng real-world problems we cannot assume that we will deal with

 static set of instances. Instead, they may arrive continuously,

http://dx.doi.org/10.1016/j.neucom.2017.01.078
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2017.01.078&domain=pdf
mailto:sramirez@decsai.ugr.es
mailto:bkrawczyk@vcu.edu
mailto:salvagl@decsai.ugr.es
mailto:michal.wozniak@pwr.edu.pl
mailto:herrera@decsai.ugr.es
http://dx.doi.org/10.1016/j.neucom.2017.01.078

40 S. Ramírez-Gallego et al. / Neurocomputing 239 (2017) 39–57

2

o

c

c

e

{

s

c

i

o

c

a

a

a

t

i

a

d

a

w

s

leading to a potentially unbounded and ever-growing dataset. It

will expand itself over time and new instances will arrive continu-

ously in batches or one by one. Such problems are known as data

streams [6] and pose many new challenges to data mining meth-

ods. One must be able to constantly update the learning algorithm

with new data, to work within time-constraints connected with

the speed of arrival of instances, and to deal with memory limi-

tations. Additionally, data streams may be non-stationary, leading

to occurrences of the phenomenon called concept drift , where the

statistical characteristics of the incoming data may change over the

time. Thus, learning algorithms should take this into consideration

and have adaptation skills that allow for online learning from new

instances, but also for quick changes of underlying decision mech-

anisms [7] .

Despite the importance of data reduction, not many proposals

in this domain may be found in the literature for online learning

from data streams [8] . Most of methods are just incremental algo-

rithms, originally designed to manage finite datasets. Direct adap-

tation of static reduction techniques is not straightforward since

most of techniques assume the whole training set is available from

the beginning and properties of data do not change over time:

• Most of static instance selectors require multiple passes over

data, at the same time being mainly based on time-consuming

neighbor searches that makes them useless for handling high-

speed data streams [1] .

• On the contrary, feature selection techniques are easily adapt-

able to online scenarios. Yet, they suffer from other problems

such as concept evolution or dynamic [9] and drifting [10] fea-

ture space.

• Online supervised discretization methods also remain fairly un-

explored. Most of standard solutions require several iterations

of sharp adjustments before getting a fully operating solu-

tion [11] .

Therefore, further development of data pre-processing tech-

niques for data stream environments is thus a major concern for

practitioners and scientists in data mining areas.

This survey aims at a thorough enumeration, classification, and

analysis of existing contributions for data stream preprocessing. Al-

though there exist previous studies that have performed a coarse-

grained analysis on some tasks individually (e.g., feature selection

or instance selection) [12,13] , this work is a first deep overview of

advances in this filed, additionally outlining vital future challenges

that need to be addressed to ensure meaningful progress and de-

velopment of novel methods.

In addition to discussing the literature in preprocessing meth-

ods for mining data streams, we propose a thorough experimental

study to further enrich this survey. We have analyzed predictive,

reduction, time and memory performance of selected most rele-

vant algorithms in this field. Additionally, nonparametric statisti-

cal tests are used to give support to the final conclusions. The dis-

cussed experimental framework involves a total of 20 datasets and

10 reduction methods: three feature selectors, three discretizers,

and four instance selectors.

The structure of this work is as follows. First, we present related

concepts such as: data streaming and concept drift (Section 2), and

data reduction (Section 3). Then online reduction contributions are

grouped by task, and described in Section 4 . To assess performance

and usefulness of methods, a thorough experimental framework is

proposed in Section 5 , also grouped by task. Section 6 summarizes

the lessons learned from this survey and experimental study, and

discusses open challenges in data preprocessing for data stream

mining, while Section 7 concludes this work.
. Data streams and concept drift

Data stream is a potentially unbounded and ordered sequence

f instances that arrive over time [14] . Therefore, it imposes spe-

ific constraints on the learning system that cannot be fulfilled by

anonical algorithms from this domain. Let us list the main differ-

nces between static and streaming scenarios:

• instances are not given beforehand, but become available se-

quentially (one by one) or in the form of data chunks (block by

block) as the stream progresses;

• instances may arrive rapidly and with various time intervals be-

tween each other;

• streams are of potentially infinite size, thus it is impossible to

store all of incoming data in the memory;

• each instance may be only accessed a limited number of times

(in specific cases only once) and then discarded to limit the

memory and storage space usage;

• instances must be processed within a limited amount of time

to offer real-time responsiveness and avoid data queuing;

• access to true class labels is limited due to high cost of label

query for each incoming instance;

• access to the true labels may be delayed as well, in many cases

they are available after a long period, i.e., for credit approval

could be 2–3 years;

• statistical characteristics of instances arriving from the stream

may be subject to changes over time.

Let us assume that our stream consists of a set of states S =
S 1 , S 2 , . . . , S n }, where S i is generated by a distribution D i . By a

tationary data stream we will consider a sequence of instances

haracterized by a transition S j → S j+1 , where D j = D j+1 . However,

n most modern real-life problems the nature of data may evolve

ver time due to various conditions. This phenomenon is known as

oncept drift [7,15] and may be defined as changes in distributions

nd definitions of learned concepts over time. Presence of drift can

ffect the underlying properties of classes that the learning system

ims to discover, thus reducing the relevance of used classifier as

he change progresses. At some point the deterioration of the qual-

ty of used model may be too significant to further consider it as

 meaningful component. Therefore, methods for handling drifts in

ata streams are of crucial importance to this area of research.

Let us now present shortly a taxonomy of concept drift. There

re two main aspects that must be taken under consideration

hen analyzing the nature of changes taking place in the current

tate of any data stream:

• Influence on the learned classification boundaries - here we

distinguish two types of concept drift. A real concept drift af-

fects the decision boundaries (posterior probabilities) and may

impact unconditional probability density function, thus poses

a threat to the learning system. A virtual concept drift does

not impact the decision boundaries (posterior probabilities),

but affect the conditional probability density functions, thus

not influencing the currently used learning models. However,

it should still be detected. Visualization of these drift types is

presented in Fig. 1 .

• Types of change - here we may distinguish three main types

of concept drift taking into consideration its rapidness. Sudden

concept drift is characterized by S j being rapidly replaced by

S j+1 , where D j � = D j+1 . Gradual concept drift can be considered

as a transition phase where examples in S j+1 are generated by

a mixture of D j and D j+1 with their varying proportions. Incre-

mental concept drift has a much slower ratio of changes, where

the difference between D j and D j+1 is not so significant, usually

not statistically significant.

• We may also face with so-called Recurring concept drift,

what means that a concept from k th previous iteration may

S. Ramírez-Gallego et al. / Neurocomputing 239 (2017) 39–57 41

Fig. 1. Two main types of concept drift with respect to their influence over decision boundaries.

Fig. 2. Six types of drifts with respect to the ratio of changes. Graphs show transitions between the concepts along during the data stream progress.

i

l

n

a

c

m

O

c

i

d

reappear D j+1 = D j−k and it may happen once or periodically.

Blips , also known as outliers which should be ignored as the

change it represents is random [16] . Noise , which represents

insignificant fluctuations of the concept and should be filtered

out [17] . Mixed concept drift is a hybrid phenomenon, where

more than a single type of concept drift may appear during the

stream mining process. One should note that in real-life sce-

narios types of changes to appear are unknown beforehand and

must be determined during the stream processing. Visualization

of these types of drifts are presented in Fig. 2 .

• Minku et al. [18] proposed severity criterion which allows to

distinguish between local and global drift. The local drifts

mean that changes affects only the small region of the feature

space, while global drift affects the overall feature space, what

cause that it is easier detected than the local one [19] . Addition-

ally, we may also face with so-called ”feature drift” [10] , where

the changes affect only selected attributes.

• Unfortunately, in real classification tasks concept drift may ap-

pear as a mixture of mentioned above changes.

As mentioned before, managing concept drift is a crucial issue

n learning from data streams. Here we may use on of three so-

utions: (a) retrain classification system from scratch every time a

ew instance or chunk becomes available; (b) detecting changes
nd retraining classifier only when the degree of changes has been

onsidered as significant enough; and (c) using adaptive learning

ethod that can follow the shifts and drifts in stream on its own.

bviously, the first approach is characterized by an unacceptable

omputational cost and therefore two remaining solutions are used

n this field.

Let us now discuss four main approaches to efficiently tackling

rifting data streams:

• Concept drift detectors are external tools used together with

the classification module. They measure various properties of

data stream, such as standard deviation [20] , predictive error

[21] , instance distribution [22] , or stability [23] . Any changes

in these properties are attributed to the potential presence of

drift and thus allow to monitor the continuous progress of

data stream. Most of drift detectors work in a two-stage set-

ting. A warning signal is emitted when the changes start to oc-

cur, being a single to the learning system that a new classifier

should be trained on the most recent instances. A detection sig-

nal informs the learning system that current degree of changes

is severe and the old classifier should be replaced by a new

one. This solution is also known as explicit drift handling. One

should notice that ensembles of detectors start to attract the

42 S. Ramírez-Gallego et al. / Neurocomputing 239 (2017) 39–57

e

o

c

d

r

d

r

m

f

c

m

s

3

m

t

c

c

c

t
attention of research community, although there is still much

work needed to be done in this area [24,25] .

• Sliding windows assume that we keep a buffer of fixed size

containing most recent examples [26] . They are used for the

classification purposes and then discarded when new instances

become available. This allows us to keep a track on the progress

of data stream by storing its current state in the memory [27] .

This is realized either by cutting-off oldest instances or weight-

ing them dynamically according to their relevance [28] . How-

ever, the size of the window has a crucial impact on its per-

formance. A small window will be able to adjust to small and

rapid changes, but may lose the general context of the analyzed

problem and be prone to overfitting. A large window can effi-

ciently store more information, but may contain instances orig-

inating from different concepts. To solve this issue recent stud-

ies focus on dynamically adapting size [29] or using multiple

windows at the same time [30] . One should notice that a prop-

erly set sliding window will be able to adjust to changes in the

stream. This is known as implicit drift handling.

• Online learners are updated instance by instance, thus accom-

modating changes in stream as soon as they occur. Such models

must fulfill a set of requirements [31] : each object must be pro-

cessed only once in the course of training, computational com-

plexity of handling each instance must be as small as possible,

and its accuracy should not be lower than that of a classifier

trained on batch data collected up to the given time. One must

notice that a set of standard classification algorithms may work

in online mode, e.g., Neural Networks [32] or Naïve Bayes. How-

ever, there exist a plethora of methods modified to provide ef-

ficient online mode of operation [33,34] . These methods also

offer im plicit drift handling.

• Ensemble learners are a popular family of methods for data

stream mining [35,36] . Due to their compound structure they

can easily accommodate changes in the stream, offering gains

in both flexibility and predictive power. Two main approaches

here assume a changing line-up of the ensemble [37–39] or

updating base classifiers [40,41] . In the former solution a new

classifier is being trained on recently arrived data (usually col-

lected in a form of chunk) and added to the ensemble. Prun-

ing is used to control the size of the committee and remove

irrelevant or oldest models. A weighting scheme allows to as-

sign highest importance to newest ensemble components, al-

though more sophisticated solutions allow to increase weights

of classifiers that are recently best-performing. Here one can

use static classifier, as the dynamic line-up keeps a track of

stream progress. Latter solutions assume that a fixed-size en-

semble is kept, but update each component when new data be-

come available. Here managing the diversity of the ensemble is

crucial for achieving good predictive power [42] . Additionally,

ensembles must consist of classifiers working in incremental or

online modes. There also exist hybrid approaches that combine

both of these solutions within the ensemble structure [43,44] .

Proper experiment design and evaluation of the examined al-

gorithms is a key issue in machine learning domain. One need an

unbiased, fair and repeatable way of comparing tested algorithms

that will allow to shed lights on their strength and weaknesses, at

the same time leading to valuable conclusions towards better un-

derstanding of used methods. We may evaluate certain method to

assess some of our hypothesis about it, or to check its usability for

a particular real-life application. Before starting any computations

one must reasonably state goals of the experiment to be under-

taken, choose relevant datasets, select proper metrics that will re-

flect the nature of examined data and establish a correct procedure

for learning and comparing different models. This issue has been

well-discussed in static scenarios and there exist a number of gen-
rally accepted procedures to be undertaken [45] . In the context

f data stream mining, especially in non-stationary environments,

anonical metrics and procedures become no longer applicable. We

eal with massive, continuously incoming and evolving data that

equires updating the learning model and adjusting to shifts and

rifts. New classes may appear, feature space change and decision

ules loose relevance over time. Additionally, canonical metrics for

easuring the quality of learning process are not sufficient to per-

orm a meaningful evaluation of models [46] . Let us discuss the

orrect metrics to be used for algorithms applied to data stream

ining. One must understand that good algorithm must aim to

trike a balance among all of these criteria.

• Predictive power is an obvious criterion measured in all learn-

ing systems. However, in data stream mining we must accom-

modate the fact that the relevance of instances diminishes over

time. Therefore, simply using any averaged measure does not

reflect how the learning system was able to adapt and react

to changes in the stream and constant increase in the number

of processed instances. Therefore, one needs to use prequential

metrics that are calculated only over the most recent examples

with a forgetting mechanism embedded. Prequential accuracy

[47] and prequential area under the Receiver Operating Charac-

teristics curve (AUC) [48] are the two most widely used ones.

• Memory consumption is a necessary criterion due to the hard-

ware limitations during processing potentially unbounded data

stream [49] . Not only the average memory usage should be

taken under consideration, but also how it changes over time

and with specific actions made by each algorithm.

• Recovery time informs us how much time an algorithm needs

to accommodate new instances and update its structure. This

is a crucial measure that can be a bottleneck of many methods.

Assuming that new instances arrive rapidly, a good stream min-

ing algorithm should be able to process instances before new

ones will arrive to avoid queuing [50] .

• Decision time is another time-complexity measure used. Here

we are interested how long certain algorithms need to make

a prediction for each new instance. As recognition phase usu-

ally precedes the update phase, it may be another bottleneck

for the system. Additionally, in many applications we require a

real-time response and cannot allow for a delay when speed is

decision speed is vital [51] .

• Requirement for true class labels can strongly limit the real-

life applicability of many data stream mining algorithms. Many

works on supervised learning in streaming scenarios assume

that class labels become available soon after the instance was

being classified by the system, or arrive with some delay. How-

ever, the costs of labeling the entire data stream are far from

realistic and thus we must deal with limited availability of true

class labels. It is useful to examine the influence of available

budget (number of labeled samples) on the effectiveness of

algorithms. Active learning strategies allow to select only the

most relevant samples for labeling [52,53] . Semi-supervised and

unsupervised methods for both classification [54,55] and drift

detection [56,57] are also of interest in order to cope with this

issue.

. Data reduction

Data reduction [2] is an important preprocessing step in data

ining, as we aim at obtaining accurate, fast and adaptable model

hat at the same time is characterized by low computational

omplexity in order to quickly respond to incoming objects and

hanges. Therefore, dynamically reducing the complexity of the in-

oming data is crucial to obtain such models. Additionally, due

o the presence of concept drift the number and relevance of

S. Ramírez-Gallego et al. / Neurocomputing 239 (2017) 39–57 43

i

t

m

r

4

p

p

b

d

T

t

s

4

t

d

t

d

t

l

m

l

s

s

d

p

f

a

p

t

v

t

s

e

t

s

d

g

s

f

r

w

i

c

t

t

t

t

l

a

t

n

t

nstances and features may change over time. This must also be

aken into consideration while maintaining and updating an online

odel. Let us now discuss the main areas in data preprocessing for

educing the complexity of data.

• Dimensionality reduction : There exist a wide range of tech-

niques in the literature that aim at reducing the number of

features, among others: Feature Selection (FS), Feature Extrac-

tion (FE) or locality preserving projection [58–60] . In this pa-

per, we focus on FS and FE techniques. FS [61] eliminates irrel-

evant or redundant features/columns, whereas Feature Extrac-

tion (FE) generates a simpler feature space through transforma-

tions of the original one. The aim here is to yield a minimum

set of features so that the subsequent distribution probability of

classes remains as unchanged as possible. As FS maintains the

original features, it is more convenient for model interpretation.

Depending on the relationship between the selector and the

predictive algorithms, we can classify FS algorithms into three

categories: filters, which act before the learning process, being

independent from it; wrappers, which use the specified learn-

ing algorithm to evaluate subgroups of features; and embedded,

where the search is a part of the learning process itself. Wrap-

pers methods tend to be more accurate than filters, but more

complex. Embedded methods are less costly than wrappers, but

require direct modifications of the learning procedure.

• Instance reduction : Instance Selection (IS) or Instance Gener-

ation (IG) [62] . IS is aimed at reducing the number of train-

ing instances by selecting the most representative examples. IG

methods can generate new instances to fill the gaps in concept

definitions. IS differs from data sampling in that the former

categorizes instances depending on the problem, whereas sam-

pling is more stochastic. Based upon the kind of search imple-

mented by the IS algorithms, they can be classified into three

categories: condensation, which removes redundant points far

from the borders; edition, which removes noisy points close to

the class boundaries; or hybrid, which combines both noise and

redundancy removal.

• Feature space simplification : Normalization, Discretization,

and etc. Discretization [63] summarizes a set of continuous

values into a finite set of discrete intervals. This process re-

turns nominal features that can be used by any mining pro-

cess. Although most of mining algorithms work with continu-

ous data, many of them can only cope with nominal features,

specially those based on statistical and information measures

(e.g.: Naïve Bayes (NB)) [64] . Other algorithms, like tree-based

classifiers [65] , generate more accurate and compact results

when using discrete values. Good discretizers try to achieve the

best predictive performance derived from discrete data, while

reducing the number intervals as much as possible [66,67] . We

can distinguish two main categories, based upon how intervals

are generated by discretizers: splitting methods, which split the

most promising interval in each iteration into two partitions;

and merging methods, which merge the best two adjacent in-

tervals in each iteration.

. Data reduction on data streams

In streaming scenarios reduction techniques are demanded to

referably process elements online or in batch-mode as quick as

ossible and without making any assumptions about data distri-

ution in advance. In the next sections, we describe those re-

uction proposals that were tailored for mining data streams.

hese methods are grouped by family/task: dimensionality reduc-

ion (Section 4.1), instance reduction (Section 4.2), and feature

pace simplification (Section 4.3).
.1. Dimensionality reduction

Many FS algorithms for data streams have been proposed in

he literature. Most of them are naturally incremental algorithms

esigned for offline processing [1] , whereas others are specifically

hought to cope with flowing streams [12] . All FS methods can be

ivided into three groups: filters, wrappers, and hybrid; according

o when selection is performed: before and independently to the

earning step, or tightly coupled with it.

Most of online selectors proposed in the literature are incre-

ental adaptations of offline filters. As these filters rely on cumu-

ative functions (mainly based on information or statistical mea-

ures), these are easily adaptable to the online environment. De-

pite being simple, online filters seems to adapt well to drifts, and

o not need to ingest all data at once like their offline counter-

arts. Furthermore, online methods usually face problems derived

rom streams that cannot be addressed by offline methods, like the

rrival of new features or classes.

Focusing on online FS, further distinctions can be made de-

ending on the properties of streams. Some FS methods suppose

hat features arrive one-by-one (streaming features) while feature

ectors are initially available [68,69] ; whereas others assume that

he instances always arrive sequentially, and the feature set may be

ubject to potential changes [70] (online FS). New classes can also

merge from streams without previous knowledge (concept evolu-

ion), requiring a complete redefinition of the used model. In data

tream mining, feature space can also be affected by changes in

ata distribution. Feature drifts occur whenever the relevance of a

iven attribute changes over time when new instances arrive to the

ystem [71] . As in other concept drifts, changes in relevance en-

orce algorithms to discard or adapt the model already learned by

emoving the most irrelevant features in the new scenario [72] , as

ell as including the most relevant ones (dynamic FS). As changes

n relevance directly affect the decision boundaries, feature drift

an be seen as a specific type of real concept drift.

As the set of selected features evolves over time, it is likely that

he feature space in test instances differs from the current selec-

ion. Therefore, when a new instance is being classified, we need

o perform a conversion between feature spaces for homogeniza-

ion purposes [9] . The types of conversion to consider are the fol-

owing:

• Lossy Fixed (Lossy-F): the same feature set is used for the

whole stream. It is generated from the first batch. All the fol-

lowing instances (training and test) will be mapped to this set,

resulting in a clear loss in future information.

• Lossy Local (Lossy-L): a different feature space is used for each

new training batch. Test instances are thus mapped to the

training space in each iteration. This conversion is also trou-

blesome because relevant features in test may be omitted.

• Lossless Homogenizing (Lossless): Lossless is similar to the pre-

vious conversion, except that the feature space in the test set is

being considered here. There exist a homogenization between

spaces, for example, by unifying both spaces and padding with

zeros any missing feature in the other set. This conversion re-

sults in using all current and previous information, so it can be

seen as the best option.

In this paper, we will focus on online techniques that allow the

rrival of new instances and features at the same time, because

hey represent a scenario present in real-world problems. Let us

ow present a list formed by the most relevant algorithms on this

opic:

• Katakis et al. [70] was among the first to introduce the prob-

lem of dynamic feature space in data streams. They proposed a

technique that includes a feature ranking (filter) method to se-

lect relevant features. As the importance score of each feature

44 S. Ramírez-Gallego et al. / Neurocomputing 239 (2017) 39–57

f

e

a

t

t

Y

t

p

e

o

a

t

S

h

B

a

a

n

g

M

t

f

i

d

n

R

i

d
can be measured using many cumulative functions like Infor-

mation Gain (IG), χ2 or mutual information, it can be seen as

a versatile solution for online feature ranking.

• Carvalho et al. [73] proposed Extremal Feature Selection (EFS),

an online FS method that uses the weights computed by an on-

line classifier (Modified Balanced Winnow) to measure the rel-

evance of features. The score is computed as the absolute dif-

ference between the positive and negative weights for each fea-

ture.

• Masud et al. [9] proposed a streaming classification technique

(DXMiner), which uses the deviation weight measure to rank

features during the classification phase. Furthermore, DXMiner

naturally address the problem of novel classes (concept-

evolution) by building a decision boundary around the train-

ing data. In contrast to previous methods, DXMiner uses loss-

less conversion, which is useful for novelty detection. To rank

features in the test space, DXMiner uses a unsupervised tech-

nique (e.g., the highest frequency in the batch) that selects fea-

tures more representative for incoming concepts. Note that this

requires a batch-mode setting to compute such statistics.

• Nguyen et al. [72] designed an ensemble technique based on

windowing to detect feature drifts. The algorithm is based on

a ensemble of classifiers, where each classifier has its own fea-

ture set. If a drift is detected, the ensemble is updated with a

new classifier together with a new feature subset; otherwise,

each classifier is updated accordingly. Fast Correlation-Based

Filter (FCBF) based on Symmetrical Uncertainty is being used

here. FCBF heuristically applies a backward technique with a

sequential search strategy to remove irrelevant and redundant

features.

• In [74] , authors propose an algorithm to mine recurring con-

cepts (called MReC-DFS). Here, they adopt the same selection

solution proposed in [70] . Hover, instead of selecting a fixed

number of features, they propose to use either a fixed thresh-

old or an adaptive one based on percentiles. They also compare

the effects of using different space conversions [9] (like Lossy-F,

Lossy-L or Lossless).

• Wu et al. [75] proposed two approaches for handling streams

with growth of feature volumes over time, named Online

Streaming Feature Selection (OSFS) and Fast Online Streaming

Feature Selection (Fast-OSFS). They are based on a two-phase

optimal subset discovery scheme: online analysis of relevance

and then redundancy. Class-based relevance is used to select or

discard a new feature. Then a new and extended feature set

is analyzed to detect if there exist a subset of features that

may make one of the used features and class variable condi-

tionally independent. If yes, then such a feature is discarded.

This allows to to control the expansion of the feature space.

In Fast-OSFS the redundancy analysis is divided into two parts.

Firstly a redundancy of new feature is being checked, in order

to decide if this feature should be selected. Only if new feature

was included, the redundancy of previous features is being ana-
Table 1

Summary description of streaming FS methods. Information about t

accomplished (if appropriate), and whether concept-evolution appe

Method Selection type (measure)

Katakis’ method [70] Filter (IG, χ2 , etc.)

EFS [73] Wrapper (online classifier’s weights)

DXMiner [9] Filter (deviation weight) + unsupervised

HEFT-Stream [72] Filter (SU)

MReC-DFS [74] Filter (IG, χ2 , etc.)

OSFS / Fast-OSF [75] Filter (relevance and redundancy)

OFS [77] Wrapper (online classifier’s weights)

OFGS [78] Filter (spectral clustering and regression
lyzed. This leads to a significant computational speed-up of this

method.

• Wang et al. [76,77] proposed a greedy online FS method (called

OFS) based on a classical technique that makes a trade-off be-

tween exploration and exploitation of features. The algorithm

spends ε iterations on exploration by randomly choosing N at-

tributes from the whole set of attributes, and the remaining

steps on exploitation by choosing the N attributes for which

the linear classifier has nonzero values. In this work, no feature

drift is addressed explicitly, and no comparison with previous

works is performed.

• An online feature selection method based on group structure

analysis was proposed in [78] . This work was based on assump-

tion that features may arrive in specific groups, like textures,

colors etc. Authors proposed Online Group Feature Selection

(OFGS) algorithm that utilized intra-group and inter-group cri-

teria. The former criterion used spectral analysis to select dis-

criminative features in each group. The latter one applied linear

regression model to chose an optimal subset of from all pre-

selected features. It is worth noticing that a similar problem

was discussed by Li et al. [79] .

Table 1 details the type of selection and space conversion per-

ormed by each algorithm. Two remarkable selection strategies

merges from this summary: one based on information filtering

nd another based on the use of classifier weights (wrapper).

Apart from the previously mentioned most relevant algorithms

here exist a number of other online and streaming feature selec-

ion proposals in the literature. Let us now discuss them shortly.

an et al. [80] proposed simultaneous feature extraction and selec-

ion using orthogonal centroid algorithm. Tadeuchi et al. [81] pro-

osed a quick online feature selection that used filters to gen-

rate several potential subsets and a wrapper to chose the best

ne from them. Authors speculated that this solution should be

ble to handle concept drift appearance. Cai et al. [82] proposed

o use l 1-norm regularization for continuous variable selection.

imilar approach was used by Ooi and Ninomiya, however they

ad employed a regularized regression for this task [83] . Fan and

ouguila [84,85] presented a combination of clustering based on

 Dirichlet process mixture of generalized Dirichlet distributions

nd unsupervised feature selection in incremental learning sce-

arios. Amayri and Bouguila [86] discussed similar combination of

roup discovery and feature reduction using finite mixtures of von

ises distributions, while Yao and Liu [87] combined online selec-

ion with density estimation. A problem of online feature selection

or multi-task learning was discussed in [88] . The issue of scalabil-

ty of the discussed family of models for big data mining was ad-

ressed in [89] . Roy [90] discussed how to use ensemble of Koho-

en neurons for choosing features from high-dimensional streams.

ecently, Yang et al. [91] introduced a parallel method using lim-

ted memory, while Hammoodi et al. [92] discussed a concept drift

etection approach using only selected features. Extension of OSFS
he type of selector (wrapper or filter), the feature conversion

ars, is presented below.

Streaming features (conversion) Concept-evolution

no (Lossy-F) no

no (Lossy-F) no

 yes (Lossless) yes

no (Lossy-F) no

yes (all) no

no (Lossy-F) no

no (Lossy-F) no

) no (Lossy-F) no

S. Ramírez-Gallego et al. / Neurocomputing 239 (2017) 39–57 45

m

i

s

i

o

d

t

b

n

t

w

t

t

t

t

a

c

I

d

t

o

O

l

i

o

t

o

e

d

F

t

t

a

y

S

t

e

t

4

i

o

l

l

r

m

c

t

p

s

r

n

I

f

t

s

d

a

1 Basic concepts about competence models can be reviewed in [119]
ethod using rough set approach for data streams was analyzed

n [93] , while a combination of online discretization with feature

election for neural networks was depicted in [94] .

One may view a video sequence as a stream of images and

n this domain online feature selection has also been explored in

rder to handle dynamic object detection. Yeh et al. [95] intro-

uced an online Boosting-based feature selection, where new fea-

ures were selected one at a time to compensate for changes in the

ackground. Yang et al. [96] described an online Fisher discrimi-

ation boosting feature selection mechanism for real-time visual

racking.

Finally, it is worthwhile to mention work by Yu et al. [97] ,

here authors implemented several popular online feature selec-

ion methods and created an open software package for Matlab.

Besides FS, dimensionality reduction can be accomplished

hrough an artificial mapping between the original space of fea-

ures and a new space of fewer dimensions. Feature extraction

echniques, although less popular than FS ones, have shown their

bility in many predictive problems. One of the most important

ontributions here is Principal Component Analysis (PCA) [98] .

n [99] , two online gradient-based versions of PCA are studied in

epth. The aim of previous work is to obtain an online model with

he lowest difference in cumulative losses with respect to the best

ffline alternative. A novel analysis of theorethical properties of

ja’s streaming PCA was discussed in [100] . Although optimal, on-

ine PCA is not able to update projections in less than O (n 3) per

teration [101] . Thus more efficient techniques needs to be devel-

ped in the future if we want a real streaming solution in fea-

ure extraction. So far it is worth mentioning streaming versions

f kernel PCA proposed by Joseph et al. [102] and by Ghashami

t al. [103] . Additionally, PCA was successfully applied for concept

rift detection in non-stationary data streams by Kuncheva and

aithfull [104] , as well as by Qahtan et al. [105] . One must no-

ice that feature extraction from data streams is not only limited

o PCA and other works, although few in numbers, exist. Allahyar

nd Yazdi [106] described Online Discriminative Component Anal-

sis for continuous computation of Linear Discriminant Analysis.

heikholeslami et al. [107] proposed a kernel-based feature extrac-

ion for mining streams with limited computational resources. Li

t al. [108] introduced canonical correlation analysis with uncer-

ainty suitable for multi-view classification of data streams.

.2. Instance reduction

Lazy learning has been broadly used in predictive analyt-

cs [109] . Yet, case-bases naturally deteriorate and grow in size

ver time. In data stream scenario, past preserved cases that be-

ong to a previous concept may degrade the performance of the

earner if a new concept appears. Likewise, new instances that rep-

esent a new concept may be classified as noise and removed by a

isbehavior of the IS mechanism, because they disagree with past

oncepts [13] .

Some enhancement (edition) and maintenance (condensa-

ion) [1] should be thus performed on case-bases in form of so-

histicated IS processes, which select those cases that best repre-

ent the current state of the data stream. However, most of cur-

ent techniques are designed for stationary environments and ig-

ore the concept drift phenomenon. Firstly, we present a subset of

S techniques that incrementally or in a batch way select instances

rom a case-base [110] :

• Instance-Based learning Algorithm 3 (IB3) [111] is one of the

first attempts to deal with non-stationary nature of data. It is

based on accuracy and retrieval frequency measures. By means

of a confidence interval test, IB3 decides whether a case should

be added to the case-base or it needs to wait until its insertion
is marked as appropriate. Removal of cases is performed when-

ever the accuracy of a case is below (in a certain degree) its

class frequency. Due to IB3 defers the inclusion of examples, it

is only suitable for gradual concept drift.

• The Locally Weighted Forgetting (LWF) algorithm [112] is an

instance weighting technique based on k-nearest neighbors

(kNN). In LWF, those cases with a weight below a threshold

are removed. LWF algorithm has been criticized by its lower

asymptotic classification in static environments and by its ten-

dency to overfitting [113] . This method has shown good perfor-

mance for both gradual and sudden concept drifts.

• Salganicoff [114] designed the Prediction Error Context Switch-

ing (PECS) algorithm, which is designed to work in both dy-

namic and static environments. PECS algorithm is based on the

same measures used by IB3, also adopting the same confidence

test. In order to introduce time dimension in its decisions, PECS

only consider the newest predictions in its computations. Fur-

thermore PECS immediately add new cases to the base to expe-

dite the slow adaptation process. PECS disables cases instead of

permanently deleting them. Those cases can be re-introduced if

their may once again contribute towards improved accuracy. It

is argued in [115] that PECS holds high memory requirements

and a slow removal process, as new instances are retained right

after they arrive.

• Iterative Case Filtering Algorithm (ICF) [116] is a redundancy re-

moval technique that discards those instances with a coverage

set size smaller than its reachability set. Authors included Re-

peated Edited-NN [117] to remove the noise around the borders.

Although there exist more complex proposals in the litera-

ure [110] , the previous list includes those methods that have

erved as a keystone for further developments in IS for concept

rift [13] . The next list deal with those techniques that explicitly

ddress concept drift:

• Delany et al. [118] proposed a drift control mechanism with

two levels, called Competence-Based Editing (CBE). In the first

level, an hybrid of two competence-based editing methods 1 :

Blame Based Noise Removal (BBNR) and Conservative Redun-

dancy Reduction (CRR), is launched. BBNR is aimed at deleting

those cases whose removal do not imply coverage loss, whereas

CRR selects misclassified cases with the smallest coverage. Note

that both methods are designed for stationary environments,

which can cause some problems like the removal of novel con-

cepts when gradual drift appears, or forgetting of small groups

of cases where examples covers each other but misclassifies all

the surrounding neighbors. BBNR do not keep the competence

model up-to-date, it only rebuild the model in the second level.

An outdated competence model may yield inconsistencies dur-

ing the evaluation phase as the model does not accurately re-

flect the current concept.

• Instance-Based Learning on Data Streams (IBL-DS) [115] , and

IBLStreams [120] are presented as the first solutions that deem

both time and space factors to control the shape and size of

the case-base. In both algorithms, every neighbor in a test

range is removed if the class of new instance is dominant

in this range. IBL-DS also introduces an explicit drift detec-

tion method developed by Gama [20] , which determines when

to remove a fixed number of instances considering space and

time. Number of removals is computed considering the min-

imum error rate and the aggregated error of last predictions.

Both algorithms control the size of the case-base by removing

the oldest instances. However the time-based removal strategy

46 S. Ramírez-Gallego et al. / Neurocomputing 239 (2017) 39–57

Table 2

Summary description of streaming IS methods. Information about the selection measure, whether

drift detection is used or not, and the type of selection is shown here.

Method Selection type Drift detection Edition/Condensation

IB3 [111] Case accuracy no yes/no

LWF [112] Instance weighting no yes/no

PECS [114] Case accuracy no yes/no

ICF [116] Competence no yes/yes

CBE [118] Competence no yes/yes

IBL-DS [115] Time-space distance yes yes/yes

FISH [121] Time-space distance no yes/yes

AES [122] Bio-inspired yes no/yes

COMPOSE [123] Geometry no no/yes

SimC [124] Time-space distance/case accuracy no yes/yes

NEFCS-SRR [13] Competence & case accuracy yes yes/yes

s

t

C

c

d

c

t

A

a

t

a

s

a

t

d

m

p

p

t

4

b

n

i

c

w

c

c

m

s

o

t

a

t

t

I

s

t

i

a

m

e

implemented by them has been criticized because some old, yet

still relevant instances may be eliminated in this process.

• FISH algorithms [121] are also based on a combination of time

and space, in this case, computed as distances. The idea behind

these algorithms is to dynamically select the most relevant ex-

amples, which will serve as training for next model. Three dif-

ferent versions of FISH were proposed. In FISH1, the training

size is fixed at the start. FISH2 selects the best training size

according to the accuracy (through leave-one-out cross valida-

tion). FISH3 also weights time and space by using a different

loop of cross validation. FISH2 is considered as the leader of the

family. FISH represents a time-consuming option since it stores

all seen examples in order to compute space/time distances.

• Zhao et al. [122] present a new nearest neighbor algorithm for

data streaming, based on an artificial endocrine system; called

AES. This system removes the necessity of a complete case-

base as in previous models, replacing case-base by represen-

tative cells. A condensation-based process is also a key feature

in AES. The algorithm maintains only K boundary prototypes or

cells. These prototypes keep moving during the whole process

in order to adapt concept boundaries to incoming drifts.

• COMPOSE [123] is a geometry-based framework for semi-

supervised learning and active learning. The idea behind COM-

POSE is to label incoming instances through a semi-supervised

approach, and then to create and select those α-shapes that

better model the current state. This selection is, in fact, a com-

paction process that maintains only those shapes/prototypes

more representatives for the current state. COMPOSE is mainly

designed to address gradual drifts.

• SimC [124] aims at creating groups of instances for each class

so that each one represents a different region of the space.

Noisy and old examples are removed by selecting and discard-

ing the least relevant example in the oldest group. As concept

drift appears, the algorithm creates new groups to allocate ex-

amples that represents new concepts. Relevance in groups is

measured by using space distances and their ages. For individ-

ual instances, the precision using the nearest rule is employed.

• Lu et al. [13] propose a case-base editing technique based on

competence preservation and enhancement [119] . Their solu-

tion consists of three stages: the first one compares the dis-

tribution between two windows in order to detect if there is

a drift or not. Apart from detecting the drift, this method also

limits the area where the distribution changes most. After that

the Noise-Enhanced Fast Context Switch (NEFCS) method is ap-

plied. NEFCS examines all new cases and determines whether

there is noise or not (enhancement). However only the noisy

cases that lie outside the detected competence areas are re-

moved, because they may be part of novel concepts. Stepwise

Redundancy Removal (SRR) method is aimed at controlling the

size of the case-base (preservation). SRR removes redundant ex-
amples recursively until the case-bases’ coverage starts to dete-

riorate.

Table 2 lists the most relevant instance selectors for drifting

treams. We can draw three major types of selection from this

able: competence-based, weighting-based, and accuracy-based.

ompetence-based methods (like CBE or ICF) tend to be more ac-

urate but time-consuming, because they require a constant up-

ate of the competence model. Distance-based selection strategies

an require even more time than competence-based models, when

he number of distances and/or the features involved are high.

ccuracy-based methods have difficulties in identifying noisy ex-

mples coming during drifts. Finally, feature weighting techniques

ends to over-fit data and to perform worse than instance selectors

ccording to [113] .

Another relevant topic to be considered when electing instance

electors is whether enhancement and/or maintenance tasks are

pplied or not. Competence-based methods usually consists of two

echniques, one for noise removal and another for redundancy. Re-

undancy is mainly ignored in accuracy-based techniques since

ost of them select instances according to the number incorrect

redictions committed by each one. Distance-based algorithms im-

licitly removes redundancy through the space factor in the dis-

ance formula.

.3. Feature space simplification

Discretization algorithms for data stream scenarios must also

e able to handle the appearance of concept drifts. Definition and

umber of discretization intervals may change over time, follow-

ng shifts in data characteristics. Therefore, it is desirable that dis-

retization intervals are able to smoothly adapt to concept drift,

ithout imposing increased computational cost when being recal-

ulated.

Equal-frequency discretization (based on histograms) can be

onsidered as one of the first techniques in dealing with incre-

ental discretization. By using quantiles as cut points, the feature

pace can be partitioned in equal-frequency intervals. Estimation

f quantiles in streams have been studied in depth in the litera-

ure, in approximate [11,125] and exact [126,127] forms. One of the

gilest and most effective discretization alternatives is Incremen-

al Discretization Algorithm (IDA) [11] . IDA approximates quantiles

hrough the maintenance of a reservoir sample of the input stream.

ntervals here are structured using interval heaps, an efficient data

tructure that allows to insert and delete elements in O (log (n)), and

o retrieve the maximum and minimum (the interval boundaries)

n constant time. As in most of cases it is not feasible to maintain

 complete record of all data, approximative solutions have shown

uch more suitable for processing high-throughput streams than

xact solutions.

S. Ramírez-Gallego et al. / Neurocomputing 239 (2017) 39–57 47

s

L

c

n

t

m

s

o

s

a

w

i

p

t

a

s

O

o

s

e

d

d

a

(

e

w

h

s

r

a

c

l

t

p

Table 3

Summary description of streaming discretization meth-

ods. Information about the name and type of discretiza-

tion strategy is shown here.

Method Discretization strategy

PiD [129] Binning & information (split & merge)

OC [130] Statistical (merge)

i

t

a

c

(

i

a

w

h

t

c

5

t

d

l

s

s

t

w

F

5

u

t

(

r
Other techniques based on frequency has relied on establishing

ize thresholds assigned bins to cope with evolving discretization.

u et al. [128] presented the Incremental Flexible Frequency Dis-

retization (IFFD) algorithm. IFFD defines a range instead of a strict

umber of quantiles. If the updated intervals’ frequency reaches

he maximum and the resulting frequencies are not below the

inimum (in order to prevent a high classification variance), IFFD

plits the interval into two partitions.

Equal-width discretizer is another unsupervised approach that

nly requires as input the range of features and the number of

plitting intervals. However, the main drawback here is that both

pproaches require streamed records arriving in random order,

hich is impossible in many learning problems.

Another important requirement to be considered is that some

ncremental algorithms require to maintain the same set of cut

oints (number, structure and meaning) over time [11] . That is

he case of the most discriminative learning algorithms. Here us-

ge of either an equal-width or an equal-frequency discretizer is

uggested, as both of them define the number of bins in advance.

ther static algorithms (e.g.: NB) does not require the preservation

f intervals during subsequent predictive phases, but only to save

ome statistics for the current discretization step. However, gen-

ralization capabilities of such classifiers are still affected by such

isplacements in definitions, specially if they are sharp.

According to [129] , one of the main problems of unsupervised

iscretizers is the necessity of defining the number of intervals in

dvance. Such decision can be assisted by some pre-defined rules

e.g., Sturges’ rule) or by an exploratory analysis process. How-

ver, exploratory analysis is no longer possible in the present days

here the number of instances is too large and pre-defined rules

ave shown to work only with small-sized datasets. However, un-

upervised discretizers are naturally designed for streaming envi-

onments since the number of intervals remains invariant.

Most of supervised approaches tend to perform several merges

nd splits before obtaining a functional final scheme. Abrupt

hanges in intervals’ definition may negatively influence the online

earning process. Therefore, methods should strive for a smoother

ransitions. We present a short list of supervised discretization ap-

roaches:

• Gama et al. [129] presented the Partition Incremental Dis-

cretization algorithm (PiD), consisting of two layers. The first

one summarizes data and creates the preliminary intervals,

which will be optimized in the next layer. An equal-width strat-

egy can be used to initialize this step. Then the first layer is up-

dated through a splitting process whenever the number of ele-

ments in an interval is above a pre-defined threshold. The sec-

ond layer performs a merging process over the previous phase

in order to yield the final discretization scheme. Any discretizer

can be used in the second layer, since the intervals generated

in the previous phase are used as inputs. Minimum Descrip-

tion Length Discretizer is used as reference in the original pa-

per. However, there are three main reasons for criticism of PiD

approach. Firstly, there is no exact correspondence between the

first layer and the second one, which produces inaccuracies that

will chain and increase over time. Secondly, if the distribution

of data is highly skewed, the number of intervals generated will

dramatically increase, due to frequency overflowing. Finally, the

splitting process may become even more inaccurate if many

repetitions of a single value appear. In this case such a cut point

might be generated that divides instances with the same fea-

ture values into two different bins, leading to inconsistencies.

• In [130] an online version of ChiMerge (OC), which maintains

the O(nlog (n)) time complexity held by the original algorithm,

is proposed. In order to guarantee equal discretization results,

authors implement an online approach based on sliding win-
dows. Several data structures are being used to emulate the

same behavior held by the original version. Despite of the great

effectiveness claimed by the authors, a high increase in the

memory usage derived from the set of data structures is dis-

played by this online version. This fact may prevent from its us-

age in some data stream scenarios with limited computational

resources.

A brief classification about streaming discretizers is given

n Table 3 . Two alternatives representing different discretiza-

ion types [1] are shown here. Classification is performed

ccording to two factors: evaluation measures (statisti-

al/binning/information/others) and the type of interval generation

merging/splitting intervals). The most important lesson here

s that there is no wrapper online discretization solution. An

pproach that generate intervals by means of an online classifier

eights, as proposed before by some feature selectors, would be

ighly suitable for this task. A wrapper approach could even solve

he problem of displacements in intervals’ definitions due to the

loser relationship between the classifier and discretizer.

. Experiments

In this section, we evaluate the usefulness and performance of

he data preprocessing algorithms for mining data streams from

ifferent perspectives:

• Effectiveness: measured as the number of correctly classified

instances divided by the total number of instances in the train-

ing set (accuracy). It can be considered as the most relevant

factor in measuring usefulness of proposals.

• Time and memory performance: measured as the total time

spent by the algorithm in the reduction/discretization phase.

Usually performed before the learning phase, although some-

times it runs simultaneously to the prediction phase. Addition-

ally, memory usage for the preprocessing step is being mea-

sured to show the resource consumption displayed by each

tested method.

• Reduction rate: measured as the amount of reduction accom-

plished with respect to the original set (in percentage). For se-

lection methods, it is related to the number of rows/columns

removed, whereas for discretization, it is related to the degree

of simplification of the feature space.

The experimental framework is defined in Section 5.1 . Here, the

ist of datasets and methods, and other considerations are pre-

ented. The results and discussion of examined algorithms are pre-

ented with respect to the type of task being performed. Each

ask requires different settings due to its specific characteristics,

hich will be explained in each section. The order is as follows:

S (Section 4.1), IS (Section 4.2), and discretization (Section 4.3).

.1. Experimental framework: datasets, methods and parameters

Table 4 shows the complete list of artificial and real datasets

sed in our experiments to evaluate the reduction techniques. Ar-

ificial datasets have been generated using Massive Online Analysis

MOA) benchmark [131] , providing a wide range of drifting envi-

onments (blips, sudden and gradual, among others described in

48 S. Ramírez-Gallego et al. / Neurocomputing 239 (2017) 39–57

Table 4

Relevant information about classification datasets. For each row, the number of in-

stances evaluated (#Inst.), the number of attributes (#Atts.) (which ones are numer-

ical (#Num.) and which ones nominal (#Nom.)), the number of classes (#Cl), and

whether the dataset is artificially generated or not (artificial) are shown.

Data set #Inst. #Atts. #Num. #Nom. #Cl. Artificial

blips 50 0,0 0 0 20 20 0 4 yes

gradual_drift 50 0,0 0 0 3 3 0 2 yes

gradual_recurring_drift 50 0,0 0 0 20 20 0 4 yes

incremental_fast 50 0,0 0 0 10 10 0 4 yes

incremental_slow 50 0,0 0 0 10 10 0 4 yes

no_drift 50 0,0 0 0 24 0 24 10 yes

sudden_drift 50 0,0 0 0 3 3 0 2 yes

airlines 539,383 6 3 3 2 no

covtypeNorm 581,011 54 10 44 7 no

elecNormNew 45,311 8 7 1 2 no

kddcup_10 494,020 41 39 2 2 no

poker-lsn 829,201 10 5 5 10 no

spambase 4601 57 57 0 2 no

spam_nominal 9324 40,0 0 0 0 40,0 0 0 2 no

usenet_recurrent 5931 659 0 659 2 no

spam_data 9324 499 0 499 2 no

usenet1 1500 100 0 100 2 no

usenet2 1500 100 0 100 2 no

usenet3 5997 27,893 0 27,893 2 no

power_supply 29,928 2 2 0 24 no

t

Table 5

Parameters of methods. Default values for each block of methods are detailed in

first rows. Unless specified, these values are common to every method in block.

Method Parameters

Feature selection window size = 1 (default)

NB –

IG [70] –

SU [72] –

OFS [77] η = 0.2, λ = 0.01

Instance selection k = 3, window size = 100 (default)

kNN window size = 1

NEFCS-SRR [13] l = 10, pmax = 0.5, size limit = 10 0 0

CBE [118] –

ICF [116] –

FISH [121] learner = kNN, distance proportion (time/space) = 0.5,

window size = 1

Discretization initial elements = 100, window size = 1 (default)

NB –

OC [130] –

PiD [129] α = 0.75, initial bins = 500, instances to update layer

#2 = 10,0 0 0, min/max = 0/1

e

l

f

w

t

t

d

m

a

i

k

p

p

t

p

t

A

a

b

b

t

I

b

r

w

w

a

a

t

c

t

a

a

t

s
Section 2). Each artificial dataset has been created using different

combinations of generators and different parameter values. For a

complete description of datasets, and source code, please refer to

our GitHub repository 2 .

Real datasets come from different sources:

• airlines, elecNormNew, poker-lsn , and covtypeNorm can be found

in MOA’s streams repository.

• spam_data, usenet1, usenet2 , and usenet3 are e-mail datasets

affected by concept drift, collected by The Machine Learning

and Knowledge Discovery (MLKD) group (http://mlkd.csd.auth.

gr/concept _ drift.html).

• spambase is a collection of e-mails classified as spam [132] .

• kddcup_10, spam_nominal (SpamAssasin), and usenet_recurrent

were collected by Dr. Gama and his research group KDUS (http:

//www.liaad.up.pt/kdus/products/datasets-for-concept-drift).

• Last dataset (power_supply) comes from Stream Data Mining

Repository (http://www.cse.fau.edu/ ∼xqzhu/stream.html), and

contains power supply registers collected hourly from an elec-

tricity company.

Not all datasets described above have been used for every ex-

periment. Some algorithms are designed to deal with a particular

data types. For instance, most of feature selectors require discrete

features, especially if they utilize information-based measures. Be-

cause MOA generators [131] only generate datasets with continu-

ous attributes, these datasets will not be considered for FS. The

final choice of datasets and any detail concerned to their features

will be described in further sections.

No previous fixed partitioning has been performed on datasets,

instead an online evaluation approach has been elected to asses

the quality of methods, known as interleaved test-then-train . This

technique, proposed by Bifet et al. in [133] , defines a model in

which each example/batch (arriving at time t) is evaluated against

 − 1 -model, and then it serves as input to update that model and

forms the subsequent t -model.

Reduction techniques used in experiments are listed and

grouped by task in Table 5 . The default parameter values has been
2 https://github.com/sramirez/MOAReduction

I

2

c
stablished according to the authors’ criteria. Common parameters,

ike window size or the number of initial elements to consider be-

ore starting the reduction process, tends to have common values

ithin the same group. A window size equal to one means that

he algorithms work in an online manner, whereas a value higher

han one implies a batch-based processing. For instance, FS and

iscretization methods are suitable for online scenarios, whereas

ost of instance selectors process elements in batches (except FISH

nd kNN).

As most of feature selectors and discretizers are focused on NB,

t has been elected as a base classifier for these groups. Likewise,

NN serves as reference for instance selectors. Training and testing

rocesses are performed differently for each task.

In FS contingency tables in NB are updated whenever an exam-

le arrives. During the classification phase NB only makes predic-

ions by considering the most relevant features.

Training in discretization is also accomplished following the

revious scheme, with the particularity that the structure of con-

ingency tables may change whenever new intervals are generated.

 new discretization scheme means old model will be outdated

nd the amount of errors will sharply increase.

As to IS, those methods with best results according to [13] have

een selected for our experiments. Different update schemes have

een adopted depending on the original design held by each selec-

or. For kNN and FISH, an instant-update scheme has been adopted.

n this scheme new instances are immediately added to the case-

ase. Note that this approach gives kNN a clear advantage over the

est of methods since an ever-updated case-base tends to adapt

ell to changes. However, it also introduces a lot of redundancy

hich does not affect accuracy.

FISH selects a different training set whenever a new example

rrives, thus acting in an online way. In counterpart, NEFCS shows

 batch-like behavior which requires two windows for drift de-

ection. Here, the updating of the case-base is deferred until a

omplete batch of examples is available. For a fair comparison be-

ween competence models (CBE, ICF, NEFCS-SRR), we have adopted

 model based on batches for all these algorithms. New instances

re immediately added to the case-base in CBE and ICF, but reduc-

ion is only performed when the batch size condition is met.

The whole experimental environment has been executed in a

ingle standard machine, with the following features: 2 processors

ntel Core i7 CPU 930 (4 cores/8 threads, 2.8 GHz, 8 MB cache),

4 GB of DDR2 RAM, 1 TB SATA HDD (3 Gb/s), Ethernet network

onnection, CentOS 6.4 (Linux). Examined algorithms have been

http://mlkd.csd.auth.gr/concept_drift.html
http://www.liaad.up.pt/kdus/products/datasets-for-concept-drift
http://www.cse.fau.edu/~xqzhu/stream.html
https://github.com/sramirez/MOAReduction

S. Ramírez-Gallego et al. / Neurocomputing 239 (2017) 39–57 49

Table 6

Final test accuracy by method (FS). The best outcome for each dataset is highlighted in bold. The second row in header represents the number of feature

selected. No selection is performed for NB.

Naïve Bayes InfoGain SU OFS

10 100 10 0 0 10 100 10 0 0 10 100 10 0 0

spam_data 90.6692 89.2750 90.8516 90.6692 88 .9103 90 .4333 90 .6692 90 .0579 91 .7417 90 .6692

spam_nominal 10 0.0 0 0 0 10 0.0 0 0 0 10 0.0 0 0 0 10 0.0 0 0 0 100 .0 0 0 0 100 .0 0 0 0 100 .0 0 0 0 100 .0 0 0 0 100 .0 0 0 0 100 .0 0 0 0

usenet1 63.3333 53.6667 63.3333 63.3333 53 .2667 63 .3333 63 .3333 58 .3333 63 .3333 63 .3333

usenet2 72.1333 66.9333 72.1333 72.1333 66 .6667 72 .1333 72 .1333 68 .20 0 0 72 .1333 72 .1333

usenet3 84.6038 68.8073 78.2319 82.9024 69 .0242 77 .8816 82 .8691 54 .0951 57 .4646 70 .5922

usenet_recurrent 10 0.0 0 0 0 10 0.0 0 0 0 10 0.0 0 0 0 10 0.0 0 0 0 100 .0 0 0 0 100 .0 0 0 0 100 .0 0 0 0 100 .0 0 0 0 100 .0 0 0 0 100 .0 0 0 0

no_drift 51.4120 51.4240 51.4120 51.4120 51 .4240 51 .4120 51 .4120 32 .5830 51 .4120 51 .4120

MEAN 80.3074 75.7295 79.4232 80.0643 75 .6131 79 .3134 80 .0596 71 .8956 76 .5836 78 .3057

Fig. 3. Box-plot representation for selection time and reduction (FS).

i

h

5

i

p

T

n

w

a

w

b

f

t

t

p

F

d

r

p

s

o

t

v

m

o

m

t

t

H

t

m

u

f

n

ntegrated in MOA software (16.04v) as an extension library 3 . MOA

as also served as benchmark for our experiments.

.2. Feature selection

Here, we evaluate how well selection of relevant features

s performed by the streaming methods. As most of these ap-

roaches assume features are discrete, we have only selected from

able 4 those benchmarks with no numerical attributes. Please

ote that all these datasets comes from the text mining field, in

hich each attribute represents the presence or the absence of

 given word. These datasets fits well for FS as the corpus of

ords/features is normally quite large.

Firstly, in Table 6 we measure the classification accuracy held

y the three feature selectors considered in the experimental

ramework: IG, SU, and OFS; plus native NB using all features. From

hese results, we can conclude that:

• NB yields better accuracy when all features are available dur-

ing prediction. None of the selection schemes show better ef-

fectiveness than NB.

• However, IG and SU generate results pretty close to NB, with

the advantage of generating much simpler solutions (as can be

seen in Fig. 3 b).

• Information-based methods are more accurate than OFS (based

on feature weighting). Specially remarkable are the spam_data
3 http://moa.cms.waikato.ac.nz/moa-extensions/

a

r
and usenet_recurrent cases, where even with only ten words the

classifier is able to predict perfectly all examples.

To assert that no method is better than NB, we convey an sta-

istical analysis on classification accuracy results through two non-

arametric tests: Wilcoxon Signed-Ranks Test (one vs. one) and

riedman–Holm Test (one vs. all) [134,135] . Wilcoxon Test con-

ucts pairwise comparisons between the reference method and the

est. A level of significance α = 0 . 05 has been chosen for this ex-

eriment. The first two columns in Table 7 show Wilcoxon’s re-

ults for accuracy, where ‘+’ symbol indicates the number of meth-

ds outperformed by each algorithm in row. Symbol ‘ ±’ represents

he number of wins and ties yielded by each method. The best

alue by column is highlighted by a shaded background. The re-

aining columns show the results for the Friedman test. The first

ne shows effectiveness ranking of methods, ordered from the best

ark (top row) to the worst. Note that the best method is es-

ablished as the control algorithm. The second column contains

he adjusted p -values for each method according to the post hoc

olm’s test. The same level of significance (α = 0 . 05) has been es-

ablished for this test.

According to the results shown in Table 7 , we can assert no

ethod is significantly better than NB without discretization when

sing 10 features. As to 100 and 10 0 0 features, the new outper-

orming method is SU although without showing statistically sig-

ificance with respect to most of the alternatives.

Fig. 3 depicts selection time spent by each algorithm, as well

s the amount of reduction performed by each selection scheme,

anging from ten to one thousand features. No selection stands

http://moa.cms.waikato.ac.nz/moa-extensions/

50 S. Ramírez-Gallego et al. / Neurocomputing 239 (2017) 39–57

Fig. 4. Plots of prequential accuracy (in %), CPU processing time (in seconds) and memory usage (in RAM-hours) over the data stream progress (processed instances) for

feature selection methods on spam_data benchmark.

Fig. 5. Plots of prequential accuracy (in %), CPU processing time (in seconds) and memory usage (in RAM-hours) over the data stream progress (processed instances) for

feature selection methods on usenet3 benchmark.

Table 7

Wilcoxon test results and average rankings of fea-

ture selectors (Friedman Procedure & Adjusted

p -value with Holm’s Test) for accuracy.

c

p

a

c

b

n

u

c

5

e

h

t

s

c

i

d

T

H

F

as the fastest alternative. Despite the complete set of feature is

used for predictions, this alternative offers better results due to the

avoidance of feature relevance computations. Among the selection

alternatives, OFS performs faster than the information-based selec-

tors. However, OFS has shown in Table 6 to obtain less accurate

schemes than its competitors.

Although a better reduction rate is achieved in 10-features

scheme (close to 100% in mean), by selecting 10 0 0 features we can

yield better accuracy, while the obtained reduction rate is still ac-
eptable (> 25%). Please note that no selection is conducted on 4/7

roblems when we choose the 10 0 0-features scheme since there

re not enough attributes to select.

In conclusion, SU-10 0 0 can be elected as the best choice be-

ause of its competitive accuracy results similar to those yielded

y NB and displayed reduction rates. Time results do not show sig-

ificant differences between examined methods.

Detailed results on the entire data stream for spam_data and

senet3 benchmarks with respect to obtained prequential accura-

ies, CPU usage and memory usage are depicted in Figs. 4 and 5 .

.3. Instance selection

Here, we evaluate how IS methods perform in non-stationary

nvironments. As opposed to Section 4.1 , in this experiment we

ave included datasets with both numerical and nominal at-

ributes. In previous experiments [13] instance selectors were

hown to be impractical when dealing with medium datasets. Be-

ause of that we have discarded those problems with a number of

nstances > 10 0, 0 0 0. Additionally, we have created new artificial

atasets with a lower number of examples (10,0 0 0 instances).

Accuracy displayed by examined methods are given in Table 8 .

able 9 shows results on accuracy for the Wilcoxon and Friedman–

olm test, following the same scheme presented in Section 4.1 .

rom these results, we can conclude that:

• The best method on average is the updated kNN without selec-

tion (80.49%). The closest competitor (CBE) is five units below

kNN. Other online methods, like FISH or ICF, do not respond

well to concept drifts.

• No method is statistically better than updated kNN. Although

kNN wins in each pairwise comparison in Wilcoxon tests, it

only significantly overcomes (α = 0 . 05) FISH and ICF according

to Friedman–Holm tests.

S. Ramírez-Gallego et al. / Neurocomputing 239 (2017) 39–57 51

Fig. 6. Box-plot representation for selection time and reduction (IS).

Table 8

Total test accuracy by method (IS).

NEFCSSRR ICF CBE FISH kNN

elecNormNew 67 .7652 43 .7882 73 .8105 60 .0455 84 .0815

powersupply 11 .9400 4 .2502 12 .3800 5 .4435 15 .1296

spambase 81 .6779 39 .3827 97 .5440 95 .9139 95 .1532

spam_data 88 .8782 25 .6113 91 .1197 77 .3488 93 .9833

spam_nominal 100 .0 0 0 0 100 .0 0 0 0 100 .0 0 0 0 100 .0 0 0 0 100 .0 0 0 0

usenet1 56 .6667 54 .5333 54 .0667 55 .20 0 0 56 .4667

usenet2 61 .20 0 0 63 .4667 48 .40 0 0 69 .80 0 0 68 .20 0 0

usenet_recurrent 100 .0 0 0 0 100 .0 0 0 0 100 .0 0 0 0 100 .0 0 0 0 100 .0 0 0 0

blips 90 .8900 34 .1300 94 .2300 31 .3200 97 .1800

sudden_drift 76 .5300 61 .7300 74 .2300 60 .8700 82 .6600

gradual_drift 68 .2700 52 .3600 74 .4500 52 .0200 81 .2700

gradual_recurring_drift 87 .5800 28 .9400 92 .6500 28 .8400 96 .3300

incremental_fast 65 .8900 51 .7700 68 .40 0 0 55 .8300 77 .2800

incremental_slow 72 .4300 50 .9800 68 .70 0 0 56 .5800 79 .10 0 0

MEAN 73 .5513 50 .7816 74 .9986 60 .6580 80 .4882

Table 9

Wilcoxon test results and average rankings of methods (Friedman

Procedure & Adjusted p -value with Holm’s Test) for accuracy.

b

c

Table 10

Classification test accuracy after discretization.

PiD IDA OC Naïve Bayes

airlines 63 .0057 64 .1563 65 .0723 64 .5504

powersupply 2 .9237 13 .5793 11 .2938 16 .1087

elecNormNew 71 .9522 76 .6905 74 .0731 73 .3625

spambase 98 .0439 97 .8700 97 .6744 82 .8081

kddcup_10 99 .1474 98 .4644 98 .1404 97 .1908

poker-lsn 55 .0335 59 .4337 58 .5465 59 .5528

covtypeNorm 66 .6306 62 .7235 64 .2254 60 .5208

blips 74 .5680 66 .4494 64 .2148 60 .9060

sudden_drift 65 .7736 81 .3168 77 .8808 83 .8144

gradual_drift_med 60 .8404 82 .8908 80 .1032 84 .70 0 0

gradual_recurring_drift 65 .1678 58 .5250 58 .5612 56 .7450

incremental_fast 73 .9900 75 .6472 75 .6036 76 .3642

incremental_slow 65 .6074 76 .9186 75 .4316 78 .0688

MEAN 66 .3603 70 .3589 69 .2939 68 .8225

h

i

s

d

k

c

g

c

a

5

c

c

c

t

fi

o

e

m

i

• Selection methods make decisions about the relevance or dif-

ficulty of a given instance without knowing the future state

of the stream. It is normal that the no-selection option always

performs better than others. It only depends on the amount of

noise introduced by each problem and not by other factors like

redundancy.

Regarding reduction and time, Fig. 3 depicts the distribution for

oth variables. From these plots, we can claim that CBE can be

onsidered as the most accurate solution, and it also offers the
ighest reduction rates, at the cost of increased time complex-

ty. NEFCSSRR also represents an interesting option as this method

hows precise, and performs faster than CBE. The outstanding re-

uction rate of FISH is explained because it normally selects the

NN for each new example. This fact also explains its poor out-

ome on accuracy.

Detailed results on the entire data stream for sudden_drift and

radual_drift benchmarks with respect to obtained prequential ac-

uracies, CPU usage and memory usage are depicted in Figs. 7

nd 8 .

.4. Discretization

To evaluate the ability of supervised discretizers to reduce the

ontinuous feature space, we propose a new study with three dis-

retization methods for data streams. NB and Incremental Dis-

retization Algorithm (IDA) [11] have been elected as benchmark

o assess the quality of supervised discretization schemes. The

rst one employs a gaussian estimation method, whereas the sec-

nd one employs an unsupervised scheme based on quantile-

stimation. In this experiment, only datasets with at least one nu-

erical attribute have been considered. Email-based dataset used

n Section 4.1 are thus discarded.

52 S. Ramírez-Gallego et al. / Neurocomputing 239 (2017) 39–57

Fig. 7. Plots of prequential accuracy (in %), CPU processing time (in s.) and memory usage (in RAM-hours) over the data stream progress (processed instances) for instance

selection methods on sudden_drift benchmark.

Fig. 8. Plots of prequential accuracy (in %), CPU processing time (in s.) and memory usage (in RAM-hours) over the data stream progress (processed instances) for instance

selection methods on gradual_drift benchmark.

Table 11

Wilcoxon test results and average rankings of meth-

ods (Friedman Procedure & Adjusted p-value with

Holm’s Test) for accuracy.

c

(

i

r

O

b

p

t

t

p

r

c

m

w

m

i

g

c

a

6

a

o

s

w

Tables 10 and 11 contain test accuracy results for NB classifi-

cation with and without explicit discretization. From these results,

we can conclude the following statements:

• The most accurate method (in average) is IDA, an unsuper-

vised method based on quantile-estimation and a sampling ap-

proach. However, its results are pretty close to those obtained

by OC and NB. OC also outperforms the base solution, but with

smaller margin than presented by IDA.

• According to the Wilcoxon test, we can statistically assert that

IDA is only better than OC. Nevertheless this claim is rejected

by Friedman’s procedure, with a p -value far from the standard

acceptance thresholds: 0.9 or 0.95. Although some improve-

ment can be achieved by using supervised discretization, it can

be deemed as superfluous and likely suboptimal.

• PiD represents the worst choice in this framework. Yet, it is

specially remarkable that PiD is able to obtain the best accu-

racy mark in 5/13 datasets, with an outstanding mark in the

blip dataset. This fact can be explained by the high number

of parameters to be tuned in PiD and the high dependency

on their values. Among the list of parameters, a global mini-

mum and the maximum value need to be defined for the whole

set of features, which is unfeasible in streaming environments.
This parameter is essential as determines the expansion rate for

new intervals, thus it may be possible to tailor it specifically for

some datasets.

Apart from the previous deficiencies, Fig. 9 a shows a high time-

omplexity of OC, as a result of a high number of data structures

binary tree, several queues, etc.) to be managed. IDA holds a sim-

lar time performance to NB.

Fig. 9 b illustrates the reduction performed by each method, rep-

esented as number of intervals generated per method. In this case,

C obtains the simplest solutions thanks to the control performed

y χ2 . IDA defines the number of intervals before launching any

rocess and PiD’s inaccuracy is explained by a huge number of in-

ervals generated initially (≈ 500 per feature), as well as during

he splitting process. Please notice that the subsequent merging

rocess launched by the second layer is just not able to efficiently

educe such many input intervals.

As discussed before, evolving intervals sharply affect streaming

lassification since new and deleted intervals normally imply dra-

atic changes in the learning process. New models and techniques

ith a better interaction between discretization and classification

ust be designed if we want to transform online discretization

nto a truly useful tool for data analytics.

Detailed results on the entire data stream for sudden_drift and

radual_drift benchmarks with respect to obtained prequential ac-

uracies, CPU usage and memory usage are depicted in Figs. 10

nd 11 .

. Data preprocessing for data stream mining: lessons learned

nd future directions

In this section we will discuss observations made on the basis

f the presented survey of existing preprocessing methods for data

treams, as well as the accompanying experimental study. Then,

e will outline open challenges and future directions in this field.

S. Ramírez-Gallego et al. / Neurocomputing 239 (2017) 39–57 53

Fig. 9. Box-plot representation for discretization time and reduction (discretization).

Fig. 10. Plots of prequential accuracy (in %), CPU processing time (in s.) and memory usage (in RAM-hours) over the data stream progress (processed instances) for dis-

cretization methods on sudden_drift benchmark.

Fig. 11. Plots of prequential accuracy (in %), CPU processing time (in s.) and memory usage (in RAM-hours) over the data stream progress (processed instances) for dis-

cretization methods on gradual_drift benchmark.

6

t

.1. Lessons learned

Some important outcomes and guidelines can be inferred from

he study, which we enumerate below:

• A wide range of phenomenons specific to data stream min-

ing, ranging from concept-evolution to dynamic feature space,

directly affects the features describing incoming instances.

DXMiner is the only system that address all these problem
through a combined strategy based on an information-based FS

and an unsupervised selection method.

• As expected FS does not improve accuracy results presented by

the option with the full set of features. Nevertheless FS solu-

tions are able to yield simpler solutions with similar predic-

tive performance, which is of crucial importance to stream min-

ing frameworks. SU, the selector included in DXMiner, can be

elected as the best method for FS because of its outstanding

results in accuracy and its low complexity.

54 S. Ramírez-Gallego et al. / Neurocomputing 239 (2017) 39–57

7

o

a

B

s

d

t

l

t

h

d

m

d

i

r

P

B

t

2

a

(

• Competence-based methods for IS tend to maintain case-bases

polished in the highest degree, free of noise and redundancy.

However they are characterized by a very high computational

complexity. In distance-based solutions, this overhead is even

bigger, while not being balanced by any gains in overall ac-

curacy. In general, all instance selectors have shown an unfa-

vorable behavior with respect to time and memory require-

ments, thus preventing their meaningful applications in high-

speed data stream mining.

• CBE can be elected as best option for IS in terms of precision

and reduction. NEFCSSRR also presents itself as an interesting

option, with similar results to CBE, however requiring more

computational resources.

• When selecting preprocessing methods for data stream mining

we must consider not only the obtained accuracy, but also the

computational costs that are associated with this method. As

our study clearly showed some of the considered methods are

characterized by bottlenecks in either CPU or memory usage,

thus making them unsuitable for high-speed data streams.

6.2. Challenges and future directions

Here we outline the main challenges that should be addressed

by the research community in order to obtain a meaningful

progress in the area of preprocessing techniques for data stream

problems:

• A scarce number of online and supervised discretizers have

been proposed in the literature so far. Most of current methods

are unsupervised techniques based on quantiles, using an adap-

tation strategy with smooth shifts in intervals’ definition and

the previous definition of intervals. Adding class information to

the discretization process would allow to accommodate for lo-

cal drifts, where properties of only some class changes. Addi-

tionally, we envision the potential of ensemble learning that

will allow to use various discretization intervals to allow for

training a diverse set of classifiers.

• Current online discretizers have shown to perform poorly as

their adjustments tend to be more abrupt than those yielded

by quantile-based techniques (see Section 4.3). However, this

problem has been compensated by the inclusion of class infor-

mation in the discretization process. Abrupt tweaks and label-

ings are two major concerns that must be addressed by fur-

ther developments in this area. This shows that there is a need

for combining discretization with active learning solutions. This

would allow for selective labeling of only these samples that

yield highest probability of influencing the intervals’ definitions.

• No pure wrapper-based solutions have been proposed for on-

line problems yet. Efficient implementations of these methods

may be challenging die to their increased computational cost,

but this may be compensated by the inherent discriminative

ability of online learners and their adaptiveness to drifts. One

potential solution would be to combine filter and wrapper ap-

proaches in order to reduce the number of times the more

costly method will be used and to allow for continuous clas-

sification even during the wrapper computation. Another po-

tential solution lies in using high-performance solutions based

on GPU or distributed computing to reduce the computational

load connected with this approach [136] .

• There is a need for further research on feature and instance se-

lection methods that can directly address the problem of con-

cept drift. One way of approaching this would be to combine

instance selection approaches with drift detection module that

could directly influence the usability of prototypes. Whenever

a strong drift is being detected, one may discard the previous

prototypes and use only the incoming objects. After stream sta-
bilizes, the instance selection can be repeated to adapt to the

current concept. Another potential solution is to have weighted

prototypes, where weight would reflect how long time ago they

were created and how useful they are to mining current state

of the stream. This would allow to smoothly forget outdated

prototypes, while keeping in memory the ones still useful. Lo-

cal drifts that occur only within a subset of classes should also

be considered. In such a case only selected prototypes must

be modified in the areas of drift presence. This would require

class-based prototype pruning methods and a method to over-

look the influence of these drifting prototypes on stationary

classes.

• There is a need for further developing preprocessing methods

characterized by a low computational requirements that would

allow for a real-time decision making when dealing with big

and high-speed data streams [137] . In case of data stream min-

ing one must always balance the obtained accuracy with the

amount of time spent on the computations. Therefore, develop-

ing approximate solutions with stopping criteria could be ben-

eficial, especially in cases of sudden changes.

• There exist no solutions that directly take into account the pos-

sibility of recurrent concept drifts. Therefore, it seems promis-

ing to develop preprocessing methods that could accommodate

the fact that previously used set of features / instances / dis-

crete bins may become useful once again in the future. Simplest

way of approaching this would be to create a secondary buffer

storing these items for a certain amount of time, allowing to

reuse them when necessary. To avoid unacceptable memory re-

quirements this buffer should be flushed after a certain period

of time with no action.

• There is a need to develop data preprocessing methods for

more complex data stream types. Such techniques are crucial

for imbalanced [138,139] , multi-label [140] and multi-instance

[141] problems and should be extended into the streaming

framework.

. Concluding remarks

We have presented a thorough survey of data reduction meth-

ds applied to data stream mining. Basic concepts, existing works,

nd present and future challenges have been analyzed in this work.

ased on a number of relevant characteristics, we have proposed a

imple, yet useful taxonomy of current developments in the online

ata preprocessing.

Most relevant methods have also been analyzed empirically

hrough a conscious experimental framework, which includes a

ong and diverse list of artificial and real datasets with different

ypes of drift. A statistical analysis based on non-parametric tests

ave been conveyed to support the resulting conclusions.

Concluding this work, we can claim that data preprocessing for

ata streams is still in its early days. New and more sophisticated

ethods that deal with previously unsolved challenges need to be

esigned in the years to follow. Great progress has been made in

nstance and feature selection, but other tasks like discretization

emains yet to be properly addressed.

Acknowledgments

This work is supported by the Spanish National Research

roject TIN2014-57251-P , the Foundation BBVA project 75/2016

igDaPTOOLS, the Andalusian Research Plan P11-TIC-7765, and

he Polish National Science Center under the grant no. DEC-

013/09/B/ST6/02264 . S. Ramírez-Gallego holds a FPU schol-

rship from the Spanish Ministry of Education and Science

FPU13/0 0 047).

http://dx.doi.org/10.13039/501100003339
http://dx.doi.org/10.13039/501100004281

S. Ramírez-Gallego et al. / Neurocomputing 239 (2017) 39–57 55

R

eferences

[1] S. García , J. Luengo , F. Herrera , Data Preprocessing in Data Mining, Springer,

2015 .

[2] S. García , J. Luengo , F. Herrera , Tutorial on practical tips of the most influ-
ential data preprocessing algorithms in data mining, Knowl. Based Syst. 98

(2016) 1–29 .
[3] D. Pyle , Data Preparation for Data Mining, Morgan Kaufmann Publishers Inc.,

1999 .
[4] V. Mayer-Schnberger , K. Cukier , Big Data: A Revolution That Will Transform

How We Live, Work and Think., 2013 .

[5] S. García , S. Ramírez-Gallego , J. Luengo , J.M. Benítez , F. Herrera , Big data pre-
processing: methods and prospects, Big Data Anal. 1 (1) (2016) 9 .

[6] J.a. Gama , Knowledge Discovery from Data Streams, Chapman & Hall/CRC,
2010 .

[7] J. Gama , I. Zliobaite , A. Bifet , M. Pechenizkiy , A. Bouchachia , A survey on con-
cept drift adaptation, ACM Comput. Surv. 46 (4) (2014) 4 4:1–4 4:37 .

[8] I. Zliobaite , B. Gabrys , Adaptive preprocessing for streaming data, IEEE Trans.
Knowl. Data Eng. 26 (2) (2014) 309–321 .

[9] M.M. Masud , Q. Chen , J. Gao , L. Khan , J. Han , B. Thuraisingham , Classifica-

tion and novel class detection of data streams in a dynamic feature space,
in: Proceedings of the 2010 European Conference on Machine Learning and

Knowledge Discovery in Databases: Part II, in: ECML PKDD’10, 2010,
pp. 337–352 .

[10] J.P. Barddal , H.M. Gomes , F. Enembreck , B. Pfahringer , A. Bifet , On dynamic
feature weighting for feature drifting data streams, in: Machine Learning

and Knowledge Discovery in Databases - European Conference, ECML PKDD

2016, Riva del Garda, Italy, September 19–23, 2016, Proceedings, Part II, 2016,
pp. 129–144 .

[11] G. Webb , Contrary to popular belief incremental discretization can be sound,
computationally efficient and extremely useful for streaming data, in: IEEE

International Conference on Data Mining (ICDM), 2014, pp. 1031–1036 .
[12] V. Bolón-Canedo , N.S.-M. no , A. Alonso-Betanzos , Recent advances and emerg-

ing challenges of feature selection in the context of big data, Knowl. Based

Syst. 86 (2015) 33–45 .
[13] N. Lu , J. Lu , G. Zhang , R.L. de Mantaras , A concept drift-tolerant case-base

editing technique, Artif. Intell. 230 (2016) 108–133 .
[14] M.M. Gaber , Advances in data stream mining, Wiley Interdisc. Rew.: Data Min.

Knowl. Discov. 2 (1) (2012) 79–85 .
[15] E. Lughofer , P.P. Angelov , Handling drifts and shifts in on-line data streams

with evolving fuzzy systems, Appl. Soft Comput. 11 (2) (2011) 2057–2068 .

[16] L.I. Kuncheva , Classifier ensembles for detecting concept change in streaming
data: overview and perspectives, in: 2nd Workshop SUEMA 2008 (ECAI 2008),

2008, pp. 5–10 .
[17] D. Brzezinski , Block-based and Online Ensembles for Concept-drifting Data

Streams, Poznan University of Technology, 2015 Ph.D. thesis .
[18] L.L. Minku , X. Yao , A.P. White , The impact of diversity on online ensemble

learning in the presence of concept drift, IEEE Trans. Knowl. Data Eng. 22

(2009) 730–742 .
[19] I. Khamassi, M. Sayed-Mouchaweh, M. Hammami, K. Ghédira, Self-adaptive

windowing approach for handling complex concept drift, Cogn. Comput. 7 (6)
(2015) 772–790, doi: 10.1007/s12559- 015- 9341- 0 .

[20] J. Gama , P. Medas , G. Castillo , P.P. Rodrigues , Learning with drift detection,
in: Advances in Artificial Intelligence - SBIA 2004, 17th Brazilian Symposium

on Artificial Intelligence, São Luis, Maranhão, Brazil, 29 - October 1, 2004,

Proceedings, 2004, pp. 286–295 .
[21] A. Bifet , R. Gavaldà, Learning from time-changing data with adaptive win-

dowing, in: Proceedings of the Seventh SIAM International Conference on
Data Mining, April 26–28, 2007, Minneapolis, Minnesota, USA, 2007,

pp. 4 43–4 48 .
[22] P. Sobolewski , M. Wo ́niak , Concept drift detection and model selection with

simulated recurrence and ensembles of statistical detectors, J. Univ. Comput.
Sci. 19 (4) (2013) 462–483 .

[23] R.M.M. Vallim , R.F. de Mello , Proposal of a new stability concept to de-

tect changes in unsupervised data streams, Expert Syst. Appl. 41 (16) (2014)
7350–7360 .

[24] B.I.F. Maciel , S.G.T. de Carvalho Santos , R.S.M. de Barros , A lightweight con-
cept drift detection ensemble, in: 27th IEEE International Conference on Tools

with Artificial Intelligence, ICTAI 2015, Vietri sul Mare, Italy, 9–11, 2015, 2015,
pp. 1061–1068 .

[25] M. Wo ́niak , P. Ksieniewicz , B. Cyganek , K. Walkowiak , Ensembles of heteroge-

neous concept drift detectors - experimental study, in: Computer Information
Systems and Industrial Management - 15th IFIP TC8 International Conference,

CISIM 2016, Vilnius, Lithuania, 14–16, 2016, Proceedings, 2016, pp. 538–549 .
[26] G. Hulten , L. Spencer , P.M. Domingos , Mining time-changing data streams, in:

Proceedings of the seventh ACM SIGKDD international conference on Knowl-
edge discovery and data mining, San Francisco, CA , USA , 26–29, 2001, 2001,

pp. 97–106 .

[27] J. Shan , J. Luo , G. Ni , Z. Wu , W. Duan , CVS: fast cardinality estimation for
large-scale data streams over sliding windows, Neurocomputing 194 (2016)

107–116 .
[28] B. Krawczyk , M. Wo ́niak , One-class classifiers with incremental learning and

forgetting for data streams with concept drift, Soft Comput. 19 (12) (2015)
3387–3400 .
[29] L. Du , Q. Song , X. Jia , Detecting concept drift: an information entropy based
method using an adaptive sliding window, Intell. Data Anal. 18 (3) (2014)

337–364 .
[30] O. Mimran , A. Even , Data stream mining with multiple sliding windows for

continuous prediction, in: 22st European Conference on Information Systems,
ECIS 2014, Tel Aviv, Israel, 9–11, 2014, 2014 .

[31] P. Domingos , G. Hulten , Mining high-speed data streams, in: I. Parsa, R. Ra-
makrishnan, S. Stolfo (Eds.), Proceedings of the ACM Sixth International Con-

ference on Knowledge Discovery and Data Mining, ACM Press, Boston, USA,

20 0 0, pp. 71–80 .
[32] W. Liu , Z. Wang , X. Liu , N. Zeng , Y. Liu , F.E. Alsaadi , A survey of deep neu-

ral network architectures and their applications, Neurocomputing 234 (2017)
11–26 .

[33] W.M. Czarnecki , J. Tabor , Online extreme entropy machines for streams clas-
sification and active learning, in: Proceedings of the 9th International Confer-

ence on Computer Recognition Systems CORES 2015, Wroclaw, Poland, 25–27

May 2015, 2015, pp. 371–381 .
[34] B. Lakshminarayanan , D.M. Roy , Y.W. Teh , Mondrian forests: efficient on-

line random forests, in: Advances in Neural Information Processing Systems
27: Annual Conference on Neural Information Processing Systems 2014, 8–13

2014, Montreal, Quebec, Canada, 2014, pp. 3140–3148 .
[35] M. Wo ́niak , Application of combined classifiers to data stream classification,

in: Computer Information Systems and Industrial Management - 12th IFIP

TC8 International Conference, CISIM 2013, Krakow, Poland, 25–27, 2013. Pro-
ceedings, 2013, pp. 13–23 .

[36] M. Wo ́niak , M. Graña , E. Corchado , A survey of multiple classifier systems as
hybrid systems, Inf. Fusion 16 (2014) 3–17 .

[37] R. Elwell , R. Polikar , Incremental learning of concept drift in nonstationary
environments, IEEE Trans. Neural Netw. 22 (10) (2011) 1517–1531 .

[38] Y. Sun , K. Tang , L.L. Minku , S. Wang , X. Yao , Online ensemble learning of data

streams with gradually evolved classes, IEEE Trans. Knowl. Data Eng. 28 (6)
(2016) 1532–1545 .

[39] G. Song , Y. Ye , H. Zhang , X. Xu , R.Y. Lau , F. Liu , Dynamic clustering forest: an
ensemble framework to efficiently classify textual data stream with concept

drift, Inf. Sci. 357 (2016) 125–143 .
[40] L. Canzian , Y. Zhang , M. van der Schaar , Ensemble of distributed learners for

online classification of dynamic data streams, IEEE Trans. Signal Inf. Process.

Netw. 1 (3) (2015) 180–194 .
[41] L.L. Minku , X. Yao , DDD: a new ensemble approach for dealing with concept

drift, IEEE Trans. Knowl. Data Eng. 24 (4) (2012) 619–633 .
[42] L.L. Minku , A.P. White , X. Yao , The impact of diversity on online ensemble

learning in the presence of concept drift, IEEE Trans. Knowl. Data Eng. 22 (5)
(2010) 730–742 .

[43] A. Bifet , G. Holmes , B. Pfahringer , Leveraging bagging for evolving data

streams, in: Machine Learning and Knowledge Discovery in Databases, Euro-
pean Conference, ECML PKDD 2010, Barcelona, Spain, 20–24, 2010, Proceed-

ings, Part I, 2010, pp. 135–150 .
[44] D. Brzezinski , J. Stefanowski , Combining block-based and online methods in

learning ensembles from concept drifting data streams, Inf. Sci. 265 (2014)
50–67 .

[45] N. Japkowicz , M. Shah , Evaluating learning algorithms: a classification per-
spective, Cambridge University Press, 2011 .

[46] A. Shaker , E. Hüllermeier , Recovery analysis for adaptive learning from non-s-

tationary data streams: experimental design and case study, Neurocomputing
150 (2015) 250–264 .

[47] J. Gama , R. Sebastião , P.P. Rodrigues , On evaluating stream learning algo-
rithms, Mach. Learn. 90 (3) (2013) 317–346 .

[48] D. Brzezinski , J. Stefanowski , Prequential AUC for classifier evaluation and
drift detection in evolving data streams, in: New Frontiers in Mining Com-

plex Patterns - Third International Workshop, NFMCP 2014, Held in Conjunc-

tion with ECML-PKDD 2014, Nancy, France, 19, 2014, Revised Selected Papers,
2014, pp. 87–101 .

[49] M. Salehi , C. Leckie , J.C. Bezdek , T. Vaithianathan , X. Zhang , Fast memory effi-
cient local outlier detection in data streams, IEEE Trans. Knowl. Data Eng. 28

(12) (2016) 3246–3260 .
[50] I. Zliobaite , M. Budka , F.T. Stahl , Towards cost-sensitive adaptation: When is it

worth updating your predictive model? Neurocomputing 150 (2015) 240–249 .

[51] A. Bifet , G.D.F. Morales , J. Read , G. Holmes , B. Pfahringer , Efficient online eval-
uation of big data stream classifiers, in: Proceedings of the 21th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, Sydney,
NSW, Australia, 10–13, 2015, 2015, pp. 59–68 .

[52] M. Wo ́niak , P. Ksieniewicz , B. Cyganek , A. Kasprzak , K. Walkowiak , Active
learning classification of drifted streaming data, in: International Conference

on Computational Science 2016, ICCS 2016, 6–8 June 2016, San Diego, Califor-

nia, USA, 2016, pp. 1724–1733 .
[53] I. Zliobaite , A. Bifet , B. Pfahringer , G. Holmes , Active learning with drifting

streaming data, IEEE Trans. Neural Netw. Learn. Syst. 25 (1) (2014) 27–39 .
[54] Y. Dong , N. Japkowicz , Threaded ensembles of supervised and unsupervised

neural networks for stream learning, in: Advances in Artificial Intelligence -
29th Canadian Conference on Artificial Intelligence, Canadian AI 2016, Victo-

ria, BC, Canada, May 31 - 3, 2016. Proceedings, 2016, pp. 304–315 .

[55] M.J. Hosseini , A. Gholipour , H. Beigy , An ensemble of cluster-based classifiers
for semi-supervised classification of non-stationary data streams, Knowl. Inf.

Syst. 46 (3) (2016) 567–597 .

http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0001
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0001
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0001
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0001
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0002
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0002
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0002
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0002
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0003
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0003
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0004
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0004
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0004
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0005
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0005
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0005
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0005
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0005
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0005
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0006
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0006
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0007
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0007
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0007
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0007
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0007
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0007
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0008
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0008
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0008
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0009
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0009
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0009
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0009
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0009
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0009
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0009
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0010
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0010
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0010
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0010
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0010
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0010
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0011
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0011
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0012
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0012
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0012
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0012
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0013
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0013
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0013
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0013
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0013
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0014
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0014
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0015
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0015
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0015
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0016
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0016
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0017
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0017
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0018
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0018
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0018
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0018
http://dx.doi.org/10.1007/s12559-015-9341-0
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0020
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0020
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0020
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0020
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0020
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0021
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0021
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0021
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0022
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0022
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0022
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0023
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0023
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0023
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0024
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0024
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0024
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0024
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0025
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0025
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0025
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0025
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0025
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0026
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0026
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0026
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0026
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0027
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0027
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0027
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0027
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0027
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0027
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0028
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0028
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0028
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0029
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0029
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0029
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0029
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0030
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0030
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0030
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0031
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0031
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0031
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0032
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0032
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0032
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0032
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0032
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0032
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0032
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0033
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0033
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0033
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0034
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0034
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0034
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0034
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0035
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0035
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0036
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0036
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0036
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0036
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0037
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0037
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0037
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0038
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0038
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0038
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0038
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0038
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0038
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0039
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0039
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0039
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0039
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0039
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0039
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0039
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0040
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0040
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0040
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0040
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0041
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0041
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0041
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0042
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0042
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0042
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0042
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0043
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0043
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0043
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0043
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0044
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0044
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0044
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref004a
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref004a
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref004a
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0045
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0045
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0045
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0046
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0046
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0046
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0046
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0047
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0047
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0047
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0048
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0048
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0048
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0048
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0048
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0048
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0049
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0049
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0049
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0049
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0050
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0050
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0050
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0050
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0050
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0050
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0051
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0051
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0051
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0051
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0051
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0051
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0052
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0052
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0052
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0052
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0052
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0053
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0053
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0053
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0054
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0054
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0054
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0054

56 S. Ramírez-Gallego et al. / Neurocomputing 239 (2017) 39–57

[56] B.S. Parker , L. Khan , Detecting and tracking concept class drift and emergence
in non-stationary fast data streams, in: Proceedings of the Twenty-Ninth AAAI

Conference on Artificial Intelligence, 25–30, 2015, Austin, Texas, USA., 2015,
pp. 2908–2913 .

[57] P. Sobolewski , M. Wo ́zniak , Ldcnet: minimizing the cost of supervision for
various types of concept drift, in: Proceedings of the 2013 IEEE Sympo-

sium on Computational Intelligence in Dynamic and Uncertain Environments,
CIDUE 2013, IEEE Symposium Series on Computational Intelligence (SSCI),

16–19 April 2013, Singapore, 2013, pp. 68–75 .

[58] G. Shikkenawis , S.K. Mitra , 2D orthogonal locality preserving projection for
image denoising, IEEE Trans. Image Process. 25 (1) (2016) 262–273 .

[59] A .A . Mohamad AL-Shiha , W. Woo , S. Dlay , Multi-linear neighborhood preserv-
ing projection for face recognition, Pattern Recogn. 47 (2) (2014) 544–555 .

[60] H. Zhang , Q.M. Jonathan Wu , T.W.S. Chow , M. Zhao , A two-dimensional neigh-
borhood preserving projection for appearance-based face recognition, Pattern

Recogn. 45 (5) (2012) 1866–1876 .

[61] G. Doquire , M. Verleysen , Feature selection with missing data using mutual
information estimators, Neurocomputing 90 (2012) 3–11 .

[62] V. Lopez , I. Triguero , C.J. Carmona , S. Garcia , F. Herrera , Addressing imbal-
anced classification with instance generation techniques: ipade-id, Neuro-

computing 126 (2014) 15–28 .
[63] A. Ferreira , M. Figueiredo , Incremental filter and wrapper approaches for fea-

ture discretization, Neurocomputing 123 (2014) 60–74 .

[64] Y. Yang , G.I. Webb , Discretization for Naive–Bayes learning: managing dis-
cretization bias and variance, Mach. Learn. 74 (1) (2009) 39–74 .

[65] H.-W. Hu , Y.-L. Chen , K. Tang , A dynamic discretization approach for con-
structing decision trees with a continuous label, IEEE Trans. Knowl. Data Eng.

21 (11) (2009) 1505–1514 .
[66] A. Cano , D.T. Nguyen , S. Ventura , K.J. Cios , ur-caim: improved CAIM discretiza-

tion for unbalanced and balanced data, Soft Comput. 20 (1) (2016) 173–188 .

[67] A. Cano , J.M. Luna , E.L.G. Galindo , S. Ventura , LAIM discretization for multi-
-label data, Inf. Sci. 330 (2016b) 370–384 .

[68] X. Wu , K. Yu , H. Wang , W. Ding , Online streaming feature selection, in:
Proceedings of the 27th International Conference on Machine Learning

(ICML-10), 2010, pp. 1159–1166 .
[69] S. Eskandari , M. Javidi , Online streaming feature selection using rough sets,

Int. J. Approx. Reason. 69 (C) (2016) 35–57 .

[70] I. Katakis , G. Tsoumakas , I.P. Vlahavas , On the utility of incremental feature
selection for the classification of textual data streams, in: Advances in Infor-

matics, 10th Panhellenic Conference on Informatics, PCI 2005, Volos, Greece,
November 11–13, 2005, Proceedings, 2005, pp. 338–348 .

[71] J.P. Barddal , H.M. Gomes , F. Enembreck , A survey on feature drift adaptation,
in: IEEE 27th International Conference on Tools with Artificial Intelligence (IC-

TAI), 2015, pp. 1053–1060 .

[72] H.-L. Nguyen , Y.-K. Woon , W.-K. Ng , L. Wan , Heterogeneous ensemble for fea-
ture drifts in data streams, in: Proceedings of the 16th Pacific-Asia Conference

on Advances in Knowledge Discovery and Data Mining - Volume Part II, in:
PAKDD’12, 2012, pp. 1–12 .

[73] V.R. Carvalho , W.W. Cohen , Single-pass online learning: performance, vot-
ing schemes and online feature selection, in: Proceedings of the 12th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining,
in: KDD ’06, 2006, pp. 548–553 .

[74] J. Gomes , M. Gaber , P. Sousa , E. Menasalvas , Mining recurring concepts in a

dynamic feature space, IEEE Trans. Neural Netw. Learn. Syst. 25 (1) (2014)
95–110 .

[75] X. Wu , K. Yu , W. Ding , H. Wang , X. Zhu , Online feature selection with stream-
ing features, IEEE Trans. Pattern Anal. Mach. Intell. 35 (5) (2013) 1178–1192 .

[76] S.C.H. Hoi , J. Wang , P. Zhao , R. Jin , Online feature selection for mining big
data, in: Proceedings of the 1st International Workshop on Big Data, Streams

and Heterogeneous Source Mining: Algorithms, Systems, Programming Mod-

els and Applications, BigMine 2012, Beijing, China, 12, 2012, 2012, pp. 93–100 .
[77] J. Wang , P. Zhao , S. Hoi , R. Jin , Online feature selection and its applications,

IEEE Trans. Knowl. Data Eng. 26 (3) (2014) 698–710 .
[78] J. Wang , M. Wang , P. Li , L. Liu , Z. Zhao , X. Hu , X. Wu , Online feature selection

with group structure analysis, IEEE Trans. Knowl. Data Eng. 27 (11) (2015)
3029–3041 .

[79] H. Li , X. Wu , Z. Li , W. Ding , Online group feature selection from feature

streams, in: Proceedings of the Twenty-Seventh AAAI Conference on Artificial
Intelligence, 14–18, 2013, Bellevue, Washington, USA., 2013 .

[80] J. Yan , B. Zhang , N. Liu , S. Yan , Q. Cheng , W. Fan , Q. Yang , W. Xi , Z. Chen ,
Effective and efficient dimensionality reduction for large-scale and streaming

data preprocessing, IEEE Trans. Knowl. Data Eng. 18 (2) (2006) 320–333 .
[81] Y. Tadeuchi , R. Oshima , K. Nishida , K. Yamauchi , T. Omori , Quick online

feature selection method for regression -a feature selection method in-

spired by human behavior-, in: Proceedings of the IEEE International Confer-
ence on Systems, Man and Cybernetics, Montréal, Canada, 7–10 20 07, 20 07,

pp. 1895–1900 .
[82] Y. Cai , Y. Sun , J. Li , S. Goodison , Online feature selection algorithm with

bayesian l1 regularization, in: Advances in Knowledge Discovery and Data
Mining, 13th Pacific-Asia Conference, PAKDD 2009, Bangkok, Thailand, 27–30,

2009, Proceedings, 2009, pp. 401–413 .

[83] K. Ooi , T. Ninomiya , Efficient online feature selection based on l1-regularized
logistic regression, in: ICAART 2013 - Proceedings of the 5th International

Conference on Agents and Artificial Intelligence, Volume 2, Barcelona, Spain,
15–18, 2013, 2013, pp. 277–282 .
[84] W. Fan , N. Bouguila , Online learning of a dirichlet process mixture of gener-
alized dirichlet distributions for simultaneous clustering and localized feature

selection, in: Proceedings of the 4th Asian Conference on Machine Learning,
ACML 2012, Singapore, Singapore, 4–6, 2012, 2012, pp. 113–128 .

[85] W. Fan , N. Bouguila , Online variational learning of generalized dirichlet mix-
ture models with feature selection, Neurocomputing 126 (2014) 166–179 .

[86] O. Amayri , N. Bouguila , On online high-dimensional spherical data clustering
and feature selection, Eng. Appl. AI 26 (4) (2013) 1386–1398 .

[87] Z. Yao , W. Liu , Extracting robust distribution using adaptive gaussian mixture

model and online feature selection, Neurocomputing 101 (2013) 258–274 .
[88] H. Yang , M.R. Lyu , I. King , Efficient online learning for multitask feature se-

lection, Trans. Knowl. Discov. Data 7 (2) (2013) 6 .
[89] K. Yu , X. Wu , W. Ding , J. Pei , Towards scalable and accurate online feature

selection for big data, in: 2014 IEEE International Conference on Data Mining,
ICDM 2014, Shenzhen, China, 14–17, 2014, 2014, pp. 660–669 .

[90] A. Roy , Automated online feature selection and learning from high-dimen-

sional streaming data using an ensemble of kohonen neurons, in: 2015 Inter-
national Joint Conference on Neural Networks, IJCNN 2015, Killarney, Ireland,

July 12–17, 2015, 2015, pp. 1–8 .
[91] H. Yang , R. Fujimaki , Y. Kusumura , J. Liu , Online feature selection: a limit-

ed-memory substitution algorithm and its asynchronous parallel variation, in:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, San Francisco, CA , USA , 13–17, 2016, 2016,

pp. 1945–1954 .
[92] M. Hammoodi , F.T. Stahl , M. Tennant , Towards online concept drift detection

with feature selection for data stream classification, in: ECAI 2016 - 22nd Eu-
ropean Conference on Artificial Intelligence, 29 August-2 September 2016, The

Hague, The Netherlands - Including Prestigious Applications of Artificial Intel-
ligence (PAIS 2016), 2016, pp. 1549–1550 .

[93] S. Eskandari , M.M. Javidi , Online streaming feature selection using rough sets,

Int. J. Approx. Reason. 69 (2016) 35–57 .
[94] V. Bolón-Canedo , D. Fernández-Francos , D. Peteiro-Barral , A. Alonso-Betanzos ,

B. Guijarro-Berdiñas , N. Sánchez-Maroño , A unified pipeline for online feature
selection and classification, Expert Syst. Appl. 55 (2016) 532–545 .

[95] Y. Yeh , C. Hsu , Online selection of tracking features using adaboost, IEEE
Trans. Circuits Syst. Video Technol. 19 (3) (2009) 4 42–4 46 .

[96] J. Yang , K. Zhang , Q. Liu , Robust object tracking by online fisher discrimination

boosting feature selection, Comput. Vis. Image Underst. 153 (2016) 100–108 .
[97] K. Yu , W. Ding , X. Wu , LOFS: a library of online streaming feature selection,

Knowl.-Based Syst. 113 (2016) 1–3 .
[98] I. Jolliffe , Principal Component Analysis, Springer Verlag, 1986 .

[99] J. Nie , W. Kotlowski , M.K. Warmuth , Online PCA with optimal regret, J. Mach.
Learn. Res. 17 (173) (2016) 1–49 .

[100] P. Jain , C. Jin , S.M. Kakade , P. Netrapalli , A. Sidford , Streaming PCA: match-

ing matrix bernstein and near-optimal finite sample guarantees for oja’s al-
gorithm, in: Proceedings of the 29th Conference on Learning Theory, COLT

2016, New York, USA, June 23–26, 2016, 2016, pp. 1147–1164 .
[101] E. Hazan , S. Kale , M.K. Warmuth , On-line variance minimization in O(n 2) per

trial, in: Proceedings of the 23rd Annual Conference on Learning Theory, in:
COLT ’10, 2010, pp. 314–315 .

[102] A .A . Joseph , T. Tokumoto , S. Ozawa , Online feature extraction based on accel-
erated kernel principal component analysis for data stream, Evol. Syst. 7 (1)

(2016) 15–27 .

[103] M. Ghashami , D.J. Perry , J.M. Phillips , Streaming kernel principal compo-
nent analysis, in: Proceedings of the 19th International Conference on Arti-

ficial Intelligence and Statistics, AISTATS 2016, Cadiz, Spain, 9–11, 2016, 2016,
pp. 1365–1374 .

[104] L.I. Kuncheva , W.J. Faithfull , PCA feature extraction for change detection in
multidimensional unlabelled streaming data, in: Proceedings of the 21st In-

ternational Conference on Pattern Recognition, ICPR 2012, Tsukuba, Japan,

11–15, 2012, 2012, pp. 1140–1143 .
[105] A .A . Qahtan , B. Alharbi , S. Wang , X. Zhang , A pca-based change detection

framework for multidimensional data streams: change detection in multidi-
mensional data streams, in: Proceedings of the 21th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining, Sydney, NSW,
Australia, 10–13, 2015, 2015, pp. 935–944 .

[106] A. Allahyar , H.S. Yazdi , Online discriminative component analysis feature ex-

traction from stream data with domain knowledge, Intell. Data Anal. 18 (5)
(2014) 927–951 .

[107] F. Sheikholeslami , D. Berberidis , G.B. Giannakis , Kernel-based low-rank fea-
ture extraction on a budget for big data streams, in: 2015 IEEE Global Confer-

ence on Signal and Information Processing, GlobalSIP 2015, Orlando, FL, USA,
14–16, 2015, 2015, pp. 928–932 .

[108] W. Li , J. Yang , J. Zhang , Uncertain canonical correlation analysis for multi-view

feature extraction from uncertain data streams, Neurocomputing 149 (2015)
1337–1347 .

[109] T.M. Cover , P.E. Hart , Nearest neighbor pattern classification, IEEE Trans. Inf.
Theory 13 (1) (1967) 21–27 .

[110] S. García , J. Derrac , J. Cano , F. Herrera , Prototype selection for nearest neigh-
bor classification: taxonomy and empirical study, IEEE Trans. Pattern Anal.

Mach. Intell. 34 (3) (2012) 417–435 .

[111] D.W. Aha , D. Kibler , M.K. Albert , Instance-based learning algorithms, Mach.
Learn. 6 (1) (1991) 37–66 .

[112] M. Salganicoff, Density-adaptive learning and forgetting, in: Machine Learning
Proceedings 1993, Morgan Kaufmann, 1993, pp. 276–283 .

http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0055
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0055
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0055
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0056
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0056
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0056
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0057
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0057
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0057
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0058
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0058
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0058
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0058
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0059
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0059
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0059
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0059
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0059
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0060
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0060
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0060
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0061
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0061
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0061
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0061
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0061
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0061
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0062
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0062
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0062
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0063
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0063
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0063
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0064
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0064
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0064
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0064
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0065
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0065
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0065
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0065
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0065
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0066
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0066
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0066
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0066
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0066
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0067
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0067
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0067
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0067
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0067
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0068
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0068
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0068
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0069
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0069
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0069
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0069
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0070
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0070
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0070
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0070
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0071
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0071
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0071
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0071
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0071
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0072
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0072
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0072
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0073
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0073
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0073
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0073
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0073
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0074
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0074
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0074
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0074
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0074
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0074
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0075
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0075
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0075
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0075
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0075
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0076
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0076
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0076
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0076
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0076
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0077
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0077
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0077
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0077
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0077
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0077
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0077
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0077
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0078
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0078
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0078
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0078
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0078
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0079
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0079
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0079
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0079
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0079
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0079
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0079
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0079
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0079
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0079
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0080
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0080
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0080
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0080
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0080
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0080
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0081
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0081
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0081
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0081
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0081
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0082
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0082
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0082
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0083
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0083
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0083
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0084
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0084
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0084
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0085
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0085
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0085
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0086
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0086
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0086
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0087
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0087
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0087
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0087
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0088
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0088
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0088
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0088
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0088
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0089
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0089
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0090
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0090
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0090
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0090
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0090
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0091
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0091
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0091
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0091
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0092
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0092
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0092
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0093
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0093
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0093
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0093
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0093
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0093
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0093
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0094
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0094
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0094
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0095
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0095
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0095
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0095
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0096
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0096
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0096
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0096
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0097
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0097
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0098
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0098
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0098
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0098
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0099
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0099
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0099
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0099
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0099
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0099
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0100
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0100
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0100
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0100
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0101
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0101
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0101
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0101
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0102
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0102
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0102
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0102
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0103
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0103
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0103
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0104
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0104
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0104
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0104
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0104
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0105
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0105
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0105
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0106
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0106
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0106
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0106
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0107
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0107
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0107
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0107
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0108
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0108
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0108
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0109
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0109
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0109
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0109
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0109
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0110
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0110
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0110
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0110
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0111
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0111

S. Ramírez-Gallego et al. / Neurocomputing 239 (2017) 39–57 57

[

[

[

[

[

[

[

[

[

[

[

s

E

s

a

i

g

b

m

w

m

[113] R. Klinkenberg , Learning drifting concepts: example selection vs. example
weighting, Intell. Data Anal. 8 (3) (2004) 281–300 .

[114] M. Salganicoff, Tolerating concept and sampling shift in lazy learning using
prediction error context switching, Artif. Intell. Rev. 11 (1) (1997) 133–155 .

[115] J. Beringer , E. Hüllermeier , Efficient instance-based learning on data streams,
Intell. Data Anal. 11 (6) (2007) 627–650 .

[116] H. Brighton , C. Mellish , Advances in instance selection for instance-based
learning algorithms, Data Min. Knowl. Discov. 6 (2) (2002) 153–172 .

[117] I. Tomek , Two modifications of CNN, IEEE Trans. Syst., Man, Cybern. 6 (11)

(1976) 769–772 .
[118] S.J. Delany , P. Cunningham , A. Tsymbal , L. Coyle , A case-based technique for

tracking concept drift in spam filtering, Knowl. Based Syst. 18 (45) (2005)
187–195 .

[119] B. Smyth , M.T. Keane , Remembering to forget: a competence-preserving case
deletion policy for case-based reasoning systems, in: Proceedings of the 14th

International Joint Conference on Artificial Intelligence - Volume 1, in: IJ-

CAI’95, 1995, pp. 377–382 .
120] A. Shaker , E. Hüllermeier , Iblstreams: a system for instance-based classifica-

tion and regression on data streams, Evolv. Syst. 3 (4) (2012) 235–249 .
[121] I. Žliobait ̇e , Combining similarity in time and space for training set formation

under concept drift, Intell. Data Anal. 15 (4) (2011) 589–611 .
122] L. Zhao , L. Wang , Q. Xu , Data stream classification with artificial endocrine

system, Appl. Intell. 37 (3) (2012) 390–404 .

123] K.B. Dyer , R. Capo , R. Polikar , Compose: a semisupervised learning framework
for initially labeled nonstationary streaming data, IEEE Trans. Neural Netw.

Learn. Syst. 25 (1) (2014) 12–26 .
[124] D. Mena-Torres , J.S. Aguilar-Ruiz , A similarity-based approach for data stream

classification, Expert Syst. Appl. 41 (9) (2014) 4224–4234 .
125] Y. Ben-Haim , E. Tom-Tov , A streaming parallel decision tree algorithm, J.

Mach. Learn. Res. 11 (2010) 849–872 .

126] A. Gupta , F.X. Zane , Counting inversions in lists, in: Proceedings of the 14th
Annual ACM-SIAM Symp. on Discrete Algorithms, 2003, pp. 253–254 .

[127] S. Guha , A. McGregor , Stream order and order statistics: quantile estimation
in random-order streams, SIAM J. Comput. 38 (5) (2009) 2044–2059 .

128] J. Lu , Y. Yang , G.I. Webb , Incremental discretization for Naïve-bayes classi-
fier, in: Proceedings of the Second International Conference on Advanced Data

Mining and Applications, in: ADMA’06, 2006, pp. 223–238 .

129] J. Gama , C. Pinto , Discretization from data streams: applications to histograms
and data mining, in: Proceedings of the 2006 ACM Symposium on Applied

Computing, in: SAC ’06, 2006, pp. 662–667 .
[130] P. Lehtinen, M. Saarela, T. Elomaa, Online ChiMerge Algorithm, Springer Berlin

Heidelberg, Berlin, Heidelberg, pp. 199–216.
[131] A. Bifet , G. Holmes , R. Kirkby , B. Pfahringer , MOA: massive online analysis, J.

Mach. Learn. Res. 11 (2010) 1601–1604 .

132] M. Lichman, UCI machine learning repository, 2013, [http://archive.ics.uci.edu/
ml]. Irvine, CA: University of California, School of Information and Computer

Science.
[133] A. Bifet , R. Kirkby , Data stream mining: a practical approach, Technical Report,

The University of Waikato, 2009 .
[134] S. García , A. Fernández , J. Luengo , F. Herrera , A study of statistical techniques

and performance measures for genetics-based machine learning: accuracy
and interpretability, Soft Comput. 13 (10) (2009) 959–977 .

[135] J. Derrac , S. García , D. Molina , F. Herrera , A practical tutorial on the use of

nonparametric statistical tests as a methodology for comparing evolutionary
and swarm intelligence algorithms, Swarm Evolut. Comput. 1 (1) (2011) 3–18 .

136] A . Cano , A . Zafra , S. Ventura , Solving classification problems using genetic
programming algorithms on gpus, in: Hybrid Artificial Intelligence Systems,

5th International Conference, HAIS 2010, San Sebastián, Spain, 23–25, 2010.
Proceedings, Part II, 2010, pp. 17–26 .

[137] S. García, S. Ramírez-Gallego, J. Luengo, J.M. Benítez, F. Herrera, Big data

preprocessing: methods and prospects, Big Data Anal. 1 (1) (2016) 9 . URL
http://dx.doi.org/10.1186/s41044- 016- 0014- 0 .

138] B. Krawczyk , Learning from imbalanced data: open challenges and future di-
rections, Progr. Artif. Intell. 5 (4) (2016) 221–232 .

139] V. López , A. Fernández , S. García , V. Palade , F. Herrera , An insight into classi-
fication with imbalanced data: empirical results and current trends on using

data intrinsic characteristics, Inf. Sci. 250 (2013) 113–141 .

[140] F. Herrera , F. Charte , A.J. Rivera , M.J. del Jesús , Multilabel Classification - Prob-
lem Analysis, Metrics and Techniques, Springer, 2016 .

[141] F. Herrera , S. Ventura , R. Bello , C. Cornelis , A. Zafra , D.S. Tarragó, S. Vluymans ,
Multiple Instance Learning - Foundations and Algorithms, Springer, 2016 .

Sergio Ramıirez-Gallego received the M.Sc. degree in
Computer Science in 2012 from the University of Jaén,

Spain. He is currently a Ph.D. student at the Department

of Computer Science and Artificial Intelligence, Univer-
sity of Granada, Spain. His research interests include data

mining, data preprocessing, big data and cloud comput-
ing.

Bartosz Krawczyk is an assistant professor in the De-

partment of Computer Science, Virginia Commonwealth
University, Richmond VA, USA, where he heads the Ma-

chine Learning and Stream Mining Lab. He obtained his

MSc and PhD degrees from Wroclaw University of Science
and Technology, Wroclaw, Poland, in 2012 and 2015 re-

spectively. His research is focused on machine learning,
data streams, ensemble learning, class imbalance, one-

class classifiers, and interdisciplinary applications of these
methods. He has authored 35+ international journal pa-

pers and 80+ contributions to conferences. Dr Krawczyk

was awarded with numerous prestigious awards for his
scientific achievements like IEEE Richard Merwin Scholar-

hip and IEEE Outstanding Leadership Award among others. He served as a Guest
ditor in four journal special issues and as a chair of ten special session and work-

hops. He is a member of Program Committee for over 40 international conferences
nd a reviewer for 30 journals.

Salvador Garcıa received the M.Sc. and Ph.D. degrees

in Computer Science from the University of Granada,
Granada, Spain, in 2004 and 2008, respectively. He is

currently an Associate Professor in the Department of
Computer Science and Artificial Intelligence, University of

Granada, Granada, Spain. He has published more than 45
papers in international journals. As edited activities, he

has co-edited two special issues in international journals
on different Data Mining topics and is a member of the

editorial board of the Information Fusion journal. He is

a co-author of the book entitled “Data Preprocessing in
Data Mining” published in Springer. His research interests

include data mining, data preprocessing, data complexity,
mbalanced learning, semi-supervised learning, statistical inference, evolutionary al-

orithms and biometrics.

Michal Wozniak is a professor of computer science at the

Department of Systems and Computer Networks, Wro-

claw University of Science and Technology, Poland. He re-
ceived M.Sc. degree in biomedical engineering from the

Wroclaw University of Technology in 1992, and Ph.D.
and D.Sc. (habilitation) degrees in computer science in

1996 and 2007, respectively, from the same university. In
2015 he was nominated as the professor by President of

Poland. His research focuses on compound classification

methods, hybrid artificial intelligence and medical infor-
matics. Prof. Wozniak has published over 260 papers and

three books. His recent one Hybrid classifiers: Method of
Data, Knowledge, and Data Hybridization was published

y Springer in 2014. He has been involved in research projects related to the above-
entioned topics and has been a consultant of several commercial projects for

ell-known Polish companies and public administration. Prof. Wozniak is a senior

ember of the IEEE.

Francisco Herrera (SM’15) received his M.Sc. in Mathe-

matics in 1988 and Ph.D. in Mathematics in 1991, both
from the University of Granada, Spain. He is currently a

Professor in the Department of Computer Science and Ar-

tificial Intelligence at the University of Granada.
He has been the supervisor of 40 Ph.D. students. He has

published more than 300 journal papers that have re-
ceived more than 49,0 0 0 citations (Scholar Google, H-

index 112). He is coauthor of the books “Genetic Fuzzy
Systems” (World Scientific, 2001) and ”Data Preprocessing

in Data Mining” (Springer, 2015), “The 2-tuple Linguis-

tic Model. Computing with Words in Decision Making”
(Springer, 2015), “Multilabel Classification. Problem anal-

ysis, metrics and techniques” (Springer, 2016), “Multiple
Instance Learning. Foundations and Algorithms”(Springer,

2016). He currently acts as Editor in Chief of the in-
ternational journals ”Information Fusion” (Elsevier) and

“Progress in Artificial Intelligence (Springer). He acts as

editorial member of a dozen of journals.
He received the following honors and awards: ECCAI Fel-

low 2009, IFSA Fellow 2013, 2010 Spanish National Award
on Computer Science ARITMEL to the ”Spanish Engineer

on Computer Science”, International Cajastur ”Mamdani”
Prize for Soft Computing (Fourth Edition, 2010), IEEE

Transactions on Fuzzy System Outstanding 2008 and 2012

Paper Award (bestowed in 2011 and 2015 respectively),
2011 Lotfi A. Zadeh Prize Best paper Award of the Interna-

tional Fuzzy Systems Association, 2013 AEPIA Award to a
scientific career in Artificial Intelligence, and 2014 XV An-

dalucía Research Prize Maimónides (by the regional gov-
ernment of Andalucía).

His current research interests include among others, soft
computing (including fuzzy modeling and evolutionary

algorithms), information fusion, decision making, biomet-

ric, data preprocessing, data science and big data.

http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0112
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0112
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0113
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0113
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0114
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0114
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0114
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0115
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0115
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0115
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0116
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0116
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0117
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0117
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0117
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0117
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0117
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0118
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0118
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0118
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0119
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0119
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0119
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0120
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0120
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0121
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0121
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0121
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0121
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0122
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0122
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0122
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0122
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0123
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0123
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0123
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0124
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0124
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0124
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0125
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0125
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0125
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0126
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0126
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0126
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0127
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0127
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0127
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0127
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0128
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0128
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0128
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0129
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0129
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0129
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0129
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0129
http://archive.ics.uci.edu/ml
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0130
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0130
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0130
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0131
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0131
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0131
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0131
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0131
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0132
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0132
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0132
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0132
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0132
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0133
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0133
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0133
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0133
https://dx.doi.org/10.1186/s41044-016-0014-0
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0135
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0135
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0136
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0136
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0136
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0136
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0136
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0136
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0137
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0137
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0137
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0137
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0137
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0138
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0138
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0138
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0138
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0138
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0138
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0138
http://refhub.elsevier.com/S0925-2312(17)30263-1/sbref0138

	A survey on data preprocessing for data stream mining: Current status and future directions
	1 Introduction
	2 Data streams and concept drift
	3 Data reduction
	4 Data reduction on data streams
	4.1 Dimensionality reduction
	4.2 Instance reduction
	4.3 Feature space simplification

	5 Experiments
	5.1 Experimental framework: datasets, methods and parameters
	5.2 Feature selection
	5.3 Instance selection
	5.4 Discretization

	6 Data preprocessing for data stream mining: lessons learned and future directions
	6.1 Lessons learned
	6.2 Challenges and future directions

	7 Concluding remarks
	 Acknowledgments
	 References

