
Research Article
Evolutionary Feature Selection for Big Data Classification:
A MapReduce Approach

Daniel Peralta,1 Sara del Río,1 Sergio Ramírez-Gallego,1 Isaac Triguero,2,3

Jose M. Benitez,1 and Francisco Herrera1

1Department of Computer Science and Artificial Intelligence, CITIC-UGR, University of Granada, 18071 Granada, Spain
2Department of Respiratory Medicine, Ghent University, 9000 Ghent, Belgium
3VIB Inflammation Research Center, 9052 Zwijnaarde, Belgium

Correspondence should be addressed to Daniel Peralta; dperalta@decsai.ugr.es

Received 27 February 2015; Accepted 14 June 2015

Academic Editor: Sangmin Lee

Copyright © 2015 Daniel Peralta et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Nowadays, many disciplines have to deal with big datasets that additionally involve a high number of features. Feature selection
methods aim at eliminating noisy, redundant, or irrelevant features that may deteriorate the classification performance. However,
traditionalmethods lack enough scalability to copewith datasets ofmillions of instances and extract successful results in a delimited
time. This paper presents a feature selection algorithm based on evolutionary computation that uses the MapReduce paradigm to
obtain subsets of features frombig datasets.The algorithmdecomposes the original dataset in blocks of instances to learn from them
in the map phase; then, the reduce phase merges the obtained partial results into a final vector of feature weights, which allows a
flexible application of the feature selection procedure using a threshold to determine the selected subset of features. The feature
selection method is evaluated by using three well-known classifiers (SVM, Logistic Regression, and Naive Bayes) implemented
within the Spark framework to address big data problems. In the experiments, datasets up to 67 millions of instances and up to
2000 attributes have been managed, showing that this is a suitable framework to perform evolutionary feature selection, improving
both the classification accuracy and its runtime when dealing with big data problems.

1. Introduction

Learning from very large databases is a major issue for most
of the current data mining and machine learning algorithms
[1]. This problem is commonly named with the term “big
data,” which refers to the difficulties and disadvantages of
processing and analyzing huge amounts of data [2–4]. It has
attracted much attention in a great number of areas such as
bioinformatics, medicine, marketing, or financial businesses
[5], because of the enormous collections of raw data that are
stored. Recent advances on Cloud Computing technologies
allow for adapting standard data mining techniques in order
to apply them successfully over massive amounts of data
[4, 6, 7].

The adaptation of data mining tools for big data problems
may require the redesigning of the algorithms and their
inclusion in parallel environments. Among the different

alternatives, the MapReduce paradigm [8, 9] and its dis-
tributed file system [10], originally introduced by Google,
offer an effective and robust framework to address the
analysis of big datasets. This approach is currently taken into
consideration in data mining, rather than other paralleliza-
tion schemes such as MPI (Message Passing Interface) [11],
because of its fault-tolerant mechanism and its simplicity.
Many recent works have been focused on the parallelization
of machine learning tools using the MapReduce approach
[12, 13].

Recently, new andmore flexible workflows have appeared
to extend the standardMapReduce approach, such as Apache
Spark [14], which has been successfully applied over various
data mining and machine learning problems [15–17].

Data preprocessing methods, and more concretely data
reduction models, are intended to clean and simplify input
data [18]. Thus, they attempt to accelerate data mining

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 246139, 11 pages
http://dx.doi.org/10.1155/2015/246139



2 Mathematical Problems in Engineering

algorithms and also to improve their accuracy by eliminating
noisy and redundant data.The specialized literature describes
two main types of data reduction models. On the one
hand, instance selection [19, 20] and instance generation [21]
processes are focused on the instance level. On the other
hand, feature selection [22–25] and feature extraction [26]
models work at the level of characteristics.

Among the existing techniques, evolutionary approaches
have been successfully used for feature selection techniques
[27]. Nevertheless, an excessive increment of the individual
size can limit their applicability, being unable to provide a
preprocessed dataset in a reasonable time when dealing with
very large problems. In the current literature, there are no
approaches to tackle the feature space with evolutionary big
data models.

Themain objective of this paper is to enable Evolutionary
Feature Selection (EFS) models to be applied on big data. To
do this, a MapReduce algorithm has been developed, which
splits the data and performs a bunch of EFS processes in
parallel in the map phase and then combines the solutions
in the reduce phase to get the most interesting features.
This algorithmwill be denoted “MapReduce for Evolutionary
Feature Selection” (MR-EFS).

More specifically, the purposes of this paper are

(i) to design an EFS technique over the MapReduce
paradigm for big data,

(ii) to analyze and illustrate the scalability of the proposed
scheme in terms of classification accuracy and time
necessary to build the classifiers.

To analyze the proposed approach, experiments on
two big data classification datasets with up to 67 millions
instances and up to 2000 features will be carried out, focusing
on the CHC algorithm [28] as EFS method. With the
characteristics selected by this model, its influence on the
classification performance of the Spark implementation of
three different algorithms (Support Vector Machine, Logistic
Regression, and Naive Bayes), available in MLlib [29], will be
analyzed.

The rest of the paper is organized as follows. Section 2
provides some background information about EFS and
MapReduce. Section 3 describes the MapReduce algorithm
proposed for EFS. The empirical results are discussed and
analyzed in Section 4. Finally, Section 5 summarizes the
conclusions of the paper.

2. Background

This section describes the topics used in this paper. Section 2.1
presents some preliminaries about EFS and its main draw-
backs to deal with big data classification problems. Section 2.2
introduces the MapReduce paradigm, as well as two of the
main frameworks for big data: Hadoop and Spark.

2.1. Feature Selection: Problems with Big Datasets. Feature
selection models attempt to reduce a dataset by removing
irrelevant or redundant features.The feature selection process
seeks to obtain a minimum set of attributes, such that the

results of the data mining techniques that are applied over
the reduced dataset are as close as possible (or even better) to
the results obtained using all attributes [25]. This reduction
facilitates the understanding of the patterns extracted and
increases the speed of posterior learning stages.

Feature selection methods can be classified into three
categories:

(i) Wrapper methods: The selection criterion is part of
the fitness function and therefore depends on the
learning algorithm [30].

(ii) Filtering methods: The selection is based on data-
related measures, such as separability or crowding
[22].

(iii) Embedded methods: The optimal subset of features is
built within the classifier construction [24].

For more information about specific feature selection
methods, the reader can refer to the published surveys on the
topic [22–24].

A recent, interesting proposal for applying feature selec-
tion to big datasets is presented in [31]. In that paper, the
authors describe an algorithm that is able to efficiently cope
with ultrahigh-dimensional datasets and select a small subset
of interesting features from them. However, the number of
selected features is assumed to be several orders ofmagnitude
lower than the total of features, and the algorithm is designed
to be executed in a single machine. Therefore, this approach
is not scalable to arbitrarily large datasets.

A particular way of tackling feature selection is by using
evolutionary algorithms [27]. Usually, the set of features is
encoded as a binary vector, where each position determines
if a feature is selected or not. This allows to perform feature
selection with the exploration capabilities of evolutionary
algorithms. However, they lack the scalability necessary to
address big datasets (from millions of instances onwards).
The main problems found when dealing with big data are as
follows:

(i) Runtime: The complexity of EFS models is at least
O(𝑛

2𝐷), where 𝑛 is the number of instances and 𝐷

the number of features.When either of these variables
becomes too large, the application of EFS may be too
time-consuming for real situations.

(ii) Memory consumption: Most EFS methods need to
store the entire training dataset in memory, along
with additional computation data and results. When
these data are too big, their size could easily exceed
the available RAMmemory.

In order to overcome these weaknesses, distributed parti-
tioning procedures are used, within a MapReduce paradigm,
that divide the dataset into disjoint subsets that are manage-
able by EFS methods.

2.2. Big Data: MapReduce, Hadoop, and Spark. This sec-
tion describes the main solutions for big data process-
ing. Section 2.2.1 focuses on the MapReduce programming
model, whilst Section 2.2.2 introduces two of the main
frameworks to deal with big data.



Mathematical Problems in Engineering 3

Map Shuffle Reduce

Split0

Split1

Split2

Part0

Part1

Part2

Output
Input data

Figure 1: Flowchart of the MapReduce framework.

2.2.1. MapReduce. MapReduce [8, 9] is one of the most
popular programming models to deal with big data. It was
proposed by Google in 2004 and designed for processing
huge amounts of data using a cluster of machines. The
MapReduce paradigm is composed of two phases: map and
reduce. In general terms, in the map phase, the input dataset
is processed producing some intermediate results. Then, the
reduce phase combines them in some way to form the final
output.

The MapReduce model is based on a basic data structure
known as the ⟨key, value⟩ pair. In the map phase, each
application of the map function receives a single ⟨key, value⟩
pair as input and generates a list of intermediate ⟨key, value⟩
pairs as output. This is represented by the following form:

map (key1, value1) 󳨀→ {(key2, value2) , . . .} . (1)

Then, the MapReduce library groups all intermediate
⟨key, value⟩ pairs by key. Finally, the reduce function takes
the aggregated pairs and generates a new ⟨key, value⟩ pair as
output. This is depicted by the following form:

reduce (key2, {value2, . . .}) 󳨀→ (key2, value3) . (2)

A flowchart of the MapReduce framework is presented in
Figure 1.

2.2.2. Hadoop and Spark. Different implementations of the
MapReduce programming model have appeared in the last
years.Themost popular one is ApacheHadoop [32], an open-
source framework written in Java that allows the processing
andmanagement of large datasets in a distributed computing
environment. In addition, Hadoop works on top of the
Hadoop Distributed File System (HDFS), which replicates
the data files in many storage nodes, facilitating rapid data
transfer rates among nodes and allowing the system to
continue operating without interruption when one or several
nodes fail.

In this paper, Apache Hadoop is used to implement the
proposal, MR-EFS, as described in Section 3.2.

Another Apache project that is tightly related to Hadoop
is Spark [14]. It is a cluster computing framework originally
developed in the UC Berkeley AMP Lab for large-scale

data processing that improves the efficiency by the use of
intensive memory. Spark uses HDFS and has high-level
libraries for stream processing and for machine learning and
graph processing, such as MLlib [29].

For this work, several classifiers included in MLlib are
used to test the MR-EFS algorithm: SVM, Naive Bayes,
and Logistic Regression. Their parameters are specified in
Section 4.1.

3. MR-EFS: MapReduce for Evolutionary
Feature Selection

This section describes the proposed MapReduce approach
for EFS, as well as its integration in a generic classification
process. In particular, the MR-EFS algorithm is based on the
CHC algorithm to perform feature selection, as described in
Section 3.1.

First, MR-EFS is applied over the original dataset to
obtain a vector of weights that indicates the relevance of
each attribute (Section 3.2). Then, this vector is used within
anotherMapReduce process to produce the resulting reduced
dataset (Section 3.3). Finally, the reduced dataset is used by a
classification algorithm.

3.1. CHCAlgorithm for Feature Selection. TheCHCalgorithm
[28] is a binary-coded genetic algorithm that combines a very
high selective pressure with an elitist selection strategy, along
with several components that introduce diversity. The main
parts of CHC are the following:

(i) Half Uniform Crossover (HUX): This crossover oper-
ator aims at enforcing a high diversity and reducing
the risk of premature convergence. It selects at ran-
dom half of the bits that are different between both
parents. Then, it obtains two offspring that are at the
maximum Hamming distance from their parents.

(ii) Elitist selection: In each generation, the new popula-
tion is composed of the best individuals (those with
the best values of the fitness function) among both
the current and the offspring populations. In case of
draw between a parent and an offspring, the parent is
selected.

(iii) Incest prevention: Two individuals are not allowed
to mate if the Hamming similarity between them
exceeds a threshold 𝑑 (usually initialized to 𝑑 = 𝐿/2,
where 𝐿 is the chromosome length). The threshold is
decremented by one when no offspring is obtained in
one generation, which indicates that the algorithm is
converging.

(iv) Restarting process: When 𝑑 = 0 (which happens
after several generations without any new offspring),
the population is considered to be stagnated. In
such a case, a new population is generated: the best
individual is kept, and the remaining individuals have
a certain percentage of their bits flipped.

The basic execution scheme of CHC is shown in
Figure 2.This algorithmnaturally adapts to a feature selection



4 Mathematical Problems in Engineering

Parents Offspring

HUX

HUX

HUX

Incest
prevention

If no offspring is generated

Restart population

Yes

No

Select best

d = 0?

New population

d←d − 1

Figure 2: Flowchart of the CHC algorithm.

problem, as each feature can be represented as a bit in
the solution vector.Thus, each position of the vector indicates
if the corresponding feature is selected or not. Therefore,
this approach falls within the wrapper method category,
according to the classification established in Section 2.1. The
fitness function used to evaluate new individuals applies a 𝑘-
Nearest Neighbors classifier (𝑘-NN) [33] over the dataset that
would be obtained after removing the corresponding features.
The fitness value is the weighted sum of the 𝑘-NN accuracy
and the feature reduction rate.

3.2. MR-EFS Algorithm. This section describes the paral-
lelization of the CHC algorithm, by using a MapReduce
procedure to obtain a vector of weights.

Let 𝑇 be a training set, stored in HFDS and random-
ized as described in [34]. Let 𝑚 be the number of map
tasks. The splitting procedure of MapReduce divides 𝑇 in
𝑚 disjoint subsets of instances. Then, each 𝑇

𝑖
subset (𝑖 ∈

{1, 2, . . . , 𝑚}) is processed by the corresponding Map
𝑖
task.

As this partitioning is performed sequentially, all subsets will
have approximately the same number of instances, and the
randomization of the 𝑇 file ensures an adequate balance of
the classes.

Themap phase over each 𝑇
𝑖
consists of the EFS algorithm

(in this case, based on CHC) as described in Section 3.1.
Therefore, the output of each map task is a binary vector
fi = {𝑓

𝑖1, . . . , 𝑓𝑖𝐷}, where 𝐷 is the number of features, that
indicates which features were selected by the CHC algorithm.
The reduce phase averages all the binary vectors, obtaining
a vector x as defined in (3), where 𝑥

𝑗
is the proportion of

EFS applications that include the feature 𝑗 in their result.
This vector is the result of the overall EFS process and is
used to build the reduced dataset that will be used for further
machine learning purposes:

x = {𝑥1, . . . , 𝑥𝐷} ,

𝑥
𝑗
=

1
𝑚

𝑚

∑
𝑖=1

𝑓
𝑖𝑗
, 𝑗 ∈ {1, 2, . . . , 𝐷} .

(3)

∑

Initial Map Reduce Final

Mappers training set

Original 
training
dataset

CHC

CHC

CHC

.

.

.

.

.

.
.
.
.

0 1 1 0

1 1 1 0

0 1 0 0

· · ·

· · ·

· · ·

0.1 0.3 0.2 0.0. . .

Figure 3: Flowchart of MR-EFS algorithm.

In the implementation used for the experiments, the
reduce phase is carried out by a single task, which reduces
the runtime by decreasing theMapReduce overhead [35].The
whole MapReduce process for EFS is depicted in Figure 3. It
is noteworthy that the whole procedure is performed within
a single iteration of the MapReduce workflow, avoiding
additional disk accesses.

3.3. Dataset Reduction with MapReduce. Once vector x is
calculated, the objective is to remove the less promising
features from the original dataset. To do so in a scalable
manner, an additional MapReduce process was designed.
First, vector x is binarized using a threshold 𝜃:

b = {𝑏1, . . . , 𝑏𝐷} ,

𝑏
𝑗
=

{

{

{

1, if 𝑥
𝑗
≥ 𝜃,

0, otherwise.

(4)

Vector b indicates which features will be selected for
the reduced dataset. The number of selected features (𝐷󸀠 =
∑
𝐷

𝑗=1 𝑏𝑗) can be controlled with 𝜃: with a high threshold, only
a few features will be selected, while a lower threshold allows
more features to be picked.



Mathematical Problems in Engineering 5

Initial Map Final

Original training/test
dataset

Mappers training/test set

Result of EPS

+

Threshold

.

.

.

Reduced dataset

0 1 1 0· · ·

0 1 1 0· · ·

0 1 1 0· · ·

0 1 1 0· · ·

· · · · · ·

· · · · · ·

· · · · · ·

0.1 0.3 0.2 0.0· · ·

.

.

.

Figure 4: Flowchart of the dataset reduction process.

The MapReduce process for the dataset reduction works
as follows. Each map processes an instance and generates
a new one that only contains the features selected in b.
Finally, the instances generated are concatenated to form the
final reduced dataset, without the need of a reduce step. The
dataset reduction process, using the result of MR-EFS and an
arbitrary threshold, is depicted in Figure 4.

4. Experimental Framework and Analysis

This section describes the performed experiments and their
results. First, Section 4.1 describes the datasets and the
methods used for the experiments. Section 4.2 details the
underlying hardware and software support. Finally, Sections
4.3 and 4.4 present the results obtained using two different
datasets.

4.1. Datasets and Methods. This experimental study uses two
large binary classification datasets in order to analyze the
quality of the solutions provided by the MR-EFS algorithm.

First, the epsilon dataset was used, which is composed of
500 000 instances with 2000 numerical features. This dataset
was artificially created for the Pascal Large Scale Learning
Challenge [36] in 2008.Theversion provided by LIBSVM[37]
was used.

Additionally, this study includes the dataset used at the
data mining competition of the Evolutionary Computation
for Big Data and Big Learning held on July 14, 2014, in
Vancouver (Canada), under the international conference
GECCO-2014 (from now on, it is referred to as ECBDL14)

[38]. This dataset has 631 features (including both numerical
and categorical attributes), and it is composed of approxi-
mately 32 million instances. Moreover, the class distribution
is not balanced: 98% of the instances belong to the negative
class.

In order to deal with the imbalance problem, the MapRe-
duce approach of the Random Oversampling (ROS) algo-
rithm presented in [39] was applied over the original training
set for ECBDL14. The aim of ROS is to replicate the minority
class instances from the original dataset until the number of
instances from both classes is the same.

Despite the inconvenience of increasing the size of the
dataset, this technique was proven in [39] to yield bet-
ter performance than other common approaches to deal
with imbalance problems, such as undersampling and cost-
sensitive methods. These two approaches suffer from the
small sample size problem for the minority class when they
are used within a MapReduce model.

Themain characteristics of these datasets are summarized
in Table 1. For each dataset, the number of instances for both
training and test sets and the number of attributes are shown,
along with the number of splits in which MR-EFS divided
each dataset. Note that the imbalanced version of ECBDL14 is
not used in the experiments, as only the balanced ECBDL14-
ROS version is considered.

The parameters for the CHC algorithm are presented in
Table 2.

After applying MR-EFS over the described datasets, the
behavior of the obtained reduced datasets was tested using
three different classifiers implemented in Spark, available
in MLlib: SVM [40], Logistic Regression [41], and Naive



6 Mathematical Problems in Engineering

Table 1: Summary of the used big data classification datasets.

Dataset Training instances Test instances Features Splits Instances per split
Epsilon 400 000 100 000 2000 512 ∼780
ECBDL14 31 992 921 2 897 917 631 — —
ECBDL14-ROS 65 003 913 2 897 917 631 32 768 ∼1984

Table 2: Parameter specification for all the methods involved in the
experimentation.

Algorithm Parameters

CHC

𝑘 value for 𝑘-NN: 1
Trade-off between reduction and accuracy: 0.5
Proportion of flipped bits in restarting process: 0.05
Population size: 40
Number of evaluations: 1000

Naive Bayes Lambda: 1.0 (default)

Logistic
Regression

Iterations: 100 (default)
StepSize: 1.0 (default)
miniBatchFraction: 1.0

SVM

Regularization parameter: 0.0; 0.5
Iterations: 100 (default)
StepSize: 1.0 (default)
miniBatchFraction: 1.0

Bayes [42]. The reader may refer to the provided references
or to the MLlib guide [43] for further details about their
internal functioning.The parameters used for these classifiers
are listed in Table 2. Particularly, two different variants of
SVM were used, modifying the regularization parameter,
which allows the algorithm to calculate simpler models by
penalizing complex models in the objective function.

In the remainder of this paper, two metrics are used to
evaluate the performance of the three classifiers when applied
over the obtained reduced datasets:

(i) Area Under the Curve (AUC): This measure is defined
as the area under the Receiver Operating Charac-
teristic (ROC) curve. In this work, this value is
approximated with the formula in (5), where TPR is
the True Positive Rate and TNR is the True Negative
Rate. These values can be directly obtained from
the confusion matrix and are not affected by the
imbalance of the dataset:

AUC =
TPR + TNR

2
. (5)

(ii) Training runtime: It is the time (in seconds) used to
train or build the classifier.

Note that for this study the test runtime is much less
affected by the feature selection process, because at that point
the classifier has already been built. For the sake of simplicity,
only training runtimes are reported.

4.2. Hardware and Software Used. The experiments for this
paper were carried out on a cluster of twenty computing
nodes, plus a master node. Each one of these compute nodes
has the following features:

(i) Processors: 2 x Intel Xeon CPU E5-2620.

(ii) Cores: 6 per processor (12 threads).

(iii) Clock speed: 2.00GHz.

(iv) Cache: 15MB.

(v) Network: QDR InfiniBand (40Gbps).

(vi) Hard drive: 2 TB.

(vii) RAM: 64GB.

Both Hadoop master processes—the NameNode and the
JobTracker—are hosted in the master node. The former
controls the HDFS, coordinating the slave machines by the
means of their respectiveDataNode processes, while the latter
is in charge of the TaskTrackers of each compute node, which
execute the MapReduce framework. Spark follows a similar
configuration, as the master process is located on the master
node, and the worker processes are executed on the slave
machines. Both frameworks share the underlying HDFS file
system.

These are the details of the software used for the experi-
ments:

(i) MapReduce implementation: Hadoop 2.0.0-cdh4.7.1.
MapReduce 1 (Cloudera’s open-source Apache Had-
oop distribution).

(ii) Spark version: Apache Spark 1.0.0.

(iii) Maximum maps tasks: 320 (16 per node).

(iv) Maximum reducer tasks: 20 (1 per node).

(v) Operating system: CentOS 6.6.

Note that the total number of cores of the cluster is 240.
However, a higher number of maps were kept to maximize
the use of the cluster by allowing a higher parallelism and a
better data locality, thereby reducing the network overload.

4.3. Experiments with the Epsilon Dataset. This section
explains the results obtained for the epsilon dataset. First,
Section 4.3.1 describes the performance of the feature selec-
tion procedure and compares it with a sequential approach.
Then, Section 4.3.2 describes the results obtained in the
classification.



Mathematical Problems in Engineering 7

Table 3: Execution times (in seconds) over the epsilon subsets.

Instances Sequential CHC MR-EFS Splits
1000 391 419 1
2000 1352 409 2
5000 8667 413 5
10 000 39 576 431 10
15 000 91 272 445 15
20 000 159 315 455 20
400 000 — 6531 512

4.3.1. Feature Selection Performance. The complexity order of
the CHC algorithm is approximately O(𝑛2𝐷𝑝), where 𝑝 is
the number of evaluations of the fitness function (a 𝑘-NN
classifier in this case), 𝑛 is the number of instances, and 𝐷 is
the number of features. Therefore, the algorithm is quadratic
with respect to the number of instances.

When the dataset is divided into 𝑚 splits within MR-
EFS, each one of the 𝑚 map tasks has complexity order
O((𝑛

2/𝑚2)𝐷𝑝), which is 𝑚2 times faster than applying CHC
over the whole dataset. If 𝑛

𝑐
cores are available for the map

tasks, the complexity of the map phase within the MR-
EFS procedure is approximately O(⌈𝑚/𝑛

𝑐
⌉(𝑛2/𝑚2)𝐷𝑝). This

demonstrates the scalability of the approach presented in this
paper: even if themaps are executed sequentially (𝑛

𝑐
= 1), the

procedure is still one order of magnitude faster than feeding
a single CHC with all the instances at once.

In order to verify the performance of MR-EFS with
respect to the sequential approach, a set of experiments
were performed using subsets of the epsilon dataset. Both
a sequential CHC algorithm and the parallel MR-EFS (with
1000 instances per split) were applied over those subsets.
The obtained execution times are presented in Table 3 and
Figure 5, along with the runtime of MR-EFS over the whole
dataset.

The sequential runtimes described a quadratic shape,
in concordance with the complexity order of CHC, which
clearly states that the time necessary to tackle the whole
dataset would be impractical. In opposite, the runtime of
MR-EFS for the small datasets was nearly constant. The case
with 1000 instances is particular, in the sense that MR-EFS
only executed one map task; therefore, it executed a single
CHC with 1000 instances. The time difference between CHC
and MR-EFS in this case reflects the overhead introduced by
the latter. Even though his overhead increased slightly as the
number of map tasks grew, it represented a minor part of the
overall runtime.

As for the full dataset, with 512 splits, the number of
instances for each map task in MR-EFS is around 780. As the
number of cores used for the experiments was 240, the map
phase in MR-EFS should be roughly three times slower than
the sequential CHC with 1000 instances, according to the
complexity orders previously detailed. The times in Table 3
show a higher time gap, because MR-EFS includes as well the
other phases of theMapReduce framework (namely, splitting,
shuffle, and reduce), which are nonnegligible for a dataset of
such size. Nevertheless, the overall MR-EFS execution time is

0 5000 10000 15000 20000

0

50000

100000

150000

Number of instances

Ti
m

e (
s)

Sequential CHC
MR-EFS
MR-EFS (full dataset)

Figure 5: Execution times of the sequential CHC and MR-EFS.

0.64

0.66

0.68

0.70

500 1000 1500 2000
Features

AU
C

Classifier
Logistic Regression
Naive Bayes
SVM-0.0
SVM-0.5

Set
Training
Test

Figure 6: Accuracy with the epsilon dataset. Note that the number
of features decreases as the threshold increases.

highly scalable, as shown by the fact that MR-EFS was able to
process the 400 000 instances faster than the time needed by
CHC to process 5000 instances.

4.3.2. Classification Results. This section presents the results
obtained by applying several classifiers over the full epsilon
dataset with its features previously selected by usingMR-EFS.
The dataset was split among 512 map tasks, each of which
computed around 780 instances.

The AUC values are shown in Table 4 and Figure 6, both
for training and test sets, using three different thresholds
for the dataset reduction step. Note that the zero-threshold
corresponds to the original dataset, without performing any



8 Mathematical Problems in Engineering

Table 4: AUC results for the Spark classifiers using epsilon.

Threshold Features Logistic Regression Naive Bayes SVM (𝜆 = 0.0) SVM (𝜆 = 0.5)
Training Test Training Test Training Test Training Test

0.00 2000 0.6786 0.6784 0.7038 0.7008 0.6440 0.6433 0.6440 0.6433
0.55 721 0.6985 0.7000 0.7154 0.7127 0.6855 0.6865 0.6855 0.6865
0.60 337 0.6873 0.6867 0.7054 0.7030 0.6805 0.6799 0.6805 0.6799
0.65 110 0.6496 0.6497 0.6803 0.6794 0.6492 0.6493 0.6492 0.6493

Table 5: Training runtime (in seconds) for the Spark classifiers using epsilon.

Threshold Features Logistic Regression Naive Bayes SVM (𝜆 = 0.0) SVM (𝜆 = 0.5)
0.00 2000 367.29 605.14 334.18 331.69
0.55 721 409.35 340.42 409.70 386.84
0.60 337 488.16 307.33 505.46 489.93
0.65 110 501.86 264.26 467.44 473.74

Table 6: Size of the epsilon dataset for each threshold.

Threshold Set MB HDFS blocks

0.00 Training 8179.18 128
Test 2044.80 32

0.55 Training 2946.52 47
Test 736.63 12

0.60 Training 1377.21 22
Test 344.30 6

0.65 Training 450.60 8
Test 112.65 2

feature selection.Thebest results for eachmethod are stressed
in boldface. The table shows that the accuracy was improved
by the removal of the adequate features, as the threshold 0.55
allowed for obtaining higher AUC values. The accuracy gain
was especially large for SVM.Moreover, more than half of the
features were removed, which reduces significantly the size
of the dataset and therefore the complexity of the resulting
classifier.

A threshold of value 0.60 also got to improve the accuracy
results, while reducing even further the size of the dataset.
Finally, for the 0.65 thresholds, only SVM saw its AUC
improved.

It is also noteworthy that the two variants of SVM
obtained the same results for all the tested thresholds. This
fact indicates that the complexity of the obtained SVMmodel
is relatively low.

The training runtime of the different algorithms and
databases is shown in Table 5 and Figure 7. The obtained
results were seemingly the opposite to the expectations:
except for Naive Bayes, the classifiers needed more time to
process the datasets as their number of features decreases.

However, this behavior can be explained: as the dataset
gets smaller, it occupies less HDFS blocks, and therefore
the full parallel capacity of the cluster is not exploited. The
size of each version of the epsilon dataset and the number
of HDFS blocks that are needed to store it are shown in
Table 6. The computer cluster is composed of 20 machines;
therefore, when the number of blocks is lower than 20, some

300

400

500

600

500 1000 1500 2000
Features

Ru
n 

tim
e (

s)

Logistic Regression
Naive Bayes

SVM-0.0
SVM-0.5

Classifier

Figure 7: Training runtime with the epsilon dataset. Note that the
number of features decreases as the threshold increases.

of the machines remain idle because they have no HDFS
block to process. Moreover, even if the number of blocks is
slightly above 20, the affectedHDFS blocksmay not be evenly
distributed among the computing nodes. This demonstrates
the capacity of Spark to deal with big databases: as the
size of the database (more concretely, the number of HDFS
blocks) increases, the framework is able to distribute the
processes more evenly, exploiting data locality, increasing the
parallelism, and reducing the network overhead.

In order to deal with this problem, the same experiments
were repeated over the epsilon dataset, after reorganizing the
files with a smaller block size. For each of the eight sets, the
block size 𝑆

𝑏
was calculated according to (6), where 𝑠 is the

size of the dataset in bytes and 𝑛
𝑐
is the number of cores in

the cluster:

𝑆
𝑏
= 2𝐾,

𝐾 = ⌊log2
𝑠

𝑛
𝑐

⌋ .
(6)



Mathematical Problems in Engineering 9

Table 7: Training runtime (in seconds) for the Spark classifiers using epsilon with customized block size.

Threshold Features Logistic Regression Naive Bayes SVM (𝜆 = 0.0) SVM (𝜆 = 0.5)
0.00 2000 321.94 483.48 300.94 306.47
0.55 721 256.92 313.19 256.72 256.98
0.60 337 236.16 248.59 231.23 228.03
0.65 110 307.70 308.26 254.05 261.23

Table 8: AUC values for the Spark classifiers using ECBDL14-ROS.

Threshold Features Logistic Regression Naive Bayes SVM (𝜆 = 0.0) SVM (𝜆 = 0.5)
Training Test Training Test Training Test Training Test

0.00 631 0.5821 0.5808 0.6714 0.6506 0.5966 0.6046 0.5875 0.5897
0.55 234 0.6416 0.6352 0.6673 0.6489 0.6369 0.6307 0.6228 0.6148
0.60 119 0.6309 0.6235 0.6732 0.6516 0.5884 0.5841 0.6116 0.6054
0.65 46 0.5017 0.5022 0.6136 0.6093 0.5032 0.5039 0.5000 0.5000

Table 9: Training runtime (in seconds) for the Spark classifiers using ECBDL14-ROS.

Threshold Features Logistic Regression Naive Bayes SVM (𝜆 = 0.0) SVM (𝜆 = 0.5)
0.00 631 4649.19 1581.52 5283.88 5065.87
0.55 234 2107.66 613.50 2321.22 2179.18
0.60 119 1162.98 322.06 1352.85 1226.72
0.65 46 978.38 215.09 914.32 864.28

The runtime for the dataset with the block size cus-
tomized for each subset is displayed in Table 7 and Figure 8.
It is observed that the runtime was smaller than that with
the default block size. Furthermore, the curves show the
expected behavior: as the number of features of the dataset
was reduced, the runtime decreased. In the extreme case
(for threshold 0.65), the runtime increased again, because
with such a small dataset the synchronization times of Spark
become bigger than the computing times, even with the
customized block size.

In the next section, MR-EFS is tested over a very large
dataset, validating these observations.

4.4. Experiments with the ECBDL14-ROS Dataset. This sec-
tion presents the classification accuracy and runtime results
obtained with the ECBDL14-ROS dataset. As described
in Section 4.1, a random oversampling technique [39] was
previously applied over the original ECBDL14 dataset to
overcome the problems originated by its imbalance.TheMR-
EFS method was applied using 32 768 map tasks; therefore,
each map task computed around 1984 instances.

The obtained results in terms of accuracy are depicted
in Table 8 and Figure 9. MR-EFS improved the results in
all cases, with different thresholds. The accuracy gain was
especially important for the Logistic Regression and SVM
algorithms. As expected, the SVM with 𝜆 = 0.0 obtained
better results than the onewith𝜆 = 0.5, as the latter attempted
to reduce the complexity of the obtained model. However,
it is noteworthy that, for 119 features, SVM-0.5 was able to
outperform SVM-0.0. This hints that after removing noisy
features, the simpler obtained models represented better the

300

400

500 1000 1500 2000
Features

Ru
n 

tim
e (

s)

Logistic Regression
Naive Bayes

SVM-0.0
SVM-0.5

Classifier

Figure 8: Training runtime with the epsilon dataset with cus-
tomized block size. Note that the number of features decreases as
the threshold increases.

true knowledge underlying the data. With even less features,
both variants of SVM obtained roughly the same accuracy.

To conclude this study, the runtime necessary to train
the classifiers with all variants of ECBDL14-ROS is presented
in Table 9 and Figure 10. In this case, the runtime behaved
as expected: the time was roughly linear with respect to the
number of features, for all testedmodels.Thismeans thatMR-
EFS was able to improve both the runtime and the accuracy
for all those classifiers.



10 Mathematical Problems in Engineering

0.50

0.55

0.60

0.65

200 400 600
Features

AU
C

Classifier
Logistic Regression
Naive Bayes
SVM-0.0
SVM-0.5

Set
Training
Test

Figure 9: Accuracy with the ECBDL14-ROS dataset. Note that the
number of features decreases as the threshold increases.

0

1000

2000

3000

4000

5000

Ru
n 

tim
e (

s)

200 400 600
Features

Logistic Regression
Naive Bayes

SVM-0.0
SVM-0.5

Classifier

Figure 10: Training runtime with the ECBDL14-ROS dataset. Note
that the number of features decreases as the threshold increases.

5. Concluding Remarks

This paper presents MR-EFS, an Evolutionary Feature Selec-
tion algorithm designed upon the MapReduce paradigm,
intended to preprocess big datasets so that they become
affordable for other machine learning techniques, such as
classification techniques, that are currently not scalable
enough to deal with such datasets. The algorithm has been
implemented using Apache Hadoop, and it has been applied
over two different large datasets. The resulting reduced
datasets have been tested using three different classifiers,
implemented inApache Spark, over a cluster of 20 computers.

The theoretical evaluation of themodel highlights the full
scalability of MR-EFS with respect to the number of features
in the dataset, in comparison with a sequential approach.
This behavior has been further confirmed after the empirical
procedures.

According to the obtained classification results, it can be
claimed thatMR-EFS is able to reduce adequately the number
of features of large datasets, leading to reduced versions
of them, that are at the same time smaller to store, faster
to compute, and easier to classify. These facts have been
observed with the two different datasets and for all tested
classifiers.

For the epsilon dataset, the relation between the reduced
datasets size and the number of nodes is forced to modify
the HDFS block size, proving that the hardware resources
can be optimally used by Hadoop and Spark, with the correct
design. One of the obtained reduced ECDBL14-ROS datasets,
with more than 67 million instances and several hundred
features, could be processed by the classifiers in less than
half of the time than that of the original dataset, and with an
improvement of around 5% in terms of AUC.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work is supported by the Research Projects TIN2014-
57251-P, P10-TIC-6858, P11-TIC-7765, P12-TIC-2958, and
TIN2013-47210-P. D. Peralta and S. Ramı́rez-Gallego hold
two FPU scholarships from the Spanish Ministry of Educa-
tion and Science (FPU12/04902, FPU13/00047). I. Triguero
holds a BOF postdoctoral fellowship from the Ghent Univer-
sity.

References

[1] E. Alpaydin, Introduction to Machine Learning, MIT Press,
Cambridge, Mass, USA, 2nd edition, 2010.

[2] M.Minelli,M.Chambers, andA.Dhiraj,BigData, BigAnalytics:
Emerging Business Intelligence and Analytic Trends for Today’s
Businesses (Wiley CIO), Wiley, 1st edition, 2013.

[3] V. Marx, “The big challenges of big data,” Nature, vol. 498, no.
7453, pp. 255–260, 2013.

[4] A. Fernández, S. del Rı́o, V. López et al., “Big data with cloud
computing: an insight on the computing environment, MapRe-
duce, and programming frameworks,” Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, vol. 4, no. 5,
pp. 380–409, 2014.

[5] E. Merelli, M. Pettini, and M. Rasetti, “Topology driven model-
ing: the IS metaphor,” Natural Computing, 2014.

[6] S. Sakr, A. Liu, D.M. Batista, andM. Alomari, “A survey of large
scale data management approaches in cloud environments,”
IEEE Communications Surveys and Tutorials, vol. 13, no. 3, pp.
311–336, 2011.

[7] J. Bacardit and X. Llorà, “Large-scale data mining using
genetics-based machine learning,” Wiley Interdisciplinary



Mathematical Problems in Engineering 11

Reviews: Data Mining and Knowledge Discovery, vol. 3, no. 1,
pp. 37–61, 2013.

[8] J. Dean and S.Ghemawat, “MapReduce: simplified data process-
ing on large clusters,” Communications of the ACM, vol. 51, no.
1, pp. 107–113, 2008.

[9] J. Dean and S. Ghemawat, “Map reduce: a flexible data process-
ing tool,” Communications of the ACM, vol. 53, no. 1, pp. 72–77,
2010.

[10] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file sys-
tem,” in Proceedings of the 19th ACM Symposium on Operating
Systems Principles (SOSP ’03), pp. 29–43, October 2003.

[11] M. Snir and S. Otto, MPI—The Complete Reference: The MPI
Core, MIT Press, Boston, Mass, USA, 1998.

[12] W. Zhao, H. Ma, and Q. He, “Parallel k-means clustering based
on MapReduce,” in Cloud Computing, M. Jaatun, G. Zhao, and
C. Rong, Eds., vol. 5931 of Lecture Notes in Computer Science,
pp. 674–679, Springer, Berlin, Germany, 2009.

[13] A. Srinivasan, T. A. Faruquie, and S. Joshi, “Data and task
parallelism in ILP using MapReduce,” Machine Learning, vol.
86, no. 1, pp. 141–168, 2012.

[14] M. Zaharia, M. Chowdhury, T. Das et al., “Resilient distributed
datasets: a fault-tolerant abstraction for in-memory cluster
computing,” in Proceedings of the 9th USENIX Conference
on Networked Systems Design and Implementation, pp. 1–14,
USENIX Association, 2012.

[15] K. Thomas, C. Grier, J. Ma, V. Paxson, and D. Song, “Design
and evaluation of a real-time URL spam filtering service,” in
Proceedings of the IEEE Symposium on Security and Privacy (SP
’11), pp. 447–462, Berkeley, Calif, USA, May 2011.

[16] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and
I. Stoica, “Shark: SQL and rich analytics at scale,” in Proceedings
of the ACM SIGMOD International Conference on Management
of Data (SIGMOD ’13), pp. 13–24, ACM, June 2013.

[17] M. S. Wiewiorka, A. Messina, A. Pacholewska, S. Maffioletti, P.
Gawrysiak, and M. J. Okoniewski, “SparkSeq: fast, scalable and
cloud-ready tool for the interactive genomic data analysis with
nucleotide precision,” Bioinformatics, vol. 30, no. 18, pp. 2652–
2653, 2014.

[18] S. Garćıa, J. Luengo, and F. Herrera, Data Preprocessing in Data
Mining, Springer, 1st edition, 2015.

[19] H. Brighton and C. Mellish, “Advances in instance selection for
instance-based learning algorithms,” Data Mining and Knowl-
edge Discovery, vol. 6, no. 2, pp. 153–172, 2002.

[20] J. A. Olvera-López, J. A. Carrasco-Ochoa, J. F. Mart́ınez-
Trinidad, and J. Kittler, “A reviewof instance selectionmethods,”
Artificial Intelligence Review, vol. 34, no. 2, pp. 133–143, 2010.

[21] J. S. Sánchez, “High training set size reduction by space
partitioning and prototype abstraction,” Pattern Recognition,
vol. 37, no. 7, pp. 1561–1564, 2004.

[22] I. Guyon and A. Elisseeff, “An introduction to variable and
feature selection,” Journal of Machine Learning Research, vol. 3,
pp. 1157–1182, 2003.

[23] H. Liu and L. Yu, “Toward integrating feature selection algo-
rithms for classification and clustering,” IEEE Transactions on
Knowledge and Data Engineering, vol. 17, no. 4, pp. 491–502,
2005.

[24] Y. Saeys, I. Inza, and P. Larrañaga, “A review of feature selection
techniques in bioinformatics,” Bioinformatics, vol. 23, no. 19, pp.
2507–2517, 2007.

[25] H. Liu and H. Motoda, Computational Methods of Feature
Selection, Chapman & Hall/CRC Data Mining and Knowledge
Discovery Series, Chapman & Hall/CRC Press, 2007.

[26] J. A. Lee andM.Verleysen,Nonlinear Dimensionality Reduction,
Springer, 2007.

[27] B. de la Iglesia, “Evolutionary computation for feature selection
in classification problems,” Wiley Interdisciplinary Reviews:
DataMining and Knowledge Discovery, vol. 3, no. 6, pp. 381–407,
2013.

[28] L. J. Eshelman, “The CHC adaptative search algorithm: how
to have safe search when engaging in nontraditional genetic
recombination,” in Foundations of Genetic Algorithms, G. J. E.
Rawlins, Ed., pp. 265–283,MorganKaufmann, SanMateo, Calif,
USA, 1991.

[29] MLlib Website, https://spark.apache.org/mllib/.
[30] R. Kohavi and G. H. John, “Wrappers for feature subset

selection,” Artificial Intelligence, vol. 97, no. 1-2, pp. 273–324,
1997.

[31] M. Tan, I. W. Tsang, and L. Wang, “Towards ultrahigh
dimensional feature selection for big data,” Journal of Machine
Learning Research, vol. 15, pp. 1371–1429, 2014.

[32] T. White, Hadoop: The Definitive Guide, O’Reilly Media, 3rd
edition, 2012.

[33] T. Cover and P. Hart, “Nearest neighbor pattern classification,”
IEEE Transactions on Information Theory, vol. 13, no. 1, pp. 21–
27, 1967.

[34] I. Triguero, D. Peralta, J. Bacardit, S. Garćıa, and F. Herrera,
“MRPR: a MapReduce solution for prototype reduction in big
data classification,”Neurocomputing, vol. 150, pp. 331–345, 2015.

[35] C.-T. Chu, S. Kim, Y.-A. Lin et al., “Map-reduce for machine
learning on multicore,” in Advances in Neural Information
Processing Systems, pp. 281–288, 2007.

[36] Pascal large scale learning challenge, http://largescale.ml.tu-
berlin.de/instructions/.

[37] Epsilon in the LIBSVM website, http://www.csie.ntu.edu.tw/∼
cjlin/libsvmtools/datasets/binary.html#epsilon.

[38] ECBDL14 dataset: Protein structure prediction and contactmap
for the ECBDL2014 Big Data Competition, http://cruncher.ncl
.ac.uk/bdcomp/.

[39] S. del Rı́o, V. López, J. M. Benı́tez, and F. Herrera, “On the use
of MapReduce for imbalanced big data using Random Forest,”
Information Sciences, vol. 285, pp. 112–137, 2014.

[40] M. A. Hearst, S. T. Dumais, E. Osman, J. Platt, and B. Scholkopf,
“Support vector machines,” IEEE Intelligent Systems and Their
Applications, vol. 13, no. 4, pp. 18–28, 1998.

[41] D. W. Hosmer Jr. and S. Lemeshow, Applied Logistic Regression,
John Wiley & Sons, 2004.

[42] R. O. Duda and P. E. Hart, Pattern Classification and Scene
Analysis, vol. 3, Wiley, New York, NY, USA, 1973.

[43] MLlib guide, http://spark.apache.org/docs/latest/mllib-guide
.html.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


