
Enabling Smart Data: Noise filtering in Big Data
classification
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Abstract

In any knowledge discovery process the value of extracted knowledge is directly
related to the quality of the data used. Big Data problems, generated by mas-
sive growth in the scale of data observed in recent years, also follow the same
dictate. A common problem affecting data quality is the presence of noise,
particularly in classification problems, where label noise refers to the incorrect
labeling of training instances, and is known to be a very disruptive feature of
data. However, in this Big Data era, the massive growth in the scale of the
data poses a challenge to traditional proposals created to tackle noise, as they
have difficulties coping with such a large amount of data. New algorithms need
to be proposed to treat the noise in Big Data problems, providing high qual-
ity and clean data, also known as Smart Data. In this paper, two Big Data
preprocessing approaches to remove noisy examples are proposed: an homoge-
neous ensemble and an heterogeneous ensemble filter, with special emphasis in
their scalability and performance traits. The obtained results show that these
proposals enable the practitioner to efficiently obtain a Smart Dataset from any
Big Data classification problem.
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1. Introduction

Vast amounts of information surround us today. Technologies such as the
Internet generate data at an exponential rate thanks to the affordability and
great development of storage and network resources. It is predicted that by
2020, the digital universe will be 10 times as big as it was in 2013, totaling an
astonishing 44 zettabytes [22]. The current volume of data has exceeded the
processing capabilities of classical data mining systems [50] and have created
a need for new frameworks for storing and processing this data. It is widely
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accepted that we have entered the Big Data era [31]. Big Data is the set of
technologies that make processing such large amounts of data possible [7], while
most of the classic knowledge extraction methods cannot work in a Big Data
environment because they were not conceived for it.

Big Data as concept is defined around five aspects: data volume, data veloc-
ity, data variety, data veracity and data value [24]. While the volume, variety
and velocity aspects refer to the data generation process and how to capture and
store the data, veracity and value aspects deal with the quality and the useful-
ness of the data. These two last aspects become crucial in any Big Data process,
where the extraction of useful and valuable knowledge is strongly influenced by
the quality of the used data.

In Big Data, the usage of traditional preprocessing techniques [16, 34, 18] to
enhance the data is even more time consuming and resource demanding, being
unfeasible in most cases. The lack of efficient and affordable preprocessing tech-
niques implies that the problems in the data will affect the models extracted.
Among all the problems that may appear in the data, the presence of noise in
the dataset is one of the most frequent. Noise can be defined as the partial or
complete alteration of the information gathered for a data item, caused by an
exogenous factor not related to the distribution that generates the data. Learn-
ing from noisy data is an important topic in machine learning, data mining and
pattern recognition, as real world data sets may suffer from imperfections in
data acquisition, transmission, storage, integration and categorization. Noise
will lead to excessively complex models with deteriorated performance [49], re-
sulting in even larger computing times for less value.

The impact of noise in Big Data, among other pernicious traits, has not been
disregarded. Recently, Smart Data (focusing on veracity and value) has been in-
troduced, aiming to filter out the noise and to highlight the valuable data, which
can be effectively used by companies and governments for planning, operation,
monitoring, control, and intelligent decision making. Three key attributes are
needed for data to be smart, it must be accurate, actionable and agile:

• Accurate: data must be what it says it is with enough precision to drive
value. Data quality matters.

• Actionable: data must drive an immediate scalable action in a way that
maximizes a business objective like media reach across platforms. Scalable
action matters.

• Agile: data must be available in real-time and ready to adapt to the
changing business environment. Flexibility matters.

Advanced Big Data modeling and analytics are indispensable for discov-
ering the underlying structure from retrieved data in order to acquire Smart
Data. In this paper we provide several preprocessing techniques for Big Data,
transforming raw, corrupted datasets into Smart Data. We focus our interest
on classification tasks, where two types of noise are distinguished: class noise,
when it affects the class label of the instances, and attribute noise, when it affects
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the rest of attributes. The former is known to be the most disruptive [39, 54].
Consequently, many recent works, including this contribution, have been de-
voted to resolving this problem or at least to minimize its effects (see [15] for
a comprehensive and updated survey). While some architectural designs are
already proposed in the literature[52], there is no particular algorithm which
deals with noise in Big Data classification, nor a comparison of its effect on
model generalization abilities or computing times.

Thereby we propose a framework for Big Data under Apache Spark for
removing noisy examples composed of two algorithms based on ensembles of
classifiers. The first one is an homogeneous ensemble, named Homogeneous
Ensembe for Big Data (HME-BD), which uses a single base classifier (Random
Forest [4]) over a partitioning of the training set. The second ensemble is an
heterogeneous ensemble, namely Heterogeneous Ensembe for BigData (HTE-
BD), that uses different classifiers to identify noisy instances: Random Forest,
Logistic Regression and K-Nearest Neighbors (KNN) as base classifiers. For the
sake of a more complete comparison, we have also considered a simple filtering
approach based on similarities between instances, named Edited Nearest Neigh-
bor for Big Data (ENN-BD). ENN-BD examines the nearest neighbors of every
example in the training set and eliminates those whose majority of neighbors
belong to a different class. All these techniques have been implemented under
the Apache Spark framework [20, 40] and can be downloaded from the Spark’s
community repository 1.

To show the performance of the three proposed algorithms, we have carried
out an experimental evaluation with four large datasets, namely SUSY, HIGGS,
Epsilon and ECBDL14. We have induced several levels of class noise to eval-
uate the effects of applying such framework and the improvements obtained in
terms of classification accuracy for two classifiers: a decision tree and the KNN
technique. Decision trees with pruning are known to be tolerant to noise, while
KNN is a noise sensitive algorithm when the number of selected neighbors is
low. These differences allow us to better compare the effect of the framework in
classifiers which behave differently towards noise. We also show that, for the Big
Data problems considered, the classifiers also benefit from applying the noise
treatment even when no additional noise is induced, since Big Data problems
contain implicit noise due to incidental homogeneity, spurious correlations and
the accumulation of noisy examples [12]. The results obtained indicate that
the framework proposed can successfully deal with noise. In particular, the ho-
mogeneous ensemble is a suitable technique for dealing with noise in Big Data
problems, with low computing times and enabling the classifier to achieve better
accuracy.

The remainder of this paper is organized as follows: Section 2 presents the
concepts of noise, MapReduce and Smart Data. Section 3 explains the pro-
posed framework. Section 4 describes the experiments carried out to check the
performance of the framework. Finally, Section 5 concludes the paper.

1https://spark-packages.org/package/djgarcia/NoiseFramework
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2. Related work

In this section we first present the problem of noise in classification tasks
in Section 2.1. Then we introduce the MapReduce framework commonly used
in Big Data solutions in Section 2.2. Finally, we provide an insight into Smart
Data in 2.3.

2.1. Class noise vs. attribute noise

In a classification problem, several effects of this noise can be observed by
analyzing its spatial characteristics: noise may create small clusters of instances
of a particular class in the instance space corresponding to another class, displace
or remove instances located in key areas within a concrete class, or disrupt the
boundaries of the classes resulting in an increased boundaries overlap. All these
imperfections may harm data interpretation, the design, size, building time,
interpretability and accuracy of models, as well as decision making [53, 54].

As described by Wang et al. [48], from the large number of components that
comprise a dataset, class labels and attribute values are two essential elements
in classification datasets. Thus, two types of noise are commonly differentiated
in the literature [54, 48]:

• Class noise, also known as label noise, takes place when an example is
wrongly labeled. Class noise includes contradictory examples [42, 39] (ex-
amples with identical input attribute values having different class labels)
and misclassifications [54] (examples which are incorrectly labeled).

• Attribute noise refers to corruptions in the values of the input attributes.
It includes erroneous attribute values, missing values and incomplete at-
tributes or “do not care” values. Missing values are usually considered
independently in the literature, so attribute noise is mainly used for erro-
neous values [54].

Class noise is generally considered more harmful to the learning process, and
methods for dealing with class noise are more frequent in the literature [54].
Class noise may have many reasons, such as errors or subjectivity in the data
labeling process, as well as the use of inadequate information for labeling. Data
labeling by domain experts is generally costly, and automatic taggers are used
(e.g., sentiment analysis polarization [29]), increasing the probability of class
noise.

Due to the increasing attention from researchers and practitioners, numerous
techniques have been developed to tackle it [15, 54, 16]. These techniques include
learning algorithms robust to noise as well as data preprocessing techniques that
remove or “repair” noisy instances. In [15] the mechanisms that generate label
noise are examined, relating them to the appropriate treatment procedures that
can be safely applied:

• On the one hand, algorithm level approaches attempt to create robust
classification algorithms that are little influenced by the presence of noise.
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This includes approaches where existing algorithms are modified to cope
with label noise by either being modeled in the classifier construction [25,
27], by applying pruning strategies to avoid overfiting as in [35] or by di-
minishing the importance of noisy instances with respect to clean ones [33].
Recent proposals exist which that combine these two approaches, which
model the noise and give less relevance to potentially noisy instances in
the classifier building process [3].

• On the other hand, data level approaches (also called filters) try to develop
strategies to cleanse the dataset as a previous step to the fit of the classifier,
by either creating ensembles of classifiers [5], iteratively filtering noisy
instances [23], computing metrics on the data or even hybrid approaches
that combine several of these strategies.

In the Big Data environment there is a special need for noise filter methods.
It is well known that the high dimensionality and example size generate accu-
mulated noise in Big Data problems [12]. Noise filters reduce the size of the
datasets and improve the quality of the data by removing noisy instances, but
most of the classic algorithms for noisy data, noise filters in particular, are not
prepared for working with huge volumes of data.

2.2. Big Data. MapReduce and Apache Spark

The globalization of the Big Data paradigm is generating a large response in
terms of technologies that must deal with the rapidly growing rates of generated
data [45]. Among all of them, MapReduce is the seminal framework designed
by Google in 2003 [9]. It follows a divide and conquer approach to process and
generate large datasets with parallel and distributed algorithms on a cluster.
The MapReduce model is composed of two phases: Map and Reduce. The Map
phase performs a transformation of the data, and the Reduce phase performs
a summary operation. Briefly explained, first the master node splits the input
data and distributes it across the cluster. Then the Map transformation is
applied to each key-value pair in the local data. Once that process is finished
the data is redistributed based on the key-value pairs generated in the Map
phase. Once all pairs belonging to one key are in the same node, it is processed
in parallel. Apache Hadoop [46] [1] is the most popular open-source framework
based on the MapReduce model.

Apache Spark [20, 40] is an open-source framework for Big Data processing
built around speed, ease of use and sophisticated analytics. Its main feature is
its ability to use in-memory primitives. Users can load their data into mem-
ory and iterate over it repeatedly, making it a suitable tool for ML algorithms.
The motivation for developing Spark came from the limitations in the MapRe-
duce/Hadoop model [28, 13]:

• Intensive disk usage

• Insufficiency for in-memory computation
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• Poor performance on online and iterative computing.

• Low inter-communication capacity.

Spark is built on top of a distributed data structure called Resilient Dis-
tributed Datasets (RDDs) [51]. Operations on RDDs are applied to each par-
tition of the node local data. RDDs support two types of operations: trans-
formations, which are not evaluated when defined and produce a new RDD,
and actions, which evaluate all the previous transformations and return a new
value. The RDD structure allows programmers to persist them into memory
or disk for re-usability purposes. RDDs are immutable and fault-tolerant by
nature. All operations are tracked using a ”lineage”, so that each partition can
be recalculated in case of failure.

Although new promising frameworks for Big Data are emerging, like Apache
Flink [14], Apache Spark is becoming the reference in performance [19].

2.3. From Big Data to Smart Data

Big Data is an appealing discipline that presents an immense potential for
global economic growth and promises to enhance competitiveness of high tech-
nological countries. Such as occurs in any knowledge extraction process, vast
amounts of data are analyzed, processed, and interpreted in order to generate
profits in terms of either economic or advantages for society. Once the Big Data
has been analyzed, processed, interpreted and cleaned, it is possible to access
it in a structured way. This transformation is the difference between “Big” and
“Smart” Data [26].

The first step in this transformation is to perform an integration process,
where the semantics and domains from several large sources are unified under a
common structure. The usage of ontologies to support the integration is a recent
approach [10, 8], but graph databases are also an option where the data is stored
in a relational form, as in healthcare domains [36]. Even when the integration
phase ends, the data is still far from being “smart”: the accumulated noise in Big
Data problems creates problems in classical Data Mining techniques, specially
when the dimensionality is large [11]. Thus, in order to be “smart”, the data
still needs to be cleaned even after its integration, and data preprocessing is the
set of techniques utilized to encompass this task [16, 17].

Once the data is “smart”, it can hold the valuable data and allows interac-
tions in “real time”, like transactional activities and other Business Intelligence
applications. The goal is to evolve from a data-centered organization to a learn-
ing organization, where the focus is set on the knowledge extracted instead of
struggling with the data management [21]. However, Big Data generates great
challenges to achieve this since its high dimensionality and large example size
imply noise accumulation, algorithmic instability and the massive sample pool
is often aggregated from heterogeneous sources [12]. While feature selection,
discretization or imbalanced algorithms to cope with the high dimensionality
have drawn the attention of current Big Data frameworks (such as Spark’s ML-
lib [32]) and researchers [38, 41, 37, 43], algorithms to clean noise are still a
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challenge. In summary, challenges are still present to fully operate a transition
between Big Data to Smart Data. In this paper we provide an automated pre-
processing framework to deal with class noise, enabling the practitioner to reach
Smart Data.

3. Towards Smart Data: Noise filtering for Big Data

In this section, we present the framework for Big Data under Apache Spark
for removing noisy examples based on the MapReduce paradigm, proving its
performance over real-world large problems. It is a MapReduce design where
all the noise filter processes are performed in a distributed way.

In Section 3.1 we describe the Spark primitives used for the implementation
of the framework. We have designed two algorithms based on ensembles. Both
perform a k-fold on the training data, learn a model on the training partition
and clean noisy instances in the test partition. The first one is an homogeneous
ensemble using Random Forest as a classifier, named HME-BD (Section 3.2).
The second one, named HTE-BD (Section 3.3) is a heterogeneous ensemble
based on the use of three different classifiers: Random Forest, Logistic Regres-
sion and KNN. We have also implemented a simple filter based on the similarity
between the instances, named ENN-BD (Section 3.4).

3.1. Spark Primitives

For the implementation of the framework, we have used some basic Spark
primitives from Spark API. These primitives offer much complex operations by
extending the MapReduce paradigm. Here, we outline those more relevant to
the algorithms 2:

• map: Applies a transformation to each element of a RDD. Once the oper-
ation has been performed to each element, the resulting RDD is returned.

• zipWithIndex: for each element of a RDD, a pair consisting in the element
and its index is created, starting at 0. The resulting RDD is then returned.

• join: Return a RDD containing all pairs of elements with matching keys
between two RDDs.

• filter: Return a new RDD containing only the elements that satisfy a
predicate.

• union: Return a RDD of pairs as result of the union of two RDDs.

• kFold: Returns a list of k pairs of RDDs with the first element of each
pair containing the train data, a complement of the test data, and the
second element containing the test data, being a unique 1/kth of the data.
Where k is the number of folds.

2For a complete description of Spark’s operations, please refer to Spark’s API: http://

spark.apache.org/docs/latest/api/scala/index.html
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Algorithm 1 HME-BD Algorithm

1: Input: data a RDD of tuples (label, features)
2: Input: P the number of partitions
3: Input: nTrees the number of trees for Random Forest
4: Output: the filtered RDD without noise
5: partitions← kFold(data, P )
6: filteredData← ∅
7: for all train, test in partitions do
8: rfModel← randomForest(train, nTrees)
9: rfPred← predict(rfModel, test)

10: joinedData← join(zipWithIndex(test), zipWithIndex(rfPred))
11: markedData←
12: map original, prediction ∈ joinedData
13: if label(original) = label(prediction) then
14: original
15: else
16: (label = ∅, features(original))
17: end if
18: end map
19: filteredData← union(filteredData,markedData)
20: end for
21: return(filter(filteredData, label 6= ∅))

• randomForest: Method to learn a Random Forest model for classification
problems.

• predict: Returns a RDD containing the features and the predicted labels
for a given dataset using the learned model.

• learnClassifiers: Although its not a pure Spark primitive, we use it to
simplify the description of the algorithms. This primitive learns a Random
Forest, Logistic Regression and 1NN models from the input data.

These Spark primitives from Spark API are used in the following sections
where HME-BD, HTE-BD and ENN-BD algorithms are described.

3.2. Homogeneous Ensemble: HME-BD

The homogeneous ensemble is inspired by Cross-Validated Committees Filter
(CVCF) [44]. This filter removes noisy examples by partitioning the data in P
subsets of equal size. Then, a decision tree, such as C4.5, is learned P times,
each time leaving out one of the subsets of the training data. This results in P
classifiers which are used to predict all the training data P times. Then, using
a voting strategy, misclassified instances are removed.

HME-BD is also based on a partitioning scheme of the training data. There
is an important difference with respect to CVCF: the use of Spark’s implementa-
tion of Random Forest instead a of a decision tree as a classifier. CVCF creates
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an ensemble from partitioning of the training data. HME-BD also partitions
the training data, but the use of Random Forest allows us to improve the voting
step:

• CVCF predicts the whole dataset P times. We only predict the instances
of the partition that Random Forest has not seen while learning the model.
This step is repeated P times. With this change we not only improve the
performance, but also the computing time of the algorithm since it only
has to predict a small part of the training data each iteration.

• We don’t need to implement a voting strategy, the decision of whether an
instance is noisy is associated with the Random Forest prediction.

Algorithm 1 describes the noise filtering process in HME-BD:

• The algorithm filters the noise in a dataset by performing a kFold on the
training data. As stated previously, Spark’s kFold function returns a list
of (train, test) for a given P , where test is a unique 1/kth of the data,
and train is a complement of the test data.

• We iterate through each partition, learning a Random Forest model using
the train as input data and predicting the test using the learned model.

• In order to join the test data and the predicted data for comparing the
classes, we use the zipWithIndex operation in both RDDs. With this
operation, we add an index to each element of both RDDs. This index is
used as key for the join operation.

• The next step is to apply a Map function to the previous RDD in order
to check for each instance the original class and the predicted one. If the
predicted class and the original are different, the instance is marked as
noise.

• The result of the previous Map function is a RDD where noisy instances
are marked. These instances are finally removed using a filter function
and the resulting dataset is returned.

The following are required as input parameters: the dataset (data), the number
of partitions (P ) and the number of trees for the Random Forest (nTrees).

In Figure 1 we can see a flowchart of the HME-BD noise filtering process.

3.3. Heterogeneous Ensemble: HTE-BD

Heterogeneous Ensemble is inspired by Ensemble Filter (EF) [5]. This noise
filter uses a set of three learning algorithms for identifying mislabeled instances
in a dataset: a univariate decision tree (C4.5), KNN and a linear machine. It
performs a k-fold cross validation over the training data. For each one of the
k parts, three algorithms are trained on the other k − 1 parts. Each of the
classifiers is used to tag each of the test examples as noisy or clean. At the end
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Figure 1: HME-BD noise filtering process flowchart

of the k-fold, each example of the input data has been tagged. Finally, using a
voting strategy, a decision is made and noisy examples are removed.

HTE-BD follows the same working scheme as EF. The main difference is the
choice of the three learning algorithms:

• Instead of a decision tree, we use Spark’s implementation of Random For-
est.

• We use an exact implementation of KNN with the euclidean distance
present in Spark’s community repository, kNN-IS3 [30]

• The linear machine has been replaced by Spark’s implementation of Lo-
gistic Regression, which is another linear classifier.

The noise filtering process in HTE-BD is shown in Algorithm 2:

• For each train and test partition of the k-fold performed to the input
data, it learns three classification algorithms: Random Forest, Logistic
Regression and 1NN using the train as input data.

• Then it predicts the test data using the three learned models. This creates
a RDD of triplets (rf, lr, knn) with the prediction of each algorithm for
each instance.

• The predictions and the test data are joined by index in order to compare
the predictions and the original label.

3https://spark-packages.org/package/JMailloH/kNN_IS
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Algorithm 2 HTE-BD Algorithm

1: Input: data a RDD of tuples (label, features)
2: Input: P the number of partitions
3: Input: nTrees the number of trees for Random Forest
4: Input: vote the voting strategy (majority or consensus)
5: Output: the filtered RDD without noise
6: partitions← kFold(data, P )
7: filteredData← ∅
8: for all train, test in partitions do
9: classifiersModel← learnClassifiers(train, nTrees)

10: predictions← predict(classifiersModel, test)
11: joinedData← join(zipWithIndex(predictions), zipWithIndex(test))
12: markedData←
13: map rf, lr, knn, orig ∈ joinedData
14: count← 0
15: if rf 6= label(orig) then count← count + 1 end if
16: if lr 6= label(orig) then count← count + 1 end if
17: if knn 6= label(orig) then count← count + 1 end if
18: if vote = majority then
19: if count ≥ 2 then (label = ∅, features(orig)) end if
20: if count < 2 then orig end if
21: else
22: if count = 3 then (label = ∅, features(orig)) end if
23: if count 6= 2 then orig end if
24: end if
25: end map
26: filteredData← union(filteredData,markedData)
27: end for
28: return(filter(filteredData, label 6= ∅))

• It compares the three predictions of each instance in the test data with
the original label using a Map function and, depending upon the voting
strategy, the instance is marked as noise or clean.

• Once the Map function has been applied to each instance, noisy data is
removed using a filter function and the dataset is returned.

The following are required as input parameters: the dataset (data), the
number of partitions (P ), the number of trees for the Random Forest (nTrees)
and the voting strategy (vote).

In Figure 2 we show a flowchart of the HTE-BD noise filtering process.

3.4. Similarity: ENN-BD

ENN-BD is a simple filtering algorithm that works as a baseline for com-
parison purposes. It has been designed based on the Edited Nearest Neighbor
algorithm (ENN) [47] and follows a similarity between instances approach. ENN
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Figure 2: HTE-BD noise filtering process flowchart

Algorithm 3 ENN-BD Algorithm

1: Input: data a RDD of tuples (label, features)
2: Output: the filtered RDD without noise
3: knnModel← KNN(1, ”euclidean”, data)
4: knnPred← zipWithIndex(predict(knnModel, data))
5: joinedData← join(zipWithIndex(data), knnPred)
6: filteredData←
7: map original, prediction ∈ joinedData
8: if label(original) = label(prediction) then
9: original

10: else
11: (noise, features(original))
12: end if
13: end map
14: return(filter(filteredData, label 6= noise))

removes noisy instances in a dataset by comparing the label of each example
with its closest neighbor. If the labels are different, the instance is considered
as noisy and removed.

ENN-BD performs a 1NN using Spark’s community repository kNN-IS with
the euclidean distance. It checks for each instance if its closest neighbor belongs
to the same class. In case the classes are different, the instance is marked as
noise. Finally, marked instances are removed from the training data. This
process is described in Algorithm 3. The only input parameter required is the
dataset (data).

12



Table 1: Datasets used in the analysis

Dataset Instances Atts. Total CL

SUSY 5,000,000 18 90,000,000 2
HIGGS 11,000,000 28 308,000,000 2
Epsilon 500,000 2,000 1,000,000,000 2

ECBDL14 1,000,000 631 631,000,000 2

4. Experimental Results

This section describes the experimental details and the analysis carried out
to show the performance of the three noise filter methods over four huge prob-
lems. In Section 4.1, we present the details of the datasets and the parameters
used in the methods. We analyze the accuracy improvements generated by the
proposed framework and the study of instances removed in Section 4.2. Finally,
Section 4.3 is devoted to the computing times of the proposals.

4.1. Experimental Framework

Four classification datasets are used in our experiments:

• SUSY dataset, which consists of 5,000,000 instances and 18 attributes.
The first eight features are kinematic properties measured by the parti-
cle detectors at the Large Hadron Collider. The last ten are functions of
the first eight features. The task is to distinguish between a signal pro-
cess which produces supersymmetric (SUSY) particles and a background
process which does not [2].

• HIGGS dataset, which has 11,000,000 instances and 28 attributes. This
dataset is a classification problem to distinguish between a signal process
which produces Higgs bosons and a background process which does not.

• Epsilon dataset, which consists of 500,000 instances with 2,000 numerical
features. This dataset was artificially created for the Pascal Large Scale
Learning Challenge in 2008. It was further pre-processed and included in
the LibSVM dataset repository [6].

• ECBDL14 dataset, which has 32 million instances and 631 attributes (in-
cluding both numerical and categorical). This dataset was used as a ref-
erence at the ML competition of the Evolutionary Computation for Big
Data and Big Learning held on July 14, 2014, under the international
conference GECCO-2014. It is a binary classification problem where the
class distribution is highly imbalanced: 98% of negative instances. For
this problem, we use a reduced version with 1,000,000 instances and 30%
of positive instances.

Table 1 provides a brief summary of these datasets, showing the number of
examples (Instances), the total number of attributes (Atts.), the total number
of training data (Total), and the number classes (CL).
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Table 2: Parameter setting for the noise filters

Algorithm Parameters Classifiers

HME-BD P = 4, 5 Random Forest: featureSubsetStrategy = ”auto”, im-
purity = ”gini”, maxDepth = 10 and maxBins = 32

HTE-BD P = 4, 5
Voting = major-
ity, consensus

1NN, Random Forest: featureSubsetStrategy = ”auto”,
impurity = ”gini”, maxDepth = 10 and maxBins = 32

ENN-BD K = 1 distance = ”euclidean”

Table 3: Parameter setting for the classifiers

Classifier Parameters

KNN K = 1, distance = ”euclidean”
Decision Tree impurity = ”gini”, maxDepth = 20 and maxBins = 32

We carried out experiments on five levels of uniform class noise [42]: for each
level of noise, a percentage of the training instances are altered by replacing their
actual label by another label from the available classes. The selected noise levels
are 0%, 5%, 10%, 15% and 20%. In this case, a 0% noise level indicates that
the dataset was unaltered. We have conducted a hold-out validation due to the
time limitations of the KNN algorithm.

In Table 2 we can see the complete list of parameters used for the noise
treatment algorithms. In order to evaluate the effect of the number of partitions
on the behavior of the filters, we have selected 4 and 5 training partitions for
HME-BD and HTE-BD. For the heterogeneous filter, HTE-BD, we also use two
voting strategies: consensus (same result for all classifiers) and majority (same
result for at least half the classifiers).

Two classifiers, one MLlib classifier, a decission tree, and one algorithm
present in Spark’s community repository, KNN, are used to evaluate the ef-
fectiveness of the filtering carried out by the two ensemble proposals and the
similarity filter. The decision tree can adapt its depth to avoid overfitting to
noisy instances, while KNN is known to be sensitive to noise when the number
of selected neighbors is low. Prediction accuracy is used to evaluate the model’s
performance produced by the classifiers (number of examples correctly labeled
as belonging to a given class divided by the total number of elements). The
parameters used for the classifiers can be seen in Table 3. Default parameters
are used, except for the decision tree, in which we have tuned the depth of the
tree for a better detection of noisy instances.

For all experiments we have used a cluster composed of 20 computing nodes
and one master node. The computing nodes hold the following characteristics:
2 processors x Intel(R) Xeon(R) CPU E5-2620, 6 cores per processor, 2.00 GHz,
2 TB HDD, 64 GB RAM. Regarding software, we have used the following con-
figuration: Hadoop 2.6.0-cdh5.4.3 from Cloudera’s open source Apache Hadoop
distribution, Apache Spark and MLlib 1.6.0, 460 cores (23 cores/node), 960
RAM GB (48 GB/node).
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Table 4: KNN test accuracy. The highest accuracy value per dataset and noise level is stressed
in bold

Dataset Noise (%) Original HME-BD HTE-BD ENN-BD
P 4 5 4 4 5 5
Vote Majority Consensus Majority Consensus

SUSY 0 71.79 78.73 78.72 77.86 74.64 77.88 74.65 72.02
5 69.62 78.68 78.69 77.68 73.38 77.68 73.39 69.84
10 67.44 78.63 78.62 77.44 72.01 77.46 72.00 67.66
15 65.27 78.62 78.61 77.19 70.52 77.20 70.53 65.28
20 63.10 78.56 78.58 76.93 69.10 76.93 69.04 63.25

HIGGS 0 61.21 64.26 64.25 63.94 62.30 63.93 62.23 60.65
5 60.10 64.06 64.07 63.63 61.45 63.62 61.44 59.60
10 58.97 63.83 63.84 63.29 60.65 63.24 60.66 58.56
15 57.84 63.65 63.64 62.86 59.81 62.89 59.81 57.52
20 56.69 63.53 63.40 62.55 58.89 62.55 58.85 56.45

Epsilon 0 56.55 58.11 58.06 57.43 55.19 57.39 55.40 56.21
5 55.71 58.64 58.60 57.47 55.47 57.39 55.41 55.43
10 55.20 58.51 58.61 57.26 55.25 57.26 55.25 54.79
15 54.54 58.39 58.41 57.00 55.00 57.02 55.03 54.30
20 54.05 58.02 58.09 56.75 54.72 56.71 54.72 53.68

ECBDL14 0 74.83 76.06 76.03 75.12 73.54 75.14 73.46 73.94
5 72.36 75.60 75.59 74.59 72.89 74.59 72.84 72.77
10 69.86 75.31 75.32 74.19 72.50 74.19 72.47 71.40
15 67.39 75.11 75.12 73.99 72.11 74.01 72.06 69.68
20 64.90 74.82 74.83 73.70 71.89 73.70 71.90 67.64

4.2. Analysis of accuracy performance and removed instances

In this section, we present the analysis on the performance results obtained
by the selected classifiers after applying the proposed framework. We denote
with Original the application of the classifier without using any noise treatment
techniques, in order to evaluate the impact of the increasing noise level in the
quality of the models extracted by the classification algorithms.

Table 4 shows the test accuracy values for the four datasets and the five
levels of noise using the KNN algorithm for classification. From these results
we can point out that:

• It is important to remark that the usage of any noise treatment tech-
nique always improves the Original accuracy value at the same noise level.
Please note that the usage of the noise treatment technique allows KNN
to obtain better performance at any noise level, even at the highest ones,
than Original at 0% level for every dataset. Since Big Datasets tend to
accumulate noise, the proposed noise framework is able to improve the
behavior and performance of the KNN classifier in every case.

• If we attend the best noise treatment strategy for KNN, we must point
out that the homogeneous filter, HME-BD, enables KNN to obtain the
highest accuracy values.

• The different number of partitions used for HME-BD has little impact in
the accuracy values, which, in this respect, makes it a robust method.

• The heterogeneous ensemble filter, HTE-BD, is also robust to the number
of partitions chosen, but its performance is lower than HME-BD. However,
the voting scheme is crucial for HTE-BD, as the consensus strategy will
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Table 5: Decision tree test accuracy. The highest accuracy value per dataset and noise level
is stressed in bold

Dataset Noise (%) Original HME-BD HTE-BD ENN-BD
P 4 5 4 4 5 5
Vote Majority Consensus Majority Consensus

SUSY 0 80.24 79.78 79.79 79.69 80.27 79.17 80.29 78.56
5 79.94 79.99 79.97 80.07 80.36 80.10 80.34 77.49
10 79.15 79.85 79.84 79.81 80.04 79.81 80.22 77.00
15 78.21 79.81 79.80 79.32 79.47 79.61 79.48 75.81
20 77.09 79.71 79.73 79.35 78.95 79.31 79.41 74.21

HIGGS 0 70.17 71.16 71.17 69.61 70.41 69.68 70.33 68.85
5 69.61 71.14 71.11 69.34 69.98 69.36 69.92 68.29
10 69.22 71.06 71.04 68.95 69.56 68.97 69.58 67.52
15 68.65 71.03 70.99 68.52 69.04 68.65 69.06 66.93
20 67.82 71.05 71.02 68.18 68.38 68.35 68.39 66.05

Epsilon 0 62.39 66.86 66.19 65.13 66.07 65.11 66.02 61.54
5 61.10 66.64 66.83 65.32 66.09 65.33 66.09 60.41
10 60.09 66.87 67.00 65.46 66.11 65.47 66.10 59.20
15 59.02 66.62 66.85 65.33 65.99 65.29 66.00 58.09
20 57.73 66.46 66.79 65.08 65.69 64.98 65.65 56.71

ECBDL14 0 73.98 74.59 74.38 74.21 74.51 74.35 74.62 73.66
5 72.87 74.64 74.40 74.16 74.54 74.25 74.75 73.48
10 71.67 74.59 74.25 73.84 74.51 73.94 74.63 72.75
15 70.28 74.61 74.22 73.82 73.91 73.98 74.10 71.68
20 68.66 74.83 74.18 73.78 73.82 73.85 73.86 70.16

result in worse accuracy for KNN, being close to 2% less accuracy for the
consensus voting strategy.

• The baseline noise filtering method, ENN-BD, is the worst option as KNN
obtains the lowest accuracy values among the three noise treatment strate-
gies. For ENN-BD, the accuracy drops around 2% for each 5% increment
in noise instances. However, as mentioned earlier, ENN-BD is still prefer-
able to not dealing with the noise at all. This is due to the noise sensitive
nature of KNN.

Table 5 gathers the test accuracy values for the three noise filter methods
using a deep decision tree. From these results we can point out that:

• Again, avoiding the treatment of noise is never the best option and using
the appropriate noise filtering technique will provide a significant improve-
ment in accuracy. However, since the decision tree is more robust against
noise than KNN, not all the filters are better than avoiding filtering noise
(Original). When the filters remove too many instances, both noisy and
clean, the decision tree is more affected since it is able to withstand small
amounts of noise while exploiting the clean instances. KNN was very af-
fected by the noisy instances left, in a higher degree than the decision
tree. Thus, a wrong filtering strategy will penalize the performance of the
decision tree. We will elaborate more on this later.

• In terms of the best filtering technique for the decision tree, for low levels
of noise, the heterogeneous ensemble HTE-BD can perform slightly better
than the homogeneous HME-BD for some datasets. Nevertheless, from
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Table 6: Average number of instances for HME-BD, HTE-BD and ENN-BD

Dataset Noise Original HME-BD HTE-BD ENN-BD
P 4 5 4 4 5 5
Vote Majority Consensus Majority Consensus

SUSY 0% 2,500,000 1,984,396 1,983,785 1,974,018 2,281,521 1,973,587 2,280,941 1,262,317
5% 2,500,000 1,910,750 1,911,317 1,872,868 2,241,766 1,874,053 2,242,598 1,260,781
10% 2,500,000 1,837,604 1,837,408 1,801,616 2,207,999 1,800,276 2,203,012 1,258,441
15% 2,500,000 1,763,890 1,764,176 1,728,789 2,174,051 1,727,949 2,175,876 1,256,611
20% 2,500,000 1,691,290 1,691,506 1,657,323 2,144,595 1,657,035 2,141,811 1,254,441

HIGGS 0% 5,500,000 3,900,547 3,900,035 3,567,784 5,048,874 3,564,879 5,051,498 2,765,831
5% 5,500,000 3,787,000 3,786,366 3,484,271 5,014,344 3,484,274 5,013,132 2,763,942
10% 5,500,000 3,672,429 3,672,553 3,404,181 4,972,401 3,401,624 4,973,794 2,760,547
15% 5,500,000 3,554,120 3,557,252 3,324,547 4,930,575 3,323,465 4,932,060 2,754,636
20% 5,500,000 3,446,352 3,443,459 3,242,174 4,888,991 3,240,623 4,886,961 2,756,382

Epsilon 0% 250,000 164,222 164,292 194,252 242,757 194,037 242,730 125,072
5% 250,000 186,707 186,839 186,890 239,200 186,957 239,200 124,983
10% 250,000 180,489 180,517 180,296 235,425 180,332 235,456 125,064
15% 250,000 173,027 173,114 173,226 231,962 173,274 231,997 124,980
20% 250,000 166,191 166,247 166,394 228,153 166,285 228,394 124,583

ECBDL14 0% 500,000 387,815 387,873 393,242 470,731 393,273 470,924 367,101
5% 500,000 370,991 371,094 377,451 458,758 377,239 459,212 344,717
10% 500,000 357,565 357,270 361,587 448,460 361,614 448,550 324,674
15% 500,000 344,363 344,427 346,454 439,633 346,633 439,028 306,832
20% 500,000 330,694 330,761 331,552 430,444 331,511 430,357 292,000

a 10% noise level onwards, HME-BD outperforms HTE-BD, making it a
better approach to deal with noise for the decision tree.

• Regarding the HTE-BD voting strategy, the consensus scheme achieves
better results than the majority voting strategy. Please note that the
opposite has been observed in KNN: since KNN is much more sensitive
and demands cleaner class borders achieved with the majority voting, the
decision tree benefits from a more accurate noise removal provided by the
consensus voting.

• The baseline method, ENN-BD, is achieving around 1% less accuracy
than the rest for low levels of noise, but this difference increases to 5%
less accuracy in higher noise levels.

The results presented have shown the importance of applying a noise treat-
ment strategy, no matter how much noise is present in the dataset, and the best
strategy overall: HME-BD. To better explain why HME-BD is the best filtering
strategy in the framework, we must study the amount of instances removed.

In Table 6 we present the average number of instances left after the appli-
cation of the three noise filtering methods for the four datasets. In Figure 3
we can see a graphic representation of the number of instances for the sake
of a better depiction. As we can expect, the higher the percentage of noise,
the lower the number of instances that remain in the dataset after applying
the filtering technique. However, there are different patterns depending on the
filtering technique used:

• For the homogeneous ensemble HME-BD, there is no effect in the number
of partitions P chosen with respect to the amount of removed instances.
On average, HME-BD removes around 20% of the instances at a 0% noise
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(a) SUSY (b) HIGGS

(c) Epsilon (d) ECBDL14

Figure 3: Number of instances after the filtering process

level. At each noise level increment an average of 3% of the instances are
removed.

• For the Epsilon dataset, at 20% nosie, HME-BD does not remove as many
instances as expected, but it is still the best option out of the two classi-
fiers. A high instance redundancy in this dataset may cause homogeneous
voting to not discard as many instances as the other filters.

• Like HME-BD, HTE-BD is not affected by the number of partitions, but
the voting scheme does have a great impact on its behavior. While the
majority voting strategy achieves almost the same number of removed
instances as HME-BD, the consensus voting strategy is more conservative.
Consensus voting removes 10% of the instances for 0% level of noise, and
it is increasing a 3% on average as the level of noise increases, the same
rate as HME-BD.

• ENN-BD is the filter that removes more instances. On average it removes
half the instances of the datasets for 0% level of noise and then increases
around 1% at each increment of noise level. This aggresive filtering hinders
the performance of noise tolerant classifiers, such as the decision tree.

• In general, HME-BD is the most balanced technique in terms of instances
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Table 7: Average percentage of correctly removed instances for HME-BD, HTE-BD and ENN-
BD

Dataset Noise HME-BD HTE-BD ENN-BD
P 4 5 4 4 5 5
Vote Majority Consensus Majority Consensus

SUSY 5% 79.45 79.44 78.98 38.16 79.02 38.18 50.36
10% 76.79 76.74 77.50 38.03 77.52 39.24 50.32
15% 76.77 76.77 76.48 37.71 76.49 37.71 50.38
20% 79.34 79.37 78.83 37.26 78.83 37.25 50.29

HIGGS 5% 69.19 69.04 66.04 26.18 66.03 26.17 49.12
10% 69.26 69.24 66.10 25.82 66.09 25.82 49.56
15% 69.39 69.37 66.14 25.81 66.14 25.80 49.62
20% 69.45 69.49 66.23 25.78 66.23 25.78 49.55

Epsilon 5% 65.18 65.05 77.18 30.67 77.08 30.64 50.13
10% 66.02 65.98 77.65 30.31 77.60 30.27 49.80
15% 67.19 67.15 77.60 30.74 77.57 30.70 49.98
20% 66.74 66.51 77.71 30.89 77.68 30.86 49.77

ECBDL14 5% 74.45 74.35 78.30 44.79 78.28 45.15 70.83
10% 74.36 74.32 77.26 46.83 77.22 46.84 68.55
15% 74.41 74.35 77.07 44.79 77.04 44.84 66.45
20% 74.38 74.36 77.29 43.79 77.26 43.80 64.25

removed and kept. Although the amount of instances removed by HTE-
BD with majority voting is very similar to HME-BD, the instances se-
lected to be eliminated are different, severely affecting the classifier used
afterwards.

We have performed a deeper analysis of the removed instances, analyzing
the amount of correctly removed instances for each method in the framework.

In Table 7 we present the average percentage of correctly removed instances
after the application of the three noise filtering methods for the four datasets.
In Figure 4 we can see a graphic representation of these percentages of correctly
removed instances. As we can see, the consensus voting strategy is much more
conservative removing noisy instances than the rest of the methods. We can
also outline some patterns depending on the filtering method used:

• While ENN-BD is the filter that more instances removes, it is also the
one that less noise removes from the datasets, averaging a 50% of noisy
instances removed.

• Similarly to the number of instances removed, HME-BD and HTE-BD
are not affected by the number of partitions, while the voting strategy
does influence the percentage of correctly removed instances. As we could
expect, the consensus voting strategy is the one that less noisy instances
clean. Consensus voting removes only 25% of noisy instances in HIGGS
dataset, and only increases to 45% in ECBDL14 dataset.

• HME-BD and HTE-BD with majority voting, are removing aroung 65%
and 80% of noisy instances. Both methods outperform the other in two
out of four datasets.
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(a) SUSY (b) HIGGS

(c) Epsilon (d) ECBDL14

Figure 4: Percentage of correctly removed noisy instances after the filtering process

• In Epsilon dataset, HTE-BD is cleaning 10% more noisy instances than
HME-BD, but HME-BD performs better in test accuracy. This can be
explained by the accumulated noise of this particular dataset.

In view of the results, we can conclude that HME-BD is the most suitable
ensemble option in the proposed framework to deal with noise in Big Data
problems. Even when we did not introduce any additional noise, the usage
of noise treatment methods has proven to be very beneficial. As previously
mentioned, Big Data problems tend to accumulate noise and the proposed noise
framework is a suitable tool to clean and proceed from Big to Smart Datasets.

4.3. Computing times

In the previous section we have shown the suitability of the proposed frame-
work in terms of accuracy. In order to constitute a valid proposal in Big Data,
this framework has to be scalable as well. This section is devoted to present
the computing times for the two prosposed ensemble techniques, HME-BD and
HTE-BD, and the simple similarity method, ENN-BD, used as a baseline.

In Table 8 we can see the average run times of the three methods for the
four datasets in seconds. As the level of noise is not a factor that affects the run
time, we show the average of the five executions performed for each dataset. In
Figure 5 we can see a graphic representation of these times.
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Table 8: Average run times for HME-BD, HTE-BD and ENN-BD in seconds

Dataset HME-BD HTE-BD ENN-BD
P 4 5 4 4 5 5
Vote Majority Consensus Majority Consensus

SUSY 513.46 632.54 5,511.15 5,855.66 6,701.62 6,399.32 8,956.71
HIGGS 587.72 675.07 15,300.62 15,232.99 16,417.26 17,067.97 25,441.09
Epsilon 1,868.75 2,021.14 4,120.79 7,201.05 5,179.09 5,664.06 2,718.97
ECBDL14 1,228.24 1,348.10 9,710.70 11,217.02 10,798.18 11,366.01 14,080.03

Figure 5: Run times chart

The measured times show that the homogeneous ensemble, HME-BD, is
not only the best performing option in terms of accuracy, but also the most
efficient one in terms of computing time. HME-BD is about ten times faster
than the heterogeneous filter HTE-BD and the similarity filter ENN-BD. This
is caused by the usage of the KNN classifier by HTE-BD and ENN-BD, which
is very demanding in computing terms. As a result, HME-BD does not need
to compute any distance measures, saving computing time and being the most
recommended option to deal with noise in Big Data problems.

5. Conclusions

In this paper, we have tackled the problem of noise in Big Data classification,
which is a crucial step in transforming such raw data into Smart Data. We have
proposed several noise filtering algorithms, implemented in a Big Data frame-
work: Spark. These filtering techniques are based on the creation of ensembles
of classifiers that are executed in the different maps, enabling the practitioner to
deal with huge datasets. Different strategies of data partitioning and ensemble
classifier combination have led to three different approaches.

The suitability of these proposed techniques has been analyzed using several
data sets, in order to study the accuracy improvement, running times and data
reduction rates. The homogeneous ensemble has shown to be the most suitable
approach in most cases, both in accuracy improvement and better running times.
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It also shows the best balance between removing and keeping sufficient instances,
being among the most balanced filter in terms of preprocessed training sets.

This work presents the first suitable noise filter in Big Data domains, where
the high redundancy of the instances and high dimensional problems pose new
challenges to classic noise preprocessing algorithms. Thus, the presented frame-
work is a valuable tool for achieving the goal of Smart Data. It also opens
promising research lines in this topic, where the presence of iterative algorithms
and the usage of noise measures are also known as viable alternatives for dealing
with noise.
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