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A B S T R A C T

In recent years, monotonic ordinal classification has increased the focus of attention for machine
learning community. Real life problems frequently have monotonicity constraints. Many of the
monotonic classifiers require that the input data sets satisfy the monotonicity relationships
between its samples. To address this, a conventional strategy consists of relabeling the input data
to achieve complete monotonicity. As an alternative, we explore the use of preprocessing
algorithms without modifying the class label of the input data.

In this paper we propose the use of training set selection to choose the most effective
instances which lead the monotonic classifiers to obtain more accurate and efficient models,
fulfilling the monotonic constraints. To show the benefits of our proposed training set selection
algorithm, called MonTSS, we carry out an experimentation over 30 data sets related to ordinal
classification problems.

1. Introduction

Learning with ordinal data sets has increased the attention of the machine learning community in recent years [1,2]. These data
sets are characterized by the presence of an ordinal output and they are commonly found in real life [3].

Monotonic classification is an ordinal classification problem where monotonic constraints are present in the sense that a higher
value of a feature in an instance, fixing the other values, should not decrease its class assignment [4–6]. As an example, we can
contemplate the problem of ranking documents according to the relevance to a certain query. They can be categorized into relevant,
moderately relevant and non-relevant. Considering a usual feature of count of matching terms with the query, it is expected that an
increase in this feature would influence the final relevance of the document. These relationships between the inputs features and the
response are termed as monotonic.

In the specialized literature we can find multiple monotonic classifiers proposed, like neural networks and support vector
machines [7,8], classification trees and rule induction [9–16] and instance-based learning [17–21]. As a restriction, some of them
require the training set to be purely monotone to work properly. Other classifiers can handle non-monotonic data sets, but they do
not guarantee monotone predictions.

In addition, real-life data sets are likely to have noise, which obscures the relationship between features and the class [22]. This
fact affects the prediction capabilities of the learning algorithms which learn models from those data sets.

In order to address these shortcomings and to test the prediction competences of the monotonic classifiers, the usual trend is to
generate data sets which completely satisfy the monotonicity conditions [23]. The intuitive idea behind this is that the models
trained on monotonic data sets should offer better predictive performance than the models trained on the original data. In the
specialized literature, we find two possible techniques to generate monotonic data sets. Monotonic data sets can be created by
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generating artificial data [24] and by relabeling the real data [19,23,25]. The latter restores the monotonicity of the data set by
changing the class labels in those instances which violate the monotonicity constraints. Class relabeling is the only approach which
can be applied in real life data sets, and has shown promising results in the literature [26].

As an alternative to relabel, Training Set Selection (TSS) is known as an application of instance selection methods [27–29] over
the training set used to build any predictive model. Thus, TSS can be employed as a way to improve the behavior of predictive
models, precision and interpretability [30–34].

In this paper we propose a TSS algorithm to manage monotonic classification problems, called Monotonic Training Set Selection
(MonTSS). It is a data preprocessing technique which, by means of a suitable TSS process for monotonic domains, offers an
alternative without modifying the class labels of the data set, it instead removes harmful instances. MonTSS incorporates proper
measurements to identify and select the most suitable instances in the training set to enhance both the accuracy and the monotonic
nature of the models produced by different classifiers. We have compared the results offered by well-known classical monotonic
classifiers over 30 data sets with and without the use of MonTSS as a data preprocessing stage. The results show that MonTSS is able
to select the most representative instances, which leads monotonic classifiers to always offer equal or better results than without
preprocessing.

The paper is organized as follows. In Section 2, the monotonic classification problem is presented, together with some state-of-
the-art monotonic classifiers. Section 3 describes the proposed MonTSS algorithm. Section 4 describes the experimental framework,
with respect to data sets, parameters and quality metrics considered. In Section 5 the results and analysis are included. Finally,
Section 6 concludes the paper.

2. The monotonic classification problem

In this section, we define the monotonic classification domain and describe some classical algorithms proposed in this field.

2.1. Problem definition

Monotonicity is a property commonly found in many environments of our lives like economics, natural language or game theory
[4]. A classical example of monotonicity is in the case of bankruptcy prediction in companies, where appropriate actions can be taken
in time, considering the information based on financial indicators taken from their annual reports. The comparison of two
companies where one dominates the other on all financial indicators shows clearly where the monotonicity is present, which
supposes that the overall evaluation of the second cannot be higher than the evaluation of the first. This strategy could be applied to
the credit rating score used by banks [8] as well as for the bankruptcy prediction strategy [35].

To define monotonic ordinal data, let D be a data set with f ordinal features A A, …, f1 and one output class feature Y having c
possible ordinal values ({y y, …, c1 } Y∈ ). The data set consists of n instances x x, …, n1 ((x y D, ) ∈i i ). A partial ordering ⪯ on D is
defined as

x x A x A x j f⪯ ′ ⇔ ( ) ≤ ( ′), ∀ = 1, …, .j j (1)

Two instances x and x′ in space D are comparable if either x x⪯ ′ or x x′ ⪯ , otherwise x and x′ are incomparable. Two instances x
and x′ are identical if x = x′ and non-identical if x x≠ ′;.

Considering this notation, we denote a pair of comparable instances (x, x′) monotone if

x x x x Y x Y x⪯ ′ ∧ ≠ ′ ∧ ( ) ≤ ( ′), (2)

or

x x Y x Y x= ′ ∧ ( ) = ( ′). (3)

With this definition in mind, we can designate a data set D with n instances as monotone if all possible pairs of instances are
either monotone or incomparable.

Monotonic classification is usually used for well-known problems where it is known a priori that there is a monotone relationship
between features and class labels. It may be the case that not all features present monotonicity relationship, in which case they would
not be taken into account in the construction of the classifier. The definition of monotonicity in Eq. (1) refers to all features which
present monotonic relation with the class. For this reason it is noted as a partial order (⪯).

However, it could be the case that a data set must be used for which we do not have sufficient a priori information to know the
relationship between features and class. To address this situation we consider the analysis of the relationship between each feature
and the class, using the rank mutual information metric (RMI [36]). RMI indicates, with a positive value, that the relationship
(between feature and class) is direct and negative if it is inverse (when feature grows, class decreases). Zero means that there is no
relation between feature and class, and then the feature is not used. If the relation of order between features and class is direct, the
expression considered is that used in Eq. (2). In case of the existence of some inverse relations, Eq. (2) could be generalized as
follows:

⎪

⎪⎧⎨
⎩x x Y x Y x j f

A x A x A x Y
A x A x A x Y

if RMI
if RMI⪯ ′ ∧ ( ) ≤ ( ′), ∀ = 1, …, .

( ) ≤ ( ′) ( ( ), ) > 0
( ) ≥ ( ′) ( ( ), ) < 0

j j j

j j j (4)
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Those cases are considered in our proposal, and the rank mutual information metric definition is extended in Section 3.3.

2.2. Classic monotonic classifiers

The classical monotonic classification algorithms considered in this study are:

• Ordinal Learning Model (OLM [17]). OLM was the first algorithm proposed for ordinal classification with monotonic restrictions.
The aim is to select a subset D D′ ⊆ of training instances where all of items satisfy the monotonicity constraints. To classify a new
instance, the following function must be used:

f x max y x D x x( ) = { : ∈ ′, ⪯ }.OLM i i i (5)

If x does not dominate any object in D′, then the class label predicted is selected by the nearest neighbor rule. D′ must be
consistent and without redundant instances. One instance xi is redundant when there is any xj where x x≽i j and y y=i j.

• Ordinal Stochastic Dominance Learner (OSDL [18,37]): It is an instance-based method based on stochastic order consisting of
two mapping functions. The first one is based on instances that are stochastically dominated by xi with the maximum label, and
the second one is based on instances that cover xi with the smallest label.

• Monotone Induction of Decision trees (MID [9]): MID is based on the idea of modifying the conditional entropy in ID3 algorithm
[38], including a term called order-ambiguity-score. The aim is to adapt the splitting strategy towards the building of monotonic
trees. This algorithm does not guarantee that the trees generated result in a completely monotone function.

• Monotonic k-Nearest Neighbor Classifier (MkNN [19]): This algorithm considers the classical nearest neighbor rule ([39]), for a
new instance x0 the prediction of its class label must be in the range y y[ , ]min max to preserve the monotonicity constraints, where

y min y x y D x x= { |( , ) ∈ ∧ ≤ },max 0 (6)

in other words, given a new instance x0 to be classified, its associated ymax will be determined as the minimum class value of all
those instances (x) in the data set whose attribute values are all bigger than, or equal to, those of x0.

y max y x y D x x= { |( , ) ∈ ∧ ≤ }.min 0 (7)

In this case, given a new instance x0 to be classified, its associated ymin will be determined as the maximum class value of all those
instances (x) in the data set whose attributes values are all smaller than, or equal to, those of x0. The predictions are carried out
according to majority voting of the k nearest neighbors of x0 from D whose labels are included in y y[ , ]min max . As [19] indicates, a
previous relabeling stage is necessary before the Monotonic k-Nearest Neighbor is applied. In [19] MkNN incorporates as data
preprocessing an optimal relabeling procedure which changes the labels of pairs of instances that violate the monotonic
constraints, using the minimum number of alterations.

3. Monotonic Training Set Selection

In this section, we describe the proposed algorithm MonTSS (Monotonic Training Set Selection). MonTSS can be considered as
the first in the literature for performing TSS in monotonic classification problems. As we mentioned, in TSS the aim is to reduce the
size of the training data set by selecting the most representative instances. The effects produced by such data preprocessing,
according to [33,40,41], are: reduction in space complexity, decrease in computational cost and the selection of the most
representative instances by discarding noisy ones.

In monotonic classification, besides the previously enumerated advantages, the most representative instances must also keep or
improve the monotonicity constraints of the training set. In this manner, the learned models from the data sets resulting from the
TSS process are expected to improve their monotonic condition with respect to those obtained from the original training data set.

Next, we introduce the required concepts in Sections 3.1 and 3.2. Section 3.3 summarizes the description of the MonTSS
algorithm.

3.1. Probabilistic Collision Removal

Two instances produce a collision if they do not satisfy the Eqs. (2) and (3). Before carrying out the TSS, we apply an ordered
probabilistic removal based on the collisions produced by these instances. The process is stochastic to avoid falling in local optima.
For this reason, two parameters are introduced: Candidates, which points out the rate of the best candidates to be selected, and
CollisionsAllowed, which represents the minimal rate of collisions permitted to stop the removal process.

The probabilistic algorithm is given in Algorithm 1: it first calculates the number of collisions that each instance produces (line
3), maxCandidates (line 4) based on the size of the data set and the candidate rate used as a parameter (Candidates) and the
minimum number of collisions to stop the iterative process (minCol in line 5); in every iteration, it sorts the instances in decreasing
order of number of collisions (line 8); in line 9, is assigned to variable candSelected a random value generated between 1 and
maxCandidates. This value will be used to decide which element to remove from the ordered list S (line 10), with the idea of
eliminating one of the instances with maximum number of collisions in the range [1,maxCandidates]; finally, the collisions are
recalculated and this process is repeated until CollisionsAllowed is reached (lines 11-18). The efficiency of the algorithm is O(n2),
where n is the number of instances in the training set T.
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Algorithm 1. Probabilistic Collision Removal algorithm.

1: function ProbColRemoval(T - training data, Candidates - candidate rate, CollisionsAllowed - minimal rate of collisions
allowed)

2: initialize: totalCollisions=0,S=T
3: [Col[], ColMatrix[][], totalCollisions]=Calculate_Collisions(S)
4: maxCandidates S Candidates=# ·
5: minCol totalCollisions CollisionsAllowed= ·
6: newCol totalCollisions=
7: repeat
8: S=sort(S,Col[])
9: candSelected=Rand(1, maxCandidates)
10: S=S ⧹ {xcandSelected}

11: newCol=newCol - Col candSelected[ ]
12: Col candSelected[ ] = 0
13: for all x T∈j do

14: if (ColMatrix j candSelected true[ ][ ] = ) then
15: ColMatrix j candSelected false[ ][ ] =
16: Col j Col j[ ] = [ ] − 1
17: end if
18: end for
19: until newCol minCol<
20: return S
21: end function
22: function Calculate_Collisions(T - training data)
23: for all x T∈i do
24: Col i[ ]=0
25: for all x T∈j do

26: ColMatrix i j[ ][ ]=0
27: end for
28: end for
29: for all x T∈i do
30: for all x T∈j do

31: if (i ≠ j ) then
32: if (x x⪯i j and Y x Y x( ) > ( )i j ) or (x x=i j and Y x Y x( ) ≠ ( )i j ) then

33: Col i[ ]=Col i[ ] + 1
34: Col j[ ]=Col j[ ] + 1
35: ColMatrix i j true[ ][ ] =
36: ColMatrix j i true[ ][ ] =
37: end if
38: end if
39: end for
40: end for
41: totalCollisions = 0
42: for all x T∈i do
43: totalCollisions totalCollisions Col i= + [ ]
44: end for
45: return [Col[], ColMatrix[][], totalCollisions]
46: end function

The more collisions an instance has, the higher is its probability to be removed. After this process, the resulting data is formed by
instances with the allowed number of collisions. Although taking this process to the extreme could obtain collisions-free data, it is
desirable to provide greater freedom of action to the quality metrics described next.

3.2. Quality metrics selection

We introduce two new metrics: Delimitation (Del) and Influence (Infl), to assess how representational the instances are. Both are
calculated for each instance resulting from the previous stage and are used to determine which instances must be included in the
final TSS.
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The instances located at the boundary of decision classes are of great importance in monotonic classification. They should be
conserved to guarantee that the relationship of monotonicity between the inputs and the response remains constant. Hence, both
metrics have been proposed to identify the subset of most important instances which belong to the decision boundaries. They are
defined for an instance x D∈i as follows:

• Delimitation (Del):

x
x x
x x

Del( ) =
|Dom( ) − NoDom( )|
Dom( ) + NoDom( )

,i
i i

i i (8)

x X x X x x Y x Y xDom( ) = # ′, ′ ∈ ′ ⇔ ≺ ′ ∧ ( ) = ( ′),i i i (9)

x Z x Z x x Y x Y xNoDom( ) = # ′, ′ ∈ ′ ⇔ ≽ ′ ∧ ( ) = ( ′),i i i (10)

where Dom(xi) represents the number of instances of the same class as xi that dominate xi, and NoDom(xi) is the number of
instances of the same class as xi dominated by xi. The range of Del(xi) is [0, 1). A value closer to 0 means that the instance is located
near the central region of the class and the value near to 1 means that it is closer to the boundaries. As an example of its use we
consider the data set which appears in Fig. 1. The figure represents a data set with two classes (class 1 as squared form and class 2
as circles), where Attribute 1 and Attribute 2 are inputs of the instances. Here, each example is denoted by its coordinates in the
format (Attribute 1,Attribute 2). Calculating Delimitation for each one of the square class points produce the results present in
Table 1. The points with higher values would be the selected ones. Considering a threshold of 0.9 for example (as in the
experimental section), the selected points are (1,1) and (5,5). The rest of the instances would not be retained using this metric. In
fact, these two selected instances can perfectly determine a safe region occupied by the square class.

• Influence (Infl). The Influence of each instance xi is computed by using the number of neighbors of any different class label and
their distance to xi. First, the k nearest neighbors are obtained and their corresponding distance to xi is computed. Each neighbor
has an associated weight (nWeight), which depends on its distance to the instance xi, normalized by the sum of the distances of all
the neighbors (see Eq. (12)). nWeight is greater as closer the neighbor is to the instance xi. The value of nWeight for each neighbor

Fig. 1. Data set example for Delimitation Metric.

Table 1
Example of calculation of Delimitation metric for Class Square (Class 1).

(1,1) ⇒ Dom ((1,1))=5, NoDom ((1,1))=0 ⟹ Del((1,1))= |5 − 0|
5

=5
5
=1

(1,4) ⇒ Dom ((1,4))=2, NoDom ((1,4))=1 ⟹ Del((1,4))= |2 − 1|
3

=1
3
=0.333

(1,5) ⇒ Dom ((1,5))=1, NoDom ((1,5))=2 ⟹ Del((1,5))= |1 − 2|
3

=1
3
=0.333

(5,1) ⇒ Dom ((5,1))=2, NoDom ((5,1))=1 ⟹ Del((5,1))= |2 − 1|
3

=1
3
=0.333

(5,3) ⇒ Dom ((5,3))=1, NoDom ((5,3))=2 ⟹ Del((5,3))= |1 − 2|
3

=1
3
=0.333

(5,5) ⇒ Dom ((5,5))=0, NoDom((5,5))=5 ⟹ Del((5,5))= |0 − 5|
5

=5
5
=1
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is normalized using the Eq. (13) so the Influence metric is situated in range [0,1]. The Influence value for the instance xi is
calculated by considering only the neighbors of different class than xi among its k nearest neighbors (see Eq. (14)):

kNN k x= nearest neighbors ofx ii (11)

x
x x x x

x x
x kNNnWeight( ) =

∑ Distance( , ) − Distance( , )

∑ Distance( , )
, ∀ ∈ ,j

l
k

i l i j

l
k

i l
j x

=1

=1
i

(12)

x
x

x
x kNNinfluenceWeight( ) =

nWeight( )

∑ nWeight( )
, ∀ ∈ ,j

j

l
k

l
j x

=1
i

(13)

∑x x

Y x Y x x kNN

Infl( ) = influenceWeight( ),

where ( ) ≠ ( ) ∧ ∈ ,

i
j

k

j

i j j x

=1

i (14)

The value 0 reflects that the instance is surrounded by instances of the same class, showing a high degree of redundancy. The
value 1 represents that it is surrounded by neighbor instances of other classes, which means that it is an instance that could
introduce separation between classes.

As an example of Influence evaluation we consider two points of the data set which appear in Fig. 1. One point in the outer zone
of the square class (calculation for point (1,4) in Table 2) and another near the instances of a neighboring class (calculation for point
(5,3) in Table 3). Influence is able to associate a value in the range [0,1] to every instance according to its neighbors of different class
and their distance. One instance whose neighbors belong to its same class present a Influence value of 0. This Influence value
increases as the number of neighbors of different class grows and they are nearer to the reference instance. Influence determines
which instances delimit class boundaries based on their neighbors of enemy classes.

3.3. The MonTSS algorithm

The whole process is presented in Fig. 2, and as can be seen it is composed of three stages:

1. The MonTSS process starts with a preprocessing step where MonTSS analyzes the original data set by quantifying the relationship
between each input feature and the output class. This relation is estimated with a metric called Rank Mutual Information (RMI)
defined in [36]. With it, we know the features which have a real direct or inverse monotonic relation with the class or no relation
as well (including unordered categorical features). The RMI value is evaluated in the training data set to decide which features are
used in the computation of collisions between instances.

In essence, rank mutual information can be considered as the degree of monotonicity between features A A, …, f1 and the
feature class Y. Given any feature Aj and feature class Y, the value of RMI for the feature Aj is calculated as follows:

∑A Y
n

log
x x

n x x
RMI( , ) = − 1 #[ ] ·#[ ]

·#([ ] ∩ [ ] )j
i

n
i A i Y

i A i Y=1

≤ ≤

≤ ≤
j

j (15)

where n is the number of instances in data set D, x[ ]i A
≤

j
is the set formed by all the instances of the set D whose feature Aj is less or

equal than feature Aj of instance xi, and x[ ]i Y
≤ is the set composed of the instances of the set D whose feature class Y is less or equal

than feature class Y of instance xi.
2. In the second stage, the probabilistic collision removal mechanism is applied (see Section 3.1), which eliminates most of the

instances which produce collisions. The remaining instances are used as input in the last stage.

Table 2
Example of calculation of Influence metric for point (1,4).

Considering k=5, kNN(1,4)={(1,5), (1,1), (5,5), (5,3), (5,1)}

nWeight((1,5))=0.942 ⟹ influenceWeight((1,5))=0.235
nWeight((1,1))=0.825 ⟹ influenceWeight((1,1))=0.206
nWeight((5,5))=0.760 ⟹ influenceWeight((5,5))=0.190
nWeight((5,3))=0.760 ⟹ influenceWeight((5,3))=0.190
nWeight((5,1))=0.710 ⟹ influenceWeight((5,1))=0.177
Infl(1,4)=0 (No neighbor with different class than (1,4) exists
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3. Here, the quality metrics are computed and based on them, the selection procedure is developed considering the following rule:

⎧
⎨⎪
⎩⎪

x
x x
x

if
Select =

true Del( ) < Infl( )
or Del( ) ≥ 0.9

false otherwise.
i

i i

i

(16)

The rationale behind this rule is to retain the instances which are closer to the class boundaries, using a straightforward threshold
of 0.9 which is independent from the diversity of their neighborhood. Furthermore, a relationship between Del x( )i and Infl x( )i can be
easily established as they represent a measurement in the same range of the relative rate of the situation and the neighborhood
variety of every instance. In this respect, the rule is built as a function of both measures. As a result, for instance, the rule preserves
the instances belonging to central areas if there are instances of other classes around.

Considering the example presented in Fig. 1 of the previous subsection, some of the points selected based in the expression 16
would be (1,1) and (5,5) due to Del x( ) ≥ 0.9i , and (5,3) related to Del(xi) < Infl(xi). The point (1,4) is not selected (see Table 2) by
either Del(xi) ≥0.9 or Del(xi) < Infl(xi). As can be noted, Del(xi) ≥0.9 rule retains instances situated in the border of classes while
Del(xi) < Infl(xi) maintains those whose neighbors belongs to other classes and are near to the boundaries of the class.

4. Experimental framework

In this section we introduce the data sets used to test our proposed algorithm, the parameters fixed in the algorithms and the
performance metrics considered to evaluate the results.

4.1. Data sets

The data sets have been collected from the KEEL-data set1 [42] and UCI Repository [43]. They are split into two blocks. In the
first one, we enumerate 20 standard classification data sets which can be addressed as ordinal classification problems where a
monotonic relationship between features and class exists. The second block is composed of 10 regression data sets whose class
feature is discretized into 4 categorical values, keeping the class distribution balanced. The algorithms are evaluated using a 10-fold
cross validation schema (10-fcv). To evaluate data preprocessing methods [33], the original data set is divided into 10 folds, using
each time one fold without preprocessing as test and the remaining 9 as training for MonTSS, hence MonTSS performs the selection
considering only training data. In every one of the 10 evaluations, the test fold and their complementary train, are different.

Table 5 shows the name of the data sets.

Table 3
Example of calculation of Influence metric for point (5,3).

Considering k=5, kNN(5,3)={(5,5), (5,1), (6,4), (6,3), (6,2)}

nWeight((5,5))=0.744 ⟹ influenceWeight((5,5))=0.186
nWeight((5,1))=0.744 ⟹ influenceWeight((5,1))=0.186
nWeight((6,4))=0.819 ⟹ influenceWeight((6,4))=0.204
nWeight((6,3))=0.872 ⟹ influenceWeight((6,3))=0.218
nWeight((6,2))=0.819 ⟹ influenceWeight((6,2))=0.204
Infl(5,3)=influenceWeight((6,4)) + influenceWeight((6,3)) + influenceWeight((6,2))=0.626

Fig. 2. MonTSS process.

1 http://www.keel.es/datasets.php
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4.2. Parameters

The parameters of the algorithms appear in Table 4 and are fixed for all the data sets. The values for those parameters have been
selected according to the recommendations of the authors of each method. The parameter values of our proposal have been
empirically determined to achieve a proper balance between reduction and prediction capabilities.

Both for MkNN an MonTSS algorithms, the euclidean distance is adopted to measure the similarity in numerical and categorical
ordinal features.

4.3. Performance metrics

To analyze the results offered by the monotonic classification algorithms, with and without data preprocessing, we have
considered the following Mean Absolute Error and data related metrics:

● Mean Absolute Error (MAE): This measure intends to evaluate the prediction capabilities of the algorithms. It is defined as the
sum of the absolute values of the errors, divided by the number of classifications. The literature in various studies concludes that
MAE is one of the best performance metrics in ordered classification [44,45].

● Data related metrics: In this case, the aim is to assess the monotonicity of the training data sets offered by the preprocessing
proposal.
– Non-Monotonicity Index (NMI [46]), calculated as the number of non-monotone instances divided by the total number of

instances:

∑
n

xNMI = 1 Collision( )
x D∈ (17)

where xCollision( ) = 0 if x does not collide with any instances in D, and 1 otherwise.
– Non-Comparable, defined as the number of pairs of non comparable instances in the data set. Two instances x and x′ are non-

comparable if they do no satisfy x x x x⪯ ′ ∧ ≠ ′. The reason for considering it as a metric is based on the fact that it is harder to
build accurate models as the number of non-comparable pairs increases.

– Size of the training set selected using the preprocessing algorithm proposed. It is included to analyze the reduction capabilities
of the method.

To complete the analysis we have included as preprocessing an optimal relabeling procedure described in [19] which changes the
labels of pairs of instances that violate the monotonic constraints, using the minimum number of alterations. This relabeling method
is specifically designed to be used in combination with instance based learners like MkNN. In addition, we have introduced the Fig. 3
to analyze the effect of optimal relabeling and the proposed method in one artificial data set (noted Artiset and generated as [6]
indicates) composed by 1000 instances with 2 attributes, 5 classes and with 5% of non-monotonic instances. The first subfigure
shows the projection of original instances, the second one the outcome of Relabeling and the third one, the instances selected by
MonTSS. The area is coloured according to the decision frontiers modeled by the MkNN algorithm considering 3 neighbors.

5. Results and analysis

The average results of the 10-fcv evaluations are shown in Table 5. In the first column of this table, we present the name of the
data set. The second column contains the results corresponding to the combination of Relabeling+MkNN. In the third column we

Table 4
Parameters for the algorithms considered.

Algorithm Parameters

MonTSS Candidates = 0.01, CollisionsAllowed = 0.01,
k for Influence estimation = 5, distance=euclidean

MkNN distance=euclidean, k = 3
OLM modeClassification=conservative

modeResolution=conservative

MID C4.5 as base classifier
2 items per leaf, confidence = 0.25, R = 1

OSDL balanced=No, classificationType=media
tuneInterpolationParameter=No, weighted=No,
upperBound=1,lowerBound = 0
interpolationParameter = 0.5,
interpolationStepSize = 10
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present the results associated with the evaluation of the original data set directly by the monotonic classifiers considered. The fourth
column is devoted to the combination of MonTSS and monotonic classifiers. Fifth and sixth columns summarize the monotonicity
indexes obtained using the original data sets and after the use of MonTSS. These metrics are NMI, Non-Comparable and Size. The
last row in the table contains the average results over the 30 data sets evaluated. The best values for each row have been highlighted
in bold.

To strengthen the analysis, we have included the statistical outcome based on non-parametric procedures to compare the
performances offered by our proposal with respect to the original classifiers without preprocessing. For this, the Wilcoxon signed-
rank test has been used to conduct pairwise comparisons between two algorithms [47]. The Wilcoxon test involves ranking all
nonzero difference scores disregarding sign, reattaching the sign to the rank, and then evaluating the mean of the positive and the
mean of the negative ranks. The Wilcoxon test was specially recommended by Demsar in [48] to make performance comparisons of
pairs of algorithms on multiple data sets.

Observing Tables 5 and 6 and Fig. 3, we come up with the following analysis:

• In most of the cases, the prediction capabilities of the classifiers are improved when the TSS is applied. This conclusion is
confirmed when statistical tests are applied, as Table 6 reflects. Using the Wilcoxon test we compare each classifier with its
preprocessed version and the table indicates to us that MonTSS improves MkNN with and without relabeling, OLM and OSDL.
MID is robust to noise and its predictive performances are the same with or without TSS, indicating that MonTSS does not change
its behavior. The greatest improvement noted is the combination of MonTSS with MkNN, achieving similar performances to MID.

• Regarding data related metrics, in Table 5 it must be mentioned that the monotonic models extracted using our proposal are those
which best satisfy the monotonicity constraints (with NMI near to 0). In addition, MonTSS significantly reduces the number of
non-comparable pairs of instances and the size of the training data set. This occurs in all data sets evaluated.

• It is worth mentioning that relabeling clearly improves standard MkNN, a fact that was suggested in [19]. Nevertheless, MonTSS
is able to improve even more the performance of MkNN, becoming a competitive algorithm.

• In Fig. 3, the behavior of relabeling and MonTSS is reflected. In Fig. 3b, it is clear how the relabeling modifies the class of those
non-monotonic instances that appear in the wrong zones. This fact alters the decision regions, which are relabeled and now
appear associated with another class. It may affect the classification performance when new test instances have to be classified
using this new training data set. In the case of MonTSS, those instances which are closer to the borders have been selected in the
search space (based on the Del measure) as well as those that have a significant influence by the neighbors that surround them in
order to be referential in the classification (thanks to Infl measure). This reduces the size of the final set, and also class boundaries
are respected. Hence, it improves the classification performance of the MkNN when new test instances have to be predicted.

As a final analysis of the MonTSS algorithm we introduce the Table 7 where we study the threshold proposed (0.9) in the
expression 16. Table 7 shows, in first column, each threshold value evaluated and in the second and third columns, the results
associated to that value. The second column contains the average in MAE metric of 10-fcv for all data sets considered in the study in
Table 5. The third column offers the average of 10-fcv for all data sets in NMI, Non-Comparability and Size. The best behaviors have
been highlighted in bold.

Considering the results of Table 7, we can highlight the following:

• The value 0.5 causes the selected training set to be larger, maintaining a greater number of instances at the borders and within the
classes. This situation negatively affects the predictive capabilities of the models (higher MAE values), as well as the non-
monotonicity index (higher NMI). Keeping more samples also results in the number of Non-Comparable pairs growing.

• As the threshold value is increased, the number of instances selected is reduced (see Eq. (16)). In the case of threshold with a
value of 0.7, we can see how the size is reduced (column Size in Table 7), as well as the number of pairs that are not comparable.
With respect to 0.5, better MAE values are obtained and monotonicity index (NMI) in three of the classifiers. The difference
appears in the MID classifier, whose predictive behavior is better as the input set increases. The improvement in most of the
classifiers indicates that the selection of training sets is effective.

Fig. 3. Artificial data set preprocessed by Relabeling and MonTSS with the borders calculated by MkNN with 3 neighbors.
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• The threshold value of 0.9 improves even the results offered by using 0.7, both for MAE and NMI. Similarly, the only discordant
classifier is MID, although the difference in MAE is minimal.

• In the case of 0.95, the size of the subset selected is the smallest, so the number of non-comparable pairs is the smallest as well.
This major reduction has a significant impact on the number of instances located at the class boundaries, with class separability
being its main mission. As separability is compromised, prediction (MAE) and monotonicity (NMI) are adversely affected.

It can be concluded that threshold 0.9 allows us to optimize the predictive behavior of most classifiers (except MID, with results
close to optimal), and at the same time improve their monotonicity.

6. Concluding remarks

This paper aims to present a proposal of training set selection for monotonic classification called MonTSS. It selects the most
representative instances focusing on the class distribution and monotonicity conditions of those instances. The experimental
evaluation highlights some remarkable characteristics of the proposal.

MonTSS is able to select the most representative instances independently of the classifier to be applied later. This leads
monotonic classifiers to always offer equal or better results than without preprocessing. Furthermore, data related metrics are
notably improved, fully satisfying the monotonicity restrictions without affecting or modifying the nature of the original data. At
the same time, it reduces the number of non-comparable pairs of instances and the size of the training data sets before the
learning stage starts.
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