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Abstract— The main feature of Estimation of Distribution
Algorithms is the way they evolve by gathering the information
about the best elements of each population into a probability
distribution. This work studies the application of these algo-
rithms to the learning of weighted linguistic fuzzy-rule-based
systems with the wCOR method. For this purpose, we propose
the use of two different probabilistic models: One which does
not assume any dependence between the rule consequents and
their weights, and other whose structure is fixed from these
dependences.

I. I NTRODUCTION

A Genetic Fuzzy System(GFS) [1] orEvolutionary Fuzzy
System(EFS) in a broader sense, is basically a fuzzy system
which is induced from data in a wrapper way by using a
genetic/evolutionary algorithm to guide the search during the
learning phase. There are different types of fuzzy systems,
the fuzzy-rule-based systems(FRSBs) being those that have
received the greatest amount of attention from the EFSs
research community. Thus, evolutionary algorithms have
been used to learn or tune different components of the FRBS.

In this work, we focus on a concrete type of FRBS: the one
that useslinguistic or descriptivefuzzy rules [2]. Linguistic
FRBSs (LFRBSs) are especially attractive because they allow
us to achieve the double goal of being useful for prediction
and fully interpretable by human experts. However, the pre-
dictive capability of a LFRBS can, in general, be improved
by using weights. That is, a real numberw ∈ [0, 1] which is
associated to each rule and can be understood as its degree of
importance. This is a simple way of increasing the precision
of the system without significantly decreasing its readability.

Our work is based on the WCOR (Weighted Cooperative
Rules) methodology [3], [4], which focuses on learning the
rules and their weights, but does not carry out any tuning
in the number or shape of the fuzzy sets associated to the
linguistic labels. Concretely, we have analysed two proposals
that useEstimation of Distribution Algorithms(EDAs) [5]
as the search engine. Both of them can be viewed as the
counterpart of GA described in [4], since they simultaneously
evolve the rules and their weights. In the first case, the
algorithms use a probabilistic model that manages each one
of the these two parts independently, whereas in the second,
the structure of the model explicitly elicits the relationship
between rule consequents and their weights.

The paper starts with a brief description of LFRBSs
(Section II) and how to learn them by using COR and WCOR
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methodologies (Section III). Then in section IV we describe
the canonical EDA and the algorithms used in this study.
Section V contains the algorithms proposed to deal with the
problem of learning weighted LFRs and in Section VI we
evaluate them over a series of datasets taken from a specific
repository. Finally, in Section VII we present our conclusions
and directions for future research.

II. L INGUISTIC FUZZY RULES BASED SYSTEMS

Fuzzy Rules (FRs) [6] are based onFuzzy Set Theory[7]
and are grounded on the use of fuzzy predicates,X is A,
where X is a problem domain variable andA is a fuzzy
set1. The typical structure of a fuzzy rule is as follows

If X1 is vj1
1 & . . .&Xn is vjn

n Then Y is vjl
y (1)

where{X1, . . . , Xn, Y } are problem domain variables and
{vj1

1 , . . . , vjn
n , vjl

y } are fuzzy sets defined over the domain of
their corresponding variables.

As mentioned in Section I, we focus on the so-calledLin-
guistic(or Mamdani) fuzzy rules [2]. The LFRBS knowledge
base is composed of two clearly differentiated components:

• A linguistic data basewhich contains the definition of
the linguistic variables. That is, the domain of each
input/output variable is partitioned/covered by a fixed
number of fuzzy sets, each one having associated a
linguistic label. For example, the domain of the variable
agecan be covered by the set of linguistic labels:{baby,
child, teenager, adult, ancient}. By associating a fuzzy
set to each linguistic label we get alinguistic variable
[8].

• A rule basedefined over the linguistic variables. In the
linguistic modelingof a system only the linguistic labels
of a variable can appear in the fuzzy predicates of the
rules. That is, the fuzzy setvj1

1 used for variableX1

in equation 1 cannot be chosen with total freedom, but
from the set of linguistic-labels used in the definition of
linguistic variableX1.
Because of this restriction in the designing of the fuzzy
rule system, LFRs usually have a lower precision than
other types of fuzzy rule systems, but on the other hand

1In this work we only use triangular fuzzy sets. The membership degree
of a pointx with respect to a triangular function defined in the interval [a,c]
and maximum/middle value inb is obtained as:

µTriangular(x) =

8<
:

x−a
b−a

, if a ≤ x ≤ b
c−x
c−b

, if b ≤ x ≤ c

0, otherwise



as linguistic terms have a semantic meaning associated,
their rules (e.g. “If car-speed is high and distance-to-
next-car is short then brake-force is intense”) are fully
interpretable by human experts.
As mentioned previously, a numeric weightw ∈ [0, 1]
can be associated to each rule in order to increase the
predictive accuracy of the whole system but without
significantly decreasing its readability.

With respect to the inference we can distinguish the
following components:

• Fuzzification/defuzzification interface. These two inter-
faces are needed because the rules deal with fuzzy sets
while our real problem (data) is related to numerical
values. Thus, our first step is the transformation of our
input numerical values in fuzzy sets. This task is carried
out by producing a singleton fuzzy setr̂ for a given
numberr, i.e., a fuzzy set such thatr has membership
degree 1 (µr̂(r) = 1.0) and any points 6= r has
membership 0. On the other hand, the defuzzification
interface takes a fuzzy set and produces a numerical
output by using (in our case) the center-of-gravity of
the given fuzzy set.

• Inference engine. Given an inputx = 〈x1, . . . , xn〉 any
rule (see eq. 1) such that∀i=1...n µ

v
ji
i

(xi) > 0 is fired.
As the fuzzy sets defining linguistic fuzzy variables
usually overlap, an input usually fires several rules.
When a rule is fired a fuzzy set for the target variable
(Y ) is obtained. In this work, the setv′y is obtained (by
using classical operators) as:

µv′y (r) =

{
µ

v
jl
y

(r) if µ
v

jl
y

(r) < m

m if µ
v

jl
y

(r) ≥ m

m being the matching degree ofx to the rule:m =
mini=1..nµ

v
ji
i

(xi).
If k rules are fired by a given inputx andv1

y, . . . , vk
y are

the obtained fuzzy sets, then we have to combine them
into a single output. In this work we use the weighted
FITA (First Integrate Then Aggregate) approach, which
first defuzzifiesv1

y, . . . , vk
y into their corresponding nu-

merical valuesr1
y, . . . , rk

y and then aggregates them into
a single value by using a weighted average and also
taking into account the weight (wi) associated to each
rule:

ŷ =
∑k

i=1 ri
y ·mi · wi∑k

i=1 mi · wi

,

mi being the matching degree ofx with respect to the
i-th rule fired.

III. L EARNING WEIGHTED LINGUISTIC FUZZY RULES

WITH WCOR

Although there are different approaches to the problem of
learning LFRs, we base our work on the so-called grid-based
methods. These methods assume that the linguistic variables
have been defined previously and focus on the rule generation
process.

In this paper, we consider the easiest (and most frequently
used) way of constructing the linguistic data base: (1) we use
the same number of linguistic labels (l) for all the variables;
and (2), a symmetrical fuzzy partition of the domain is
created by usingl triangular fuzzy sets (see Figure 1). Thus,
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Fig. 1. Symmetrical linguistic variable with 5 labels

we haven + 1 linguistic variables,{X1, . . . , Xn, Y } in our
linguistic data base, each one havingl linguistic labels/terms
{v1

i , . . . , vl
i}. Now our goal is to learn the rule base.

Grid-based methods assume that all the variables appear
in the antecedent of the rule, so they start by defining a n-
dimensional gridX1×X2×· · ·×Xn where each cell or sub-
space represent a possible antecedent. Although this gives
rise to a maximum number ofln rules, grid-based methods
are guided by covering criteria of the examples in thetraining
set and so, empty sub-spaces are discarded. An example
er = (xr, yr) = (xr1, . . . , xrn, yr) belongs to a given sub-
spaceSi if ∀i=1..nµSij

(xi) > 0, Sij being the linguistic
label associated to variableXj in sub-spaceSi. Notice that
as linguistic terms overlap (see fig. 1) the same example
can belong to different sub-spaces; however most grid-based
algorithms for learning LFRBSs assign an exampleer to
a unique sub-spaceSi (the one with the highest covering
degree).

The next step is to identify the consequent for each
non-empty sub-space. Given the set of exampleseSi =
{e1, . . . , em} covered by sub-spaceSi, Wang and Mendel
(WM) algorithm [9], which is a clear representative of grid-
based methods, decides the consequent forSi as Y = vb

y,
such that:

vb
y = argk max

r=1,...,m

[(
max

k=1,...,l
µvk

y
(yr)

) ∏
µSij

(xrj)
]

that is, WM also uses a covering criterion to (greedily) select
the consequent for each sub-space.

The main advantage of the WM algorithm is that it is
computationally very efficient. On the other hand, the main
shortcomings of the WM algorithm result from its greedy
behavior. Thus, in each sub-space it looks for the rule with
the best individual performance, without considering that the
interaction between all the system rules will actually define
its global performance.

In [3] Casillas et al. propose the COR methodology, a
grid-based method that tries to overcome the shortcomings
of the WM algorithm by studying the cooperation between
the different rules of the system. Thus, in the COR (COop-
erative Rules) methodology the greedy/local selection of the
consequent for each sub-space is replaced by a combinatorial
search in the space of all rule candidate sets. In order to state



the problem as a combinatorial one we need to define the
search space and the way in wich the points or individuals
of such space are evaluated. Once these components have
been specified different instances of COR can be obtained
by using different metaheuristics.

A. COR search space

Let {S1, . . . , Sm} be the set of non-empty sub-spaces by
using the covering criterion previously described. Then, our
goal is to look for the consequents{c1, . . . , cm} that yield
the best possible system (see below the definition of fitness
function).

The first possible definition of the search space could be
the cartesian product:{v1

y, . . . , vl
y}m. However COR also

uses a covering criterion of the training set in order to restrict
the number of possible consequents for each sub-space: given
the set of examples{e1, . . . , er} covered by a sub-spaceSi,
then the set of possible consequents forSi is:

cons(Si) =
{

vk
y | k = arg max

1,...,l
µvk

y
(yr)

}
∪ {ℵ}

whereℵ is an empty consequent whose meaning is that no
rule is added to the system for this sub-space.

Therefore, an individual or potential solution in COR is
an arrayc[] of integers of lengthm, m being the number of
possible sub-spaces (rules). For a given position1 ≤ j ≤ m,
c[j] will be a number between1 andl representing the index
of the linguistic term chosen as consequent for antecedent
Sj , or -1 (ℵ) that corresponds to the fact of not including
any rule for sub-spaceSj in the current system.

B. WCOR search space

WCOR [4] is an extension of COR methodology for the
purpose of learning weighted LFRs. In WCOR, the learning
process is enlarged in order to induce not only the rule but
also its weight. Thus, we have to deal with a hybrid problem,
viz, combinatorial plus numerical optimization. If there are
m possible consequents then the search space for WCOR is:

(cons(Si), [0, 1])m

although for convenience it is better to place all the integers
(and floats) consecutively, i.e.,

cons(S1)× cons(S2)× · · · × cons(Sm)× [0, 1]m.

Therefore, an individual of WCOR search space is an array
cw[] of size 2m where the firstm positions are as in COR
while the lastm positions are real numbers representing
the weights. Furthermore, there is a correspondence between
both parts such that position1 ≤ i ≤ m and i + m are
linked and represent the consequent for the rule associated
with sub-spaceSi and its weight (wi).

C. Fitness function

To evaluate the goodness of a given solutionc[] or cw[], it
is decodified to its corresponding LFRBS and used to predict
the output value for the examples in the training set. Then,
the mean squared error (MSE) or some of its variants is used
as goodness measure.

IV. ESTIMATION OF DISTRIBUTION ALGORITHMS

Estimation of Distribution Algorithms(EDAs) [5] are a
family of evolutionary algorithms which have gained in
importance during the last 5 years. They are based on popu-
lations as genetic algorithms (GAs) but, instead of evolving
by means of genetic operators, they gather the features of the
best individuals in a population into a probability distribution
and use it to sample the new solutions.

EDA Approach

1) D0 ← Generate the initial population (m individuals)
2) Evaluate the populationD0
3) k = 1
4) Repeat

a) Dtra ← Selectn ≤ m individuals fromDk−1
b) Estimate/learn a new modelM from Dtra
c) Daux ← Samplem individuals fromM
d) EvaluateDaux
e) Dk ← Selectm individuals fromDk−1 ∪Daux
f) k = k + 1

Until stop condition

Fig. 2. Description of EDAs operation mode

Figure 2 shows the general outline of EDA evolution
process. As we can see, steps (b) and (c) replace the classical
selection+crossover+mutation used in GAs. Step (b) is the
key point in EDAs, because working with a joint probability
distribution is not useful even in small problems, so a
simpler model has to be estimated/learned. Depending on
the complexity of the model considered, different models
of EDAs arise. Thus, the more complex this model is the
better collection of dependencies between variables it will
show, but the more complex/time-consuming its estimation
will be. In the literature we can find several proposals that
can be grouped into:univariate models (no dependencies
are allowed),bivariate models (pairwise dependencies are
allowed), andn-variate models. In this work we focus on
univariate and bivariate algorithms because they provide a
good complexity-accuracy trade-off. Dealing with n-variate
models allows for a great capability of modeling, but at
the cost of learning a complex probabilistic model at each
iteration. Concretely we use UMDA, UMDAg and MIMIC
algorithms.

A. UMDA

Univariate algorithms suppose that then-dimensional joint
probability distribution is factorised as

P (x1, x2, . . . , xn) =
n∏

i=1

P (xi) (2)

That is, it assumes independence among all variables and
no structural learning is needed. Therefore, only marginal
probabilities are required during parameter learning.

TheUnivariate Marginal Distribution Algorithm(UMDA)
[10] is, perhaps, the clearest representative of these models.
In the discrete case, i.e. when variables take a finite number



of states, the model in eq. 2 is used , and marginal probabil-
ities for each variable are estimated by using the frequencies
found in Dtra (Laplace correction is applied to smooth the
resulting probabilities). In the continuous case thegaussian
UMDA or (UMDA g) [11], uses the normal distribution to
model the density of each variable, and the joint density
is factorized as the product of all the unidimensional and
independent normal densities:

f(x; θ) = fN (x;µ,Σ) =
∏n

i=1 fN (xi;µi, σ
2
i )

=
∏n

i=1
1√

2πσi
· e−

1
2

�
xi−µi

σi

�2 (3)

Thus, model induction is reduced to the estimation ofµ and
σ2 for each variable.

With respect to sampling, it is clear that in both cases each
variable can be independently sampled.

B. MIMIC

In bivariate models then-dimensional joint probability
distribution is factorised as

P (x1, x2, . . . , xn) =
n∏

i=1

P (xi|pa(xi)),

where pa(xi) is the variable whichxi is conditioned to.
pa(xi) can be null, so there can be variables without parents.

In the Mutual Information Maximising Input Clustering
algorithm [12] the probabilistic model has the shape of a
chain (Xπ1 → Xπ2 → · · · → Xπn), whereπ is a permutation
of the n variables andXπi

the element of the permutation
in positioni. Thus, all the nodes have one parent except the
chain root. Structural learning is carried out in MIMIC as
follows:

1) Select as root node (Xπ1) the variableXi with mini-
mum entropyH(Xi).

2) For the remaining nodes, (Xπi) is that variableXi

which maximizes,I(Xπi−1 , Xi).
Again we use Laplace correction when estimating the prob-
abilities. In this case variables are sampled by following the
chain order. Once a variable has been sampled, e.g.Xi = a,
its child variableXj can be sampled from the marginal
distributionP (Xj |Xi = a).

V. EDA-BASED MODELS TO APPROACHWCOR

In this section, we introduce the two approaches proposed
to deal with the problem of learning weighted LFRBSs, but
first we briefly review the main aspects of the GA proposed
in [4] to instantiate the WCOR methodology. In all cases,
our departure point is the representation of individuals and
fitness function described in Section III.

A. GA-based WCOR learning algorithm

As we are dealing with a hybrid representation the more
relevant points in the GA algorithm are the genetic operators
it uses. The crossover is carried out as follows: first, two
individuals c1w1 and c2w2 are selected as parents; second,
the integer part (c) of both individuals are crossed giving

rise to two offspringsc′1 and c′2; third, the real part (w) of
both individuals is crossed by using max-min-arithmetical
crossover which produces four offspringsw1, w2, w3, w4 in
the following way: if a and b are the numbers in position
j > m of cw1 andcw2 respectively, then the corresponding
position in the off-springs isa(1 − α) + bα, b(1 − α) +
aα, min(a, b) andmax(a, b); fourth, the offspring separately
obtained are combined to obtain eight complete offsprings:
c1w1, c1w2, c1w3, c1w4, c2w1, c2w2, c2w3 andc2w4.

With respect to mutation, classical mutation is used in the
integer part (c) while a new number in [0,1] is randomly
generated when a position of the numerical part (w) is
mutated.

B. UMDA-wCOR and MIMIC-wCOR learning algorithms

The ways we propose to apply EDAs to the WCOR prob-
lem arise as a direct adaptation of the GA-wCOR algorithm
described in [4]. Therefore, individuals are composed of an
integer and a real part.

First, we have implemented two algorithms, UMDA-
wCOR and MIMIC-wCOR, whose probabilistic models are
also composed of two independent parts: One of them used
to learn and sample the consequents of the rules and the other
one used to model the weights.

In the UMDA-wCOR algorithm (figure 3), not only the
two parts are supposed to be independent, but all variables
of the probabilistic model. This is equivalent to using a
combination of UMDA and UMDAg. The MIMIC-wCOR
uses the MIMIC algorithm to model the integer part of the
probabilistic model, but also assumes independence among
all variables which represent the weights (figure 3).

Notice that in this way the population is the only nexus
between consequents and weights. That is, as both models
probabilistic models are learnt from the same set of indi-
viduals (the best half in the population) we are indirectly
considering some relations between the different components
(consequents and weights).

nkxn−1. . .x3x2x1

wnwn−1. . .w3w2w1

Probabilistic model for UMDA-wCOR

xπn
xπn−1

. . .xπ3
xπ2

xπ1

wnwn−1. . .w3w2w1

Probabilistic model for MIMIC-wCOR

Fig. 3. Representation of the probabilistic models used in UMDA-wCOR
and in MIMIC-wCOR



C. UMDA-cwCOR and MIMIC-cwCOR learning algorithms

Whereas in the previous algorithms the consequents and
their weights are treated independently by the probabilistic
model, in this section we propose two alternatives in which
the relation between each rule and its weight is explicitly
gathered.

The idea is that the weigth assigned to a rule should be
clearly dependent on the value selected as consequent for
that rule. That is, for a given sub-spaceSi we can have two
possiblegoodrules as “ifSi thenY = ci with wi = 0.2” and
“if Si thenY = cj with wi = 0.9, where clearly the weight is
highly dependent on the consequent. In UMDA-wCOR and
MIMIC-wCOR these dependences are missed because the
parameters (mean and variance) forwi are estimated without
taking into account its associated consequent.

Here we propose to learn the weightsconditional on
the value selected for its corresponding consequent. This is
easy to do in the EDAs paradigm, because we can easily
express these kinds of dependences by using the probabilistic
graphical model. Thus, we propose to use UMDA-cwCOR
and MIMIC-cwCOR algorithms whose graphical structure is
depicted in Figure 4. As we can see, again we use UMDA
and MIMIC for the integer part but now we use a mixed
probabilistic model instead of two separate models in order
to explicitly reflect the dependence between consequents and
weights.

These new models do not increase the complexity of the
structural learning task (with respect to UMDA-wCOR and
MIMIC-wCOR) because we simply add a linkci → wi for
each sub-space. With respect to parameter learning in the
numerical part, it is a bit more costly in space (but not in
time) due to the fact of learning an unidimensional normal
distribution conditioned to each element of cons(Si) instead
of a single one for each sub-spaceSi.

xnxn−1. . .x3x2x1

wnwn−1. . .w3w2w1

Probabilistic model for UMDA-cwCOR

xπn
xπn−1

. . .xπ3
xπ2

xπ1

wπn
wπn−1

. . .wπ3
wπ2

wπ1

Probabilistic model for MIMIC-cwCOR

Fig. 4. Representation of the probabilistic models used in UMDA-cwCOR
and in MIMIC-cwCOR

VI. EXPERIMENTAL EVALUATION

In order to carry out an experimental evaluation of the
proposed schemes, we have tested them over a significant
set of problems. In this section, we describe the settings as
well as the results obtained.

A. Test suite

For our experiments, we have used four labora-
tory problems borrowed from the FMLib repository
(http://decsai.ugr.es/fmlib ) as well as three
real-world problems, two of them also from FMLib. The goal
is to model all of them by learning a LFRBS.

The four laboratory functions have two predictive and one
output variable. The training sets are uniformly distributed
in the two dimensional input space (x1, x2) and the test sets
have been generated randomly. Next, we show the functions,
the ranges of variables and the sizes of the training (sizetr)
and test (sizets) sets.

• FunctionF1:
F1(x1, x2) = x2

1 + x2
1

x1, x2 ∈ [−5, 5] andF1(·) ∈ [0, 50]

sizetr = 1681, sizets = 168

• FunctionF2:
F2(x1, x2) = 10

x1−x1x2
x1−2x1x2+x2

x1, x2 ∈ [0, 1] andF2(·) ∈ [0, 10]

sizetr = 674, sizets = 67

• FunctionF3:
F3(x1, x2) = ex1sin(x2)

2 + ex2sin(x1)
2

x1, x2 ∈ [0, 1] andF3(·) ∈ [0, 10]

sizetr = 1089, sizets = 108

• FunctionF4:
F4(x1, x2) = x2

1 + x2
1 − cos(18x1) − cos(18x2)

x1, x2 ∈ [−1, 1] andF4(·) ∈ [−2, 3.383]

sizetr = 1681, sizets = 168

The two real-world problems from the FMLib repository are
related to the field of engineering.

• Problem ele1: This consists in finding a model that
relates thetotal length of low voltage lineinstalled in a rural
town to thenumber of inhabitants in the townand themean
of the distances from the center of the town to the three
furthest clients in it. The goal is to use the model to estimate
the total length of line being maintained.

Therefore, we have two predictive variables (x1 ∈ [1, 320]
and x2 ∈ [60, 1673.33]) and one output variable defined in
[80, 7675]. The cardinality of the training and test sets are
396 and 99 respectively.

• Problemele2: In this case, the model tries to predict the
minimum maintenance costs. There are four input variables:
sum of the lengths of all streets in the town, total area of the
town, area that is occupied by buildings, andenergy supplied
to the town.

The domains for the four predictive variables are:
[0.5, 11], [0.15, 8.55], [1.64, 142.5] and [1, 165]. The output
variable takes its value in[64.47, 8546.03]. For this problem,
the size of the training set is 844, whereas the number of
instances for the test is 212.

The problem not borrowed from FMLIB belongs to the
field of farming.

• Problemsheeps: The frame in which the problem is
defined is a genetic scheme launched in Castilla-La Mancha
(Spain) with the aim of improving milk production figures
in Manchego ewes. The main parameter in this scheme is



the genetic merit of an animal, which is estimated by using
a standard methodology (BLUP). However, before an ewe
becomes a mother and a lactation is controlled, BLUP cannot
be applied and then the pedigree index (the arithmetical mean
between father and mother genetic merit) is used. The data
set used in this task contains two predictive variables (father
and mother genetic merit) and the goal (variable) is to predict
the animal genetic merit by using weighted LFRBSs instead
of the pedigree index. The cardinality of the training and test
sets are 1421 and 711 respectively.

B. Evaluation/fitness function
As mentioned in Section III the MSE or any of its

variants is used to measure the goodness of a given solution.
Concretely, we use theRoot Mean Squared Error(RMSE)
to measure the error committed by our system when used to
predict the instances in the training set. Given an individual
c or cw and its corresponding (weighted) LFRBSF , if ŷ is
the output generated byF for an inputx while y is the true
output, then

RMSE(cw) = RMSE(F ) =
q

1
|D|
P|D|

i=1(ŷi − yi)2

where|D| is the number of records in the data set.
It is clear that the goal is to find the system with the

smallest error; however, as in our implementation we always
maximize, we have used the inverse of RMSE as fitness
function, i.e.,fitness(cw) = 1

RMSE(cw) .
Finally, and before describing the parameter setting used

for the algorithms used in our experiments, we should first
out that our search algorithms have been written in Java and
for the definition and evaluation of the fuzzy rule systems,
we interact with FuzzyJess [13], [14] also written in Java.

C. Algorithms and settings

In the case of the COR approach we have used as search
algorithms the GA [3] and the estimation of distribution
algorithms UMDA and MIMIC [15], whereas for the wCOR,
we have tested the algorithms (GA and EDAs) described in
section V. Most parameters are common to both EDAs and
GAs: The population size (popSize) has been fixed to 5122

and the populationDk is obtained from the best (popSize)
individuals ofDk−1 ∪ Daux, whereDaux is the population
generated by sampling, in case of EDAs, or by application
of the genetic operators, in case of the genetic algorithm.

For EDAs we have used an standard setting, i.e., they
estimate the model at the k-th generation from the best 50%
individuals of the populationDk−1.

In the case of genetic algorithms, the way that offspring is
generated differs from GA-COR to GA-wCOR. In both cases
the crossing individuals are selected by ranking but, in the
first case,popSize/2 couples of individuals are crossed by
using the typical one-point crossover, whereas in the second
case, since each crossover produces eight individuals, only
popSize/8 couples are selected.

With respect to the stopping condition, each algorithm can
evolve up to a maximum of 250 generations. However, it

2Results for population 256 can be seen in http://info-
ab.uclm.es/SIMD/CEC06

stops if there is no improvement in the average fitness from
one generation to another.

In all the experiments, we have considered symmetric
partitions of the real domain with triangular fuzzy sets, with
both 5 and 7 labels, to represent each variable.

D. Results and analysis

Each one of the algorithms has been run 20 times. Average
RMSE of the obtained models (training\ test), as well as
the average number of rules and of evaluations carried out,
are shown for the cases of 5 (table I) and 7 (table II) labels.
Since the criteria being optimized by the search algorithms is
the RMSE over the training set, we have marked this result
in bold.

As can be seen, results (training\ test) are better in almost
all cases when using 7 labels, although the obtained models
have more rules and so are less comprehensible. At this point,
it is worth noticing that the number of rules has not been
taken into account in the fitness function, and no optimization
of the resulting system has been carried out.

Focusing on the search algorithms, which are the goal of
our study, it is clear that those which use weights are more
precise modeling the training dataset than those which does
not. Particularly, it can be seen that cwCOR-based algorithms
outperform the rest in most cases, using either 5 or 7 labels.
In the first case, UMDA-cwCOR seems to be the outstanding
algorithm since it achieves the lower error in 5 of the 7
problems. When using 7 labels for variable, this algorithm
is the most accurate only on three occasions, whereas on
another three is MIMIC-cwCOR.

However, in many cases differences among results yielded
by the algorithms are very small. Therefore, we have deter-
mined which of them does not have a significant difference
with the best one for each problem by means of Mann-
Whitney unpaired tests. Table III shows the results of the
comparisons. We have marked with◦ that algorithm which
offers the lowest error for the training prediction. Afterwards,
we have marked those which does not present a significant
difference (p−value > 0.05) with •. While this study can be
viewed as an analysis evaluation of the search algorithms, it
is also necessary to study the errors over the test set in order
to evaluate the predictive capability of the obtained LFRBSs.
In this case, the reference algorithm has been marked with�
whereas the algorithms which show no statistical difference
have been marked with� (Table III).

From the statistical analysis, in the case of training,
UMDA-cwCOR and MIMIC-cwCOR are the algorithms of
choice, being in the outstanding group in 5 out of the 7
problems. With respect to test errors the results vary when
using 5 or 7 linguistic labels. Thus, when using 7 labels the
same conclusions apply, but in the case of 5 labels there is
not a clearly dominant approach, and in any case algorithm
UMDA-wCOR seems to be as competitive as the cwCOR
approach.

When evaluating the test datasets with the models that
use 5 labels, the tendency is not so defined, since both
UMDA-cwCOR and MIMIC-cwCOR algorithms stop being
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TABLE II

AVERAGE ERRORS IN TRAINING AND TEST, AVERAGE NUMBER OF RULES

AND NUMBER OF EVALUATIONS FOR20 EXECUTIONS



Tests for 5 labels for each variable
Problem GA wGA UMDA wUMDA cwUMDA MIMIC wMIMIC cwMIMIC

f1 ◦ � • �
f2 ◦ �
f3 ◦ �
f4 • ◦ � •

ele1 � � • ◦ � •
ele2 � ◦ � • �

sheeps � � ◦ � • �

Tests for 7 labels for each variable
Problem GA wGA UMDA wUMDA cwUMDA MIMIC wMIMIC cwMIMIC

f1 • ◦ � • �
f2 ◦ � � �
f3 ◦ �
f4 � ◦ � �

ele1 � � • � ◦
ele2 • � ◦ �

sheeps ◦ � • �

TABLE III

STATISTICAL TESTS FOR TRAINING AND TEST RESULTS
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Fig. 5. Fitness vs Generation for the wCOR algorithms

in the outstanding groups in some cases and the difference
in performance with UMDA-wCOR is not so clear. In this
point it is worth noticing that no mechanism for overfitting
prevention has been used during the search process.

Discarding the COR algorithms, it seems that GA-wCOR
and MIMIC-wCOR are clearly worse than the other algo-
rithms which use weights. In order to see whether the poor
results are due to premature convergence, we have plotted
in Figure 5 the evolution (average over 10 runs) of the best
fitness through generations3 for problems ele1 (7 labels) and
ele2 (5 labels). As can be seen, the poor results of the two
algorithms are not due to premature convergence. In fact
UMDA-cwCOR even converges fastest.

The results obtained lead us to believe that using condi-
tional weights with the wCOR approach is the best option.
cwUMDA, despite its simplicity, is in most cases the best
or in the group of the best algorithms. Moreover, the graphs
show that, although it gets the best result, it nevertheless
converges faster.

VII. C ONCLUDING REMARKS

In this work, we have made a first approach to the use of
EDAs as search algorithm when learning weighted LFRBSs
through the wCOR methodology. The use of probabilistic
models as main element of the evolution process allows
a more precise estimation of weights, which translates to
more accurate models. We think that the more remarkable
points of the paper are: (1) the way in which one can take

3Graphics of convergence for all problems with 5 and 7 labels can be
consulted in http://www.info-ab.uclm.es/SIMD/CEC06

advantage of the graphical language used by EDAs in order
to incorporate domain knowledge, and (2) the experimental
analysis of the wCOR methodology carried out, which uses
7 different problems while previous analysis where based on
a single problem.

As future work, we plan to extend our research in different
directions: (1) once the applicability of EDAs to the wCOR
methodology has been shown, we think that some mechanism
for overfitting prevention should be incorporated to the search
process; (2) less rules means more interpretable systems, so
we plan to study how to reduce the number of rules in the
discovered systems but without to degrade its performance.
Perhaps, the problem can be approached as a multiobjective
one by considering number of rules and error as fitness
measures; and (3) more complex models of EDAs or different
ways of using domain knowledge are also topics that worth
to be studied.
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