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Abstract—The main feature of Estimation of Distribution  methodologies (Section Ill). Then in section IV we describe
Algorithms is the way they evolve by gathering the information  the canonical EDA and the algorithms used in this study.
about the best elements of each population into a probability - gection v contains the algorithms proposed to deal with the
distribution. This work studies the application of these algo- bl £l . ighted LER d in Section VI
rithms to the learning of weighted linguistic fuzzy-rule-based probiem or learning We'g_ e S and in >ection We_ .
systems with the wCOR method. For this purpose, we propose €valuate them over a series of datasets taken from a specific

the use of two different probabilistic models: One which does repository. Finally, in Section VIl we present our conclusions
not assume any dependence between the rule consequents andgnd directions for future research.
their weights, and other whose structure is fixed from these

dependences. [I. LINGUISTIC FUZZY RULES BASED SYSTEMS

. INTRODUCTION Fuzzy Rules (FRs) [6] are based Bnzzy Set Theor}/]

A Genetic Fuzzy Syste(@FS) [1] orEvolutionary Fuzzy and are grounded on the use of fuzzy predicafess A,
Systen(EFS) in a broader sense, is basically a fuzzy systeMiere X is a problem domain variable and is a fuzzy
which is induced from data in a wrapper way by using §e11. The typical structure of a fuzzy rule is as follows
genetic/evolutionary algorithm to guide the search during the , ‘ A
learning phase. There are different types of fuzzy systems, If Xyisvi'& ... &X, isv) ThenY is vy (1)
thefl_Jzzy-ruIe-based syster(lBRSBS) being those that have here {X1,..., X,, Y} are problem domain variables and
received the greatest amount of attention from the EF 291, vin, vi'} are fuzzy sets defined over the domain of
research community. Thus, evolutionary algorithms hay, eir corregpogding variables.
been used to learn or tune different components of the FRB ‘As mentioned in Section |. we focus on the so-calléah

In this work, we focus on a concrete type of FRBS: the OnSuistic(or Mamdani) fuzzy ru’les [2]. The LFRBS knowledge
that usedinguistic or descriptivefuzzy rules [2]. Linguistic base is composed of two clearl diﬁerentiated components:
FRBSs (LFRBSSs) are especially attractive because they allow ) .p. : Y ) o p '
us to achieve the double goal of being useful for prediction * A linguistic data basevhich contains the definition of
and fully interpretable by human experts. However, the pre- (e linguistic variables. That is, the domain of each
dictive capability of a LFRBS can, in general, be improved input/output variable is partltloned/covered by a fixed
by using weights. That is, a real numhere [0, 1] which is number of fuzzy sets, each one having associated a
associated to each rule and can be understood as its degree of INQUistic label. For example, the domain of the variable
importance. This is a simple way of increasing the precision ~29&can be covered by the set of linguistic labgflsaby,
of the system without significantly decreasing its readability. ~ Child, teenager, adult, ancigntBy associating a fuzzy

Our work is based on the WCOR (Weighted Cooperative set to each linguistic label we getliaguistic variable
Rules) methodology [3], [4], which focuses on learning the [8]- . . )
rules and their weights, but does not carry out any tuning * A rule basedefined over the linguistic variables. In the
in the number or shape of the fuzzy sets associated to the iNguistic modelingf a system only the linguistic labels
linguistic labels. Concretely, we have analysed two proposals ©f @ variable can appear in the fuzzy predicates of the
that useEstimation of Distribution Algorithm§EDAS) [5] rules. That is, the fuzzy set;" used for variablex,
as the search engine. Both of them can be viewed as the [N €quation 1 cannot be chosen with total freedom, but
counterpart of GA described in [4], since they simultaneously ~ [Tom the set of linguistic-labels used in the definition of
evolve the rules and their weights. In the first case, the linguistic variableX;. .
algorithms use a probabilistic model that manages each one B€cause of this restriction in the designing of the fuzzy
of the these two parts independently, whereas in the second, fulé system, LFRs usually have a lower precision than
the structure of the model explicitly elicits the relationship ~ Other types of fuzzy rule systems, but on the other hand

between rule consequents and their weights. P . :
. . D In this work we only use triangular fuzzy sets. The membership degree
Th? paper starts with a brief des‘?”pﬂon of LFRBSS a pointz with respect to a triangular function defined in the interval [a,c]
(Section Il) and how to learn them by using COR and WCORNd maximum/middle value ih is obtained as:

r—a H
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With respect to the inference we can distinguish the
following components:

as linguistic terms have a semantic meaning associated,In this paper, we consider the easiest (and most frequently
their rules (e.g. “If car-speed is high and distance-toused) way of constructing the linguistic data base: (1) we use
next-car is short then brake-force is intense”) are fullghe same number of linguistic label§ for all the variables;
interpretable by human experts. and (2), a symmetrical fuzzy partition of the domain is
As mentioned previously, a numeric weighte [0,1] created by usingtriangular fuzzy sets (see Figure 1). Thus,
can be associated to each rule in order to increase the
predictive accuracy of the whole system but without
significantly decreasing its readability.

Low Low Medium High VeryHigh

Fuzzification/defuzzification interfac&hese two inter-
faces are needed because the rules deal with fuzzy sets
while our real problem (data) is related to numerical Fig. 1. Symmetrical linguistic variable with 5 labels
values. Thus, our first step is the transformation of our

input numerical values in fuzzy sets. This task is carrie istic data b h havininauistic labels/t
out by producing a singleton fuzzy sétfor a given |n?U|s Ic laa ase, each one havingiguistic 'abeis/ierms
', ...,v;}. Now our goal is to learn the rule base.

numberr, i.e., a f set such thathas membership 1Vi’" .
dzgree rl I/QA(T) izzlyo) ang any points # r has!p Grid-based methods assume that all the variables appear

membership 0. On the other hand, the defuzzificatiog! the antecedent of the rule, so they start by defining a n-

interface takes a fuzzy set and produces a numeric jmensional gridX; x X, x - - - x X, where each cell or sub-

output by using (in our case) the center-of-gravity ofPace represgnt a possible aLntecedent.. Although this gives

the given fuzzy set. rise to.a maximum .numt.)er_df rules, gnd-basgd m_e.thods

Inference engineGiven an inputx — (z1, .. ., z,) any are guided by covering criteria of the exgmplesmtﬂammg

rule (see eq. 1) such that_, ., 4 -, (x_)’ S d is fired set arzd so,)em?ty sub-spaces) abreI discarded. An exatl)mple
o Pt A e = (Xp,yr) = (Tr1,..., 2, y,) belongs to a given sub-

As the fuzzy sets defining linguistic fuzzy Var'ablesspacesi it Vi_1.npis,, () > 0, S;; being the linguistic

usually overlgp,.an input usually fires several iy Ie%‘abel associated to variabl€; in sub-space5;. Notice that
When a rule is fired a fuzzy set for the target variable

i . ) : ' as linguistic terms overlap (see fig. 1) the same example
l(};)nlgs c(;)lztsaslirzglj.olgr)]etrk;tso\r,l())r;;he sef, is obtained (by can belong to different sub-spaces; however most grid-based

algorithms for learning LFRBSs assign an exampjeto

e haven + 1 linguistic variables{X;,...,X,,Y} in our

P (1) if g o (r) <m a unigue sub-spacs; (the one with the highest covering
oy (1) = { m if 1 (r)>m degree).
Yy The next step is to identify the consequent for each
m being the matching degree of to the rule:m = non-empty sub-space. Given the set of examples =
MiNi=1.nft i (Ti)- {e1,...,en} covered by sub-spacé;, Wang and Mendel
If k rules are fired by a given inpwtandvl, ... vk are  (WM) algorithm [9], which is a clear representative of grid-

the obtained fuzzy sets, then we have to combine theRfised methods, decides the consequentSfoas Y = v},
into a single output. In this work we use the weightedsuch that:

FITA (First Integrate Then Aggregat@approach, which b
first defuzzifiesv), ..., v¥ into their corresponding nu- Yy = @6k IPaX. A THAX o (r) H“Su (rj)
merical values";, .. ,7“5 and then aggregates them into

a single value by using a weighted average and aI%Eat is, WM also uses a covering criterion to (greedily) select
e consequent for each sub-space.

taking into account the weightu{) associated to each ! . . o
rule'g ghte() The main advantage of the WM algorithm is that it is

Zkﬂ Fom - wg computationally very efficient. On the other hand, the main

g == ¢ ; shortcomings of the WM algorithm result from its greedy

Dim1 M Wi behavior. Thus, in each sub-space it looks for the rule with

m; being the matching degree afwith respect to the the best individual performance, without considering that the
i-th rule fired. interaction between all the system rules will actually define

its global performance.
In [3] Casillas et al. propose the COR methodology, a
grid-based method that tries to overcome the shortcomings

L EARNING WEIGHTED LINGUISTIC FUZZY RULES
wITH WCOR

Although there are different approaches to the problem aff the WM algorithm by studying the cooperation between
learning LFRs, we base our work on the so-called grid-basehle different rules of the system. Thus, in the CGFOpp-
methods. These methods assume that the linguistic variablrative Rules methodology the greedy/local selection of the
have been defined previously and focus on the rule generatiooansequent for each sub-space is replaced by a combinatorial
process. search in the space of all rule candidate sets. In order to state



the problem as a combinatorial one we need to define the V. ESTIMATION OF DISTRIBUTION ALGORITHMS

search space and the way in wich the points or individuals ggtimation of Distribution AlgorithmgEDAs) [5] are a

of such space are evaluated. Once these components haygily of evolutionary algorithms which have gained in

been .SpeC.Ierd different instances of COR can be Obta'n‘?rﬂportance during the last 5 years. They are based on popu-

by using different metaheuristics. lations as genetic algorithms (GAs) but, instead of evolving

A. COR search space by means of genetic operators, they gather the features of the
Let {S1,...,Sm} be the set of non-empty sub-spaces b>l,)est individuals in a population into a probability distribution

using the covering criterion previously described. Then, ot"d Use it to sample the new solutions.

goal is to look for the consequenfs,...,c,} that yield
the best possible system (see below the definition of fitness EDA Approach
function). — ——
The first possible definition of the search space could be 1 gga‘ma%e{‘h‘g ap}gr}ng tlig%l)%l population( individuals)
the cartesian productfv,,...,v}}™. However COR also  3) k=1
uses a covering criterion of the training set in order to restrict 4) Repeat

; _ . (i a) Diro «— Selectn < m individuals from Dy _1
the number of possible consequents for each sub-space: given b) Estimate/learn a new modah from Dy,

the set of exampleses, ..., e} covered by a sub-spacs, g Da"f" «— Samplem individuals from M
i iq EvaluateD ...
then the set of possible consequents $pris: % ,13’“ 2 Seloctm individuals from Dy 1 U Dyws
cons(S;) = {v’; | k = arg mAx fiy) (yT)} U {RX} Until stop condition

whereX is an empty consequent whose meaning is that no
rule is added to the system for this sub-space. Fig. 2. Description of EDAs operation mode

Therefore, an individual or potential solution in COR is
an arrayc[] of integers of lengthn, m being the number of ~ Figure 2 shows the general outline of EDA evolution
possible sub-spaces (rules). For a given positienj < m, process. As we can see, steps (b) and (c) replace the classical
c[4] will be a number betweeh and! representing the index selection+crossover+mutation used in GAs. Step (b) is the
of the linguistic term chosen as consequent for antecedsefgty point in EDAs, because working with a joint probability
S;, or -1 () that corresponds to the fact of not includingdistribution is not useful even in small problems, so a
any rule for sub-spacs§; in the current system. simpler model has to be estimated/learned. Depending on
B. WCOR search space the comple?qty of the model considered, d_|fferent m_odels

' of EDAs arise. Thus, the more complex this model is the

WCOR [4] is an extension of COR methodology for thepetter collection of dependencies between variables it will
purpose of learning weighted LFRs. In WCOR, the learminghow, but the more complex/time-consuming its estimation
process is enlarged in order to induce not only the rule byjij| be. In the literature we can find several proposals that
also its weight. Thus, we have to deal with a hybrid problemygn pe grouped intounivariate models (no dependencies
viz, combinatorial plus numerical optimization. If there arey e allowed),bivariate models (pairwise dependencies are
m possible consequents then the search space for WCORdfowed), andn-variate models. In this work we focus on

(cons(S;),[0,1])™ univariate and bivariate algorithms because they provide a

] o ) good complexity-accuracy trade-off. Dealing with n-variate
although for convenience it is better to place all the integergggels allows for a great capability of modeling, but at

(and floats) consecutively, i.e., the cost of learning a complex probabilistic model at each
cons(S1) x cons(Sy) X - - x cons(Sy,) x [0,1]™. iteration. Concretely we use UMDA, UMDAand MIMIC
algorithms.

Therefore, an individual of WCOR search space is an array

cwl] of size 2m where the firstn positions are as in COR A. UMDA

while the lastm positions are real numbers representing ynjvariate algorithms suppose that thelimensional joint
the weights. Furthermore, there is a correspondence betweggpability distribution is factorised as

both parts such that positioh < i < m andi + m are

n

linked and represent the consequent for the rule associated
. . . P e Tp) = P(z; 2
with sub-spaces; and its weight ;). (@1, @2, Zn) 2131 (@) @
C. Fitness function That is, it assumes independence among all variables and

To evaluate the goodness of a given solutifiror cw[], it no structural learning is needed. Therefore, only marginal
is decodified to its corresponding LFRBS and used to prediptobabilities are required during parameter learning.
the output value for the examples in the training set. Then, The Univariate Marginal Distribution Algorithm(UMDA)
the mean squared error (MSE) or some of its variants is usgtD] is, perhaps, the clearest representative of these models.
as goodness measure. In the discrete case, i.e. when variables take a finite number



of states, the model in eq. 2 is used , and marginal probabrise to two offspringse} and ¢}; third, the real part (w) of
ities for each variable are estimated by using the frequencibsth individuals is crossed by using max-min-arithmetical
found in D;,., (Laplace correction is applied to smooth thecrossover which produces four offsprings, ws, w3, w4 in
resulting probabilities). In the continuous case faissian the following way: if a and b are the numbers in position
UMDA or (UMDA,) [11], uses the normal distribution to j > m of cw; and cw, respectively, then the corresponding
model the density of each variable, and the joint densitgosition in the off-springs isi(1 — «) + ba, b(1 — «) +

is factorized as the product of all the unidimensional anda, min(a,b) andmaz(a, b); fourth, the offspring separately

independent normal densities: obtained are combined to obtain eight complete offsprings:
c1wi, ClWs2, C1W3, C1W4, CoW1, CoW2, CoW3 and CoWy.
Fx:0) = fnGsmE) = T10, fal@ w,o2) ~ With respect to mutation, classical mutation is used in the
B N L _1 zijw)Q (3) integer part (c) while a new number in [0,_1] is randomly
= I, Vare: € ‘ generated when a position of the numerical part (w) is
mutated.

Thus, model induction is reduced to the estimation.afnd
o2 for each variable.

With respect to sampling, it is clear that in both cases eadh UMDA-WCOR and MIMIC-wCOR learning algorithms

variable can be independently sampled. The ways we propose to apply EDAs to the WCOR prob-
B. MIMIC lem arise as a direct adaptation of the GA-wCOR algorithm

o . ] o _ described in [4]. Therefore, individuals are composed of an
In bivariate models the:-dimensional joint probability integer and a real part.

distribution is factorised as First, we have implemented two algorithms, UMDA-

- WCOR and MIMIC-wCOR, whose probabilistic models are
P(z1,22,...,0) = HP($i|pa($7i))’ also composed of two independent parts: One of them used
=t to learn and sample the consequents of the rules and the other
where pa(z;) is the variable whichz; is conditioned to. one used to model the weights.
pa(x;) can be null, so there can be variables without parents. |n the UMDA-wCOR algorithm (figure 3), not only the
In the Mutual Information Maximising Input Clustering two parts are supposed to be independent, but all variables
algorithm [12] the probabilistic model has the shape of af the probabilistic model. This is equivalent to using a
chain X7, — Xz, —--- — X; ), wherer is a permutation  combination of UMDA and UMDA. The MIMIC-wCOR
of the n variables andX, the element of the permutation yses the MIMIC algorithm to model the integer part of the
in positioni. Thus, all the nodes have one parent except therobabilistic model, but also assumes independence among
chain root. Structural Ieaming is carried out in MIMIC asSg|| variables which represent the We|ghts (ﬁgure 3)

follows: Notice that in this way the population is the only nexus
1) Select as root nodeX(;,) the variableX; with mini-  between consequents and weights. That is, as both models

mum entropyH (X;). probabilistic models are learnt from the same set of indi-

2) For the remaining nodes, X,) is that variableX; viduals (the best half in the population) we are indirectly
which maximizesJ (X, ,, Xi). considering some relations between the different components

Again we use Laplace correction when estimating the proticonsequents and weights).
abilities. In this case variables are sampled by following the

chain order. Once a variable has been sampled,’é.¢= a,
its child variable X; can be sampled from the marginal @ @ @ @
distribution P(X;| X; = a).

V. EDA-BASED MODELS TO APPROACHWCOR w1 Wo w3 | e [Wp—1 wy,

In this section, we introduce the two approaches proposed
to deal with the problem of learning weighted LFRBSs, but Probabilistic model for UMDA-wCOR
first we briefly review the main aspects of the GA proposed
in [4] to instantiate the WCOR methodology. In all cases,
our departure point is the representation of individuals and

fitness function described in Section IIl.

w1 wa wg | - |Wp—1 Wp,

A. GA-based WCOR learning algorithm

As we are dgaling with a hybrid representatio.n the more Probabilistic model for MIMIC-wCOR.
relevant points in the GA algorithm are the genetic operators
it uses. The crossover is carried out as follows: first t\N5ig' 3. Representation of the probabilistic models used in UMDA-wCOR
AN ' ' nd in MIMIC-wCOR
individuals c;w; and cow, are selected as parents; second,
the integer part (c) of both individuals are crossed giving



C. UMDA-cwCOR and MIMIC-cwCOR learning algorithmsA. Test suite

Whereas in the previous algorithms the consequents andFor our experiments, we have used four labora-
their weights are treated independently by the probabilistiory problems borrowed from the FMLib repository

model, in this section we propose two alternatives in whickhttp://decsai.ugr.es/fmlib ) as well as three
the relation between each rule and its weight is explicitlyeal-world problems, two of them also from FMLib. The goal
gathered. is to model all of them by learning a LFRBS.

The idea is that the weigth assigned to a rule should be The four laboratory functions have two predictive and one
clearly dependent on the value selected as consequent fitput variable. The training sets are uniformly distributed
that rule. That is, for a given sub-spagwe can have two in the two dimensional input space;( z2) and the test sets
possiblegoodrules as “ifS; thenY = ¢; with w; = 0.2 and  have been generated randomly. Next, we show the functions,
“if S; thenY = ¢; with w; = 0.9, where clearly the weight is the ranges of variables and the sizes of the trainirget,.)
highly dependent on the consequent. In UMDA-wCOR andnd test §ize;,) sets.

MIMIC-wCOR these dependences are missed because tp‘?:unctionF'
parameters (mean and variance) dgrare estimated without 1
taking into account its associated consequent.

Here we propose to learn the weightenditional on
the value selected for its corresponding consequent. ThisdSFunction F,:

Fi(xy,x2) = 22 + 2?2
z1,x2 € [—5,5] and Fy (-) € [0, 50]

sizet, = 1681, sizers = 168

easy to do in the EDAs paradigm, because we can easily Fy(a1,m2) = 102472102

express these kinds of dependences by using the probabilistic @1, @2 € [0,1] and Fa(-) € [0, 10]

graphical model. Thus, we propose to use UMDA-cwCOR sizes, = 674, sizers = 67

and MIMIC-cwCOR algorithms whose graphical structure i® Function F3:

depicted in Figure 4. As we can see, again we use UMDA Fs(z1,22) = el sin(z2)® + e*2 sin(z1)?

and MIMIC for the integer part but now we use a mixed w1, 2 € [0,1] and F3(-) € [0, 10]

probabilistic model instead of two separate models in order _ sizeyr = 1089, sizess = 108

to explicitly reflect the dependence between consequents ahdi:unCt'onF‘*: s

weights. Fy(w1,22) = 27 4+ 27 — cos(18z1) — cos(18x)
z1,x2 € [—1,1] and Fy(-) € [—2, 3.383]

These new models do not increase the complexity of the
structural learning task (with respect to UMDA-wCOR and . :
MIMIC-wCOR) because we simply add a link — w; for The two real-wprld problems frpm the FMLib repository are
each sub-space. With respect to parameter learning in tr.%ated to the field of engineering.
numerical part, it is a bit more costly in space (but not in ® Problemelel: This consists in finding a model that
time) due to the fact of learning an unidimensional normalelates theotal length of low voltage linénstalled in a rural

distribution conditioned to each element of cafid(instead town to thenumber of inhabitants in the towand themean
of a single one for each sub-spag of the distances from the center of the town to the three

furthest clients in it The goal is to use the model to estimate

the total length of line being maintained.
@ ° Therefore, we have two predictive variables € [1, 320]
andz, € [60,1673.33]) and one output variable defined in
w1 (1) ws | - Wp,

o [80,7675]. The cardinality of the training and test sets are
el 396 and 99 respectively.

e Problemele2: In this case, the model tries to predict the
minimum maintenance costs. There are four input variables:

sum of the lengths of all streets in the town, total area of the
town, area that is occupied by buildingendenergy supplied
Wr,,

sizey, = 1681, sizeys = 168

Probabilistic model for UMDA-cwCOR

to the town

The domains for the four predictive variables are:
[0.5,11],[0.15,8.55], [1.64,142.5] and [1,165]. The output
variable takes its value if4.47,8546.03]. For this problem,

Wry| | Wry| | Wy =+ [Wr,

Probabilistic model for MIMIC-cwCOR the size of the training set is 844, whereas the number of
Fig. 4. Representation of the probabilistic models used in UMDA-cwcORNStances for the test is 212.
and in MIMIC-cwCOR The problem not borrowed from FMLIB belongs to the
V1. EXPERIMENTAL EVALUATION field of farming.

In order to carry out an experimental evaluation of the e Problemsheeps: The frame in which the problem is
proposed schemes, we have tested them over a significaefined is a genetic scheme launched in Castilla-La Mancha
set of problems. In this section, we describe the settings &pain) with the aim of improving milk production figures
well as the results obtained. in Manchego ewes. The main parameter in this scheme is



the genetic merit of an animal, which is estimated by usingtops if there is no improvement in the average fitness from
a standard methodology (BLUP). However, before an ewene generation to another.

becomes a mother and a lactation is controlled, BLUP cannotin all the experiments, we have considered symmetric
be applied and then the pedigree index (the arithmetical mepartitions of the real domain with triangular fuzzy sets, with
between father and mother genetic merit) is used. The ddtath 5 and 7 labels, to represent each variable.

set used in this task contains two predictive variables (fathgy Results and analysis

and mother genetic merit) and the goal (variable) is to predict ) i

the animal genetic merit by using weighted LFRBSs instead Each one of the algorithms has been run 20 times. Average

of the pedigree index. The cardinality of the training and te MSE of the obtslnedf mclndels (c;ralfnlﬁgtlest)_, as wel! zs
sets are 1421 and 711 respectively. the average number of rules and of evaluations carried out,

o i are shown for the cases of 5 (table 1) and 7 (table Il) labels.
B. Evaluation/fitness function Since the criteria being optimized by the search algorithms is

As mentioned in Section Il the MSE or any of itSthe RMSE over the training set, we have marked this result
variants is used to measure the goodness of a given solutiga., -4
Concretely, we use thRoot Mean Squared ErrofRMSE) ) - .
to measure the error committed by our system when used toS ¢@n be seen, resullts (trainigest) are better in almost
predict the instances in the training set. Given an individuall cases when using 7 labels, although the obtained models
c or cw and its corresponding (weighted) LFRBS if § is  have more rules and so are less comprehensible. At this point,

the output generated bl for an inputx while y is the true it is worth noticing that the number of rules has not been
output, then taken into account in the fitness function, and no optimization

RMSE(cw) = RMSE(F) = \/L SR (G — )2 of the resulting system has been carried out.
_ 'D‘_ =l Focusing on the search algorithms, which are the goal of
where|D| is the number of records in the data set. our study, it is clear that those which use weights are more

It is clear that the goal is to find the system with theprecise modeling the training dataset than those which does
smallest error; however, as in our implementation we alwaysot. Particularly, it can be seen that cwCOR-based algorithms
maximize, we have used the inverse of RMSE as fitnessutperform the rest in most cases, using either 5 or 7 labels.
function, i.e., fitness(cw) = wrrgprew- In the first case, UMDA-cwCOR seems to be the outstanding

Finally, and before describing the parameter setting usegigorithm since it achieves the lower error in 5 of the 7
for the algorithms used in our experiments, we should firgiroblems. When using 7 labels for variable, this algorithm
out that our search algorithms have been written in Java aigthe most accurate only on three occasions, whereas on
for the definition and evaluation of the fuzzy rule systemsanother three is MIMIC-cwCOR.
we interact with FuzzyJess [13], [14] also written in Java.  However, in many cases differences among results yielded
C. Algorithms and settings by the algorithms are very small. Therefore, we have deter-

In the case of the COR approach we have used as seal ned which of them does not have a significant difference

algorithms the GA [3] and the estimation of distributionWIt. the best_one for each problem by means of Mann-
. Whitney unpaired tests. Table Il shows the results of the

algorithms UMDA and MIMIC [15], whereas for the wCOR, comparisons. We have marked withthat algorithm which

we have tested the algorithms (GA and EDASs) described | P ' g

section V. Most parameters are common to both EDAS an(%‘fers the lowest error for the training prediction. Afterwards,

GAs: The population sizepppSizg has been fixed to 512 we have marked those which does not present a significant

and the populatiorD,, is obtained from the besp¢pSize d!ﬁerencep—value =~ 0.05) W't.h o While this study can be .
S . . viewed as an analysis evaluation of the search algorithms, it
individuals of Dy,_1 U Dg,., where D, is the population

enerated by sampling. in case of EDAS. or by a Iicatiois also necessary to study the errors over the test set in order
9 y piing, Ir » OF Dy appl Po evaluate the predictive capability of the obtained LFRBSs.
of the genetic operators, in case of the genetu? algpr|thm. In this case, the reference algorithm has been markediwith

Fpr EDAs we have used an stand_ard setting, i.e., the hereas the algorithms which show no statistical difference
estimate the model at the k-th generation from the best Sor{.%lve been marked witll (Table 111)
individuals of the poPl‘.'Iat'Od)’?‘l' .. From the statistical analysis, in the case of training,

In the case of genetic algorithms, the way that offspring 'lSJMDA-cwCOR and MIMIC-CWCOR are the algorithms of
generated differs from GA-COR to GA-wCOR. In both CaS€2noice, being in the outstanding group in 5 out of the 7
the crossing |n.d|VIduaIs are selgctgq by ranking but, in thgroblems. With respect to test errors the results vary when
first case,popSize/2 couples of individuals are crossed byu ing 5 or 7 linguistic labels. Thus, when using 7 labels the
using the typical one-point crossover, whereas in the secold . '

. . L ame conclusions apply, but in the case of 5 labels there is
case, since each crossover produces eight individuals, on . : .
: not a clearly dominant approach, and in any case algorithm
popSize/8 couples are selected.

With respect to the stopping condition, each algorithm ca%r{rl)\g?(ngOR seems to be as competitive as the cwCOR

evolve up to a maximum of 250 generations. However, | When evaluating the test datasets with the models that
2Results for populaton 256 can be seen in hup/info-US€ 5 labels, the tendency is not so defined, since both

ab.uclm.es/SIMD/CEC06 UMDA-cwCOR and MIMIC-cwCOR algorithms stop being



9'8¥S9TT — G9'VE

9'GT€CL — SL'TE

GG'T¢08T — GT'0€

G'06CETT — SE'VE

7'¢88STT — 9'€E

G8'9879T — GT'0€

S9V9EYTT — C'TE

G8'062¢08 — T°0€

90€8'9 \890°2 66069 \v/ST'L €156'9 \622°L v€28'9 \ /90, G5¥8'9 \82.0°2 1856'9 \GTzZ'2 20£6'9 \100Z'L 16¥6'9 \1T2Z'L sdeays
§'G88/2T — 2'86 L'STV.0T — G806 G/'SPOSE — G8'S8 | S'€8182T —GE'86 | SCSLL2ZT — SO'V6 GE'T818Z — 8'98 99860T — SV'v'8 T'60€0TT — Z'€8
1606692 \€2/°€S52 | 2T29'162 \2558'6/2 | 88/9v0€ \/60°€8Z |/SvE'S9Z \BTIEZ ¥SZ |£€£0'692 \WIr8'852 |T260'862 \66S.'€8Z |S5286'GSE \/LOT'EEE | £GF'/EE \ESOE'LTE za1®
GT'T/980T — §'/2 £'€YT8S — S0'92 GL'ETTTT — S£'GC 81186 — S5'/2 2'80T¥6 — ST'/2 v'92.6 — ¥'Se G8'€£560T — SG'ST G8'STYYE — 9'Se
1191°G69 \9OEV'EVS | 892'2/9 \GT¥9'/GS |¥849:259 \20SETLS |9929'¥69 \rSSt¥vS |S569€229 \WOIT 6¥S |2E¥8'0S9 \LEOV'TLS |Z8TT0/9 \209E'T9S |295€'SE9 \VST8'0LS | TaI®
G5'80T.2T — 6V T'0£T26 — 6'8Y L'TL6EY — SG'SY 6'026.2T — 6V 928/2T — 2'8Y Tvrvve — v'St S'9ISYTT — 2'St 1'2€96TT — 6'9V
2196°0 \/¥S6°0 9500°T \€266°0 9T10°T \ETO0'T 296°'0 \T6%6°0 ¥226°0 \6¥96°0 1600°T \T00'T ¥1¥0°T \9210'T €€0°'T \/900°T )
GZ6€ZT — SP'8E L'¥€90L — ST'vY GE'09T2S — G6'SZ | S'TE992T — SSvv Z'96TYeT - T'Sh 8'€906Z — £'2€ GZ'2zIzIT— €82 | S0°08281T — ST'22
8vSE° L0V \2602°S0Y |/E.S'/GY \2/0S'ELY | 206665y \v¥6'65Y |6£62 ¥EY \626L 2EY | 8€68°'GEY \T6T8'SEY |2TE9'2.Y \9EGZ TLY | /ey Shy \628.°G9Y | LOTL Lvy \ZE8T IOV €l
G/'69282T — L'8Y T¥92v9 — GO'LY T1.20T - Lv 6/8082ZT — L'8v | GL'28T8ZT — GS'8Y SP'9TS8 — Lv Z'STTIETT — 9'Eh 6'09660T — 8'St
902€°0 \EVYED ¥8£€°0 \EY9E'0 GGe'0 \€8E0 102€°0 \Zvve0 88T€°0 \EEVED 66e°0 \€8€'0 907°0 \2/E7°0 6.5€°0 \898€°0 2z
Y1821 - 6Y 55'20T98 — 6V ¥'€800Z — 6¥ 1990821 — 6V G1'5€282T — 6% GE'6858T — 6V TYY8YoT — ¥'LY £°'T0980T — '8V
8€8E°T \2vSi'T 2€8S'T \8ES9'T 999S°'T \t969'T 629€'T \8YEY'T 886€'T \ESSK'T 82/S'T \8T0L'T 59512 \vIEze 6069°T \206.°T T
HOOMI-DININ HOOM-DININ HOD-OININ HOOMI-YANN HOOM-YANN ¥02-YANN HOOM-YD H0D-VO ws|qoid
"a|qelreA yoea 1o} sjage| . Buisn synsay
L'99v/G — S6'LT 58'58€29 — 19T 8'Zv8. — GT GT'€ESE9 — 8T G6'6.5VS — 8T S1'82€6 — ST 9'00T20T — G8'GT ¥8SET — ST
¥2%9'9 \8882°L ¥0£2°9 \866€°L 6680°, \62€L°L 15v9°9 \8/82°/ G/¥9°9 \1/62°L 6680°2 \62€L°L 1299 \eve'L 6680°2 \62€L°L sdaays
6'9/182T — 6'T9 867566 — ST'0S G9'00TEZ — 9'6Y 5'908.2T — 209 G6'65592T — T'9S Sv'820T2 — G¥'0S G0'€96¥0T — T'9F | SE'ZI6STT — €21
26681/ \680E'0/E | 9265'€6€ \8T9'68E | 626°'GT \2992vOv |¥S€2'9/€ \6282°0/€ |E0TLTLE \W/2ETLE | ST9'/T¥ \L2Sh¥OV | ///°82 \G98222y |STE9'2ey \9TZT'ETY | ZoI@
YPITL = G'LT 5'6928€ — S8'ST £7989 — G¥'ST L'60EY8 — €41 G1'82880T — 89T 9'Z¥8S — G5'ST SZ'¥¥800T — 84T 65'82.TT — GT
2188'GT9 \/G2/° T/ |/T0£'T09 \890T /S |29€/°98G \9866°16G | 9vEE €19 \pv/9'T/S | 186809 \9E0Z'2/S |¥82T'/8S \8SY6'T6S |¥¥98°0T9 \e660°GLS | EVES98S \8622°T6G | T3I@
GE'0SY.6 — G617 Z'SY009 — S6°02 G6'CZYIET — 602 ¥'882.6 — 6’7 ¥'¥80TZT — 8'€2 ST'T8Y0T — 802 8T090T — G¥°0Z 8/1TS — G8'6T
6020°T \ET66°0 S0'T \T200'T S¥S0°T \/S00'T 6600'T \9066°0 95€0'T \9166°0 /¥S0°T \9S00'T S670°'T \G200'T 950°'T \6v00°T )
6,50T8 — 9'/T ST'TZ0V0T — S9'2T | §8'2/292 — G62T G1'€9889 — 6'2C 68'8.028 — 2’22 9155 — 6'T2 1°99/9TT - G L'692/€— G
S0vZ'€0G \G229°'6TS |£020°52S \e89T'0SS | 2060°€95 \6¥99°G/S |928£°085 \T€90°2/S |9€80°'T2S \8//ET8S |+09e'€29 \EBO6'SE |S50/0°09¢ \802ZZ L6V |LE8/°0TS \B9IS0'SZS €l
G9'09.TL - SY've 6°09ELY — €2 ¥'29Y — €2 G8'G/€89 — GS'VT 1°00069 — L'€2 GE'8T0V — €2 1°'8T6Y0T — G822 Z€8ST — €2
9825°0 \E€.¥5°0 19750 \2895°0 7850 \/%09°0 6825°0 \2/¥5°0 825°0 \r9¥S'0 7850 \ /%090 6895°0 \ 850 7850 \/%09°0 4!
62'02.22T — S2 59'099%S — G2 G5'€G6L — ST v'€9TLTT — G2 G2'€2991T — 52 6'0652T — 52 58'SY656 — SZ 565007 — S
1858'T \€29T°2 2260°2 \66SE'2 1€/€2 \9889°C 1€S8'T \6¥ST'2 8v€6'T \€502°C 989€'2 \9889°2 18122 \9v8r'e v1€€2 \17/9°2 T
HOIMI-DININ HOOM-DININ HOD-DININ HOOMI-YANN HOOM-YAWN ¥02-YanN HOOM-YD H0D-VO wa|qold

"a|qeleA yoea Joj sjage| G Buisn synsay

TABLE I
AVERAGE ERRORS IN TRAINING AND TESTAVERAGE NUMBER OF RULES

TABLE |
AVERAGE ERRORS IN TRAINING AND TESTAVERAGE NUMBER OF RULES

AND NUMBER OF EVALUATIONS FOR20 EXECUTIONS

AND NUMBER OF EVALUATIONS FOR20 EXECUTIONS



Tests for 5 labels for each variable

Problem | GA | WGA [ UMDA | WUMDA [ GWUMDA [ MIMIC | WMIMIC | cMivic advantage of the graphical language used by EDAs in order
7 5 O to incorporate domain knowledge, and (2) the experimental
3 o O . . .
f4 . ! . analysis of the wCOR methodology carried out, which uses
o — «—w| 7 different problems while previous analysis where based on

sheeps 5 e *® * B asingle problem.

T for 7 labels fi h iabl 1 i

Problem| GA WGA UM?DS;S OINUI\?IDiS oév?S:/leAanaMelMIC wMIMIC | cwMIMIC i AS TUture Work’ we plan to 'eXte'n.d our researCh in dlﬁerent
n I * g directions: (1) once the appllcablhty_of EDAs to the WCOR
g B ° T methodology has been shown, we think that some mechanism
el O u L— u — for overfitting prevention should be incorporated to the search
ele; .

Sheeps o0 e m] process; (2) less rules means more interpretable systems, so

TABLE I we plan to study how to reduce the number of rules in the

discovered systems but without to degrade its performance.
Perhaps, the problem can be approached as a multiobjective
: p— one by considering number of rules and error as fithess
g ~7| measures; and (3) more complex models of EDAs or different
ways of using domain knowledge are also topics that worth

STATISTICAL TESTS FOR TRAINING AND TEST RESULTS

generations

generations

elel (7 labels)

Fig. 5.

ele2(5 labels)

[1]
Fitness vs Generation for the wCOR algorithms
[2]

in the outstanding groups in some cases and the difference
in performance with UMDA-wCOR is not so clear. In this [3]
point it is worth noticing that no mechanism for overfitting
prevention has been used during the search process.

Discarding the COR algorithms, it seems that GA-wCOR[4]
and MIMIC-wCOR are clearly worse than the other algo-
rithms which use weights. In order to see whether the poor
results are due to premature convergence, we have plottgsi
in Figure 5 the evolution (average over 10 runs) of the best
fitness through generatich&r problems elel (7 labels) and
ele2 (5 labels). As can be seen, the poor results of the two
algorithms are not due to premature convergence. In fadt]
UMDA-cwCOR even converges fastest. (8]

The results obtained lead us to believe that using condi-
tional weights with the wCOR approach is the best option.[9
cwUMDA, despite its simplicity, is in most cases the best
or in the group of the best algorithms. Moreover, the graphs
show that, although it gets the best result, it neverthele§9!
converges faster. [11]

VIl. CONCLUDING REMARKS

. ) [12]
In this work, we have made a first approach to the use of

EDAs as search algorithm when learning weighted LFRBS?3
through the wCOR methodology. The use of probabilisti& ]
models as main element of the evolution process allows
a more precise estimation of weights, which translates t&4]
more accurate models. We think that the more remarkab[lfs]
points of the paper are: (1) the way in which one can take

3Graphics of convergence for all problems with 5 and 7 labels can be
consulted in http://www.info-ab.uclm.es/SIMD/CEC06

to be studied.
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