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Fuzzy-UCS: A Michigan-style Learning
Fuzzy-Classifier System for Supervised Learning

Albert Orriols-Puig, Jorge Casillas, and Ester Bernad6-Mansilla

Abstract—This paper presents Fuzzy-UCS, a Michigan-style
Learning Fuzzy-Classifier System specifically designed for su-
pervised learning tasks. Fuzzy-UCS is inspired by UCS, an
on-line accuracy-based Learning Classifier System. Fuzzy-UCS
introduces a linguistic representation of the rules with the aim
of evolving more readable rule sets, while maintaining similar
performance and generalization capabilities to those presented
by UCS. The behavior of Fuzzy-UCS is analyzed in detail from
several perspectives. The granularity of the linguistic fuzzy rep-
resentation to define complex decision boundaries is illustrated
graphically, and the test performance obtained with different
inference schemes is studied. Fuzzy-UCS is also compared with
a large set of other fuzzy and non-fuzzy learners, demonstrat-
ing the competitiveness of its on-line architecture in terms of
performance and interpretability. Finally, the paper shows the
advantages obtained when Fuzzy-UCS is applied to learn fuzzy
models from large volumes of data.

Index Terms—Michigan-style Learning Classifier Systems, Ge-
netic Fuzzy Systems, Supervised Learning, Pattern Classification.

I. INTRODUCTION

ICHIGAN-STYLE Evolutionary Learning Systems (in-

troduced by John Holland in the 1970s [1], [2]),
also referred to as Learning Classifier Systems (LCSs), are
machine learning techniques that solve problems on-line by
evolving a set of rules by means of an Evolutionary Algorithm
(EA). Initially designed based on the animal behavior, new
developments in research on Michigan-style LCSs—mostly
due to the presentation of XCS (originally proposed in [3]
and further improved in [4]), the first accuracy-based LCS—
have led to the application of the on-line learning architecture
to solve pattern classification tasks [5], reinforcement learning
problems [6], and function approximation problems [7].

In the pattern recognition field, several studies and com-
parisons demonstrate the competitiveness of the performance
of LCSs with respect to other widely-used machine learning
techniques [5], [8]-[10], such as the decision tree C4.5 [11],
the support vector machine SMO [12], and the instance based
algorithm IBk [13]. LCS’s success is due to three main factors:
the rule-based representation, the generalization capabilities,
and the on-line learning scheme. That is to say, starting
from a set of rules approximately created from the first input
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examples, the system estimates the quality of these rules on-
line and the genetic search incrementally evolves this rule
set with the aim of obtaining a set of maximally general
and accurate rules which together cover all the input space.
Besides, the population-based architecture of LCSs permits
their parallelization for use on supercomputing resource [14],
making them also competitive for mining large data sets.

The high competence of LCSs to perform pattern recog-
nition tasks has been impaired to some extent by the large
number of semantic-free rules that are evolved. LCSs represent
continuous variables by means of interval-based rules; i.e.,
each rule represents a codification of a hyper rectangle in the
feature space which is usually coded by using real numbers.
This results in large sets of overlapped rules which together
define the decision boundaries [15]. Thus, this knowledge rep-
resentation is barely legible to human experts. Some authors
have tried to solve this problem by designing rule set reduction
algorithms [16]-[18]. Although some of these algorithms
allow for a considerable reduction of the rule sets, slightly
degrading the test performance, the semantic-free descriptive
representation may continue hampering the readability of the
rule set.

In recent years, there has been an increasing interest in
Genetic Fuzzy Rule-Based Systems (GFRBSs) [19]—which
mainly involve the use of evolutionary algorithms to learn
fuzzy rules—since they provide a robust, flexible, and pow-
erful methodology to deal with a highly legible knowledge
representation. As a result, the first Michigan-style Learning
Fuzzy-Classifier Systems (LFCSs) have been proposed [20]—
[26], most of them applied to solve reinforcement learning
and process control tasks. However, while most of the current
non-fuzzy Michigan-style LCSs are accuracy-based, the fuzzy
approaches usually follow a strength-based model, in which
classifiers are strengthened during the learning process.

In this paper, we address the interpretability problem in
LCSs and propose Fuzzy-UCS, an accuracy-based Michigan-
style LFCS that works under a supervised learning paradigm.
For this purpose, we use UCS [5] as starting point. UCS is an
LCS derived from XCS and specialized for pattern recognition
tasks, which has shown to be highly competitive with respect
to other machine learning techniques. Fuzzy-UCS replaces the
interval-based representation with a linguistic representation of
the rules, and redefines the majority of UCSs components to
deal with fuzzy rules. The system learns incrementally from
a stream of examples, which are used to adjust the quality
estimate of the fuzzy rules. Also, a steady-state niched genetic
algorithm [27], [28] is applied periodically to create promising
new rules. At the end of the learning, the system provides a set
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of maximally general and accurate rules which may present
overlapping conditions.

The remainder of this paper is organized as follows. Section
IT briefly presents the Rule-Based Evolutionary Algorithms,
discusses the main characteristics of Michigan and Pittsburgh-
style LCSs, introduces accuracy-based LCSs (focusing on
UCS) and reviews some of the Michigan-style LFCS proposed
in the literature. Section III gives a detailed description of the
proposed Fuzzy-UCS algorithm. The next section analyzes the
limitations that a linguistic representation may impose, and
compares three inference schemes proposed in Fuzzy-UCS.
Section V makes an extensive comparison of the Fuzzy-UCS
representation with a set of GFRBS and general-purpose ma-
chine learning techniques, analyzing the differences between
the learners in terms of test performance and interpretability
of the models. Section VI exploits the on-line architecture
of Fuzzy-UCS to mine a large data set, the 1999 KDD Cup
intrusion detection data set. Finally, Sect. VII gives a summary
of the work and future lines of research.

II. FRAMEWORK: ON-LINE ACCURACY-BASED LCSs

This section introduces the different rule-based evolution-
ary learning models, i.e., machine learning techniques that
use Evolutionary Algorithms (EAs) to evolve the rule-based
knowledge. We briefly describe the different strategies pro-
posed in the literature, and focus on the accuracy-based
Michigan-style LCSs. In this context, we introduce UCS [5],
an LCS designed for supervised learning by which Fuzzy-UCS
is inspired. Finally, we review the related work on Learning
Fuzzy-Classifier Systems.

A. Rule-based Evolutionary Learning Systems

Since Holland presented the first architecture of Learning
Classifier Systems in 1976 [1], later implemented in 1978
[2], research on LCSs has been conducted from two dif-
ferent perspectives: the Pittsburgh-style LCSs [29], and the
Michigan-style LCSs [1], [2]. Both types of algorithms are
briefly described as follows:

1) Pittsburgh-style LCSs follow the essence of evolutionary
algorithms. Every individual is a set of production rules
that represent a solution for the given problem. The quality
of each individual is estimated according to the number of
examples correctly predicted and the rule’s generalization. All
the solutions compete in the population. The genetic search is
usually driven by a generational genetic algorithm [27], [28],
whose operators are adapted to deal with rule sets. At the end
of the run, the fittest individual is selected for classifying new
test examples.

2) Michigan-style LCSs are cognitive systems that combine
a credit-apportionment algorithm, usually based on reinforce-
ment learning [30], with evolutionary algorithms [27]. Ev-
ery individual is a single production rule, whose quality is
evaluated on-line by the cognitive system. An evolutionary
algorithm is applied periodically to the population to discover
promising new rules. At the end of the run, all the rules in the
population are grouped together to classify new test instances.

The two strategies mainly differ in a) the individual rep-
resentation, b) the evaluation of the individuals, and c) the
application of the EA.

Pittsburgh-style LCSs represent each individual as a set
of rules; thus, the genetic operators evolve individuals that
classify all the input space. On the other hand, Michigan-
style LCSs codify each individual as a single production rule.
Consequently, each rule (also referred to as classifier), is an
expert classifier in the region of the search space that it covers.
Thus, since all the evolved classifiers collaborate to cover all
the feature space, a methodology for combining classifiers with
overlapping conditions is required.

To evaluate an individual, Pittsburgh-style LCSs classify all
the input examples in the training data set. Thus, the compu-
tational resources needed to evaluate all the rule set increase
linearly with the number of instances in the training data set.
This is one of the main problems detected for Pittsburgh-style
LCSs, especially when used to mine big amounts of data. On
the contrary, Michigan-style LCSs evaluate the population on-
line by interacting with an environment which provides an
example at each learning iteration. Consequently, the number
of instances in the data set does not influence the cost of
performing a learning iteration.

The application of the evolutionary algorithm also differs
in both approaches. Typically, in Pittsburgh-style LCSs, a
generational EA is applied at the rule set level: selection,
crossover, and mutation are adapted to deal with individuals
codified as rule sets. In Michigan-style LCSs, a steady-state
EA works at the rule level, since individuals codify a single
rule. The consequence of the latter approach is that the EA
must co-evolve a diverse set of individuals which together
provide a solution to the problem.

Recently, new proposals that hybridize Michigan- and
Pittsburgh-style LCSs have been proposed. For example, in
[31] a hybrid of both LCSs styles is presented to extract rule
sets for classification problems.

B. UCS: An Accuracy-based Michigan-style LCS

In recent years, many implementations of Michigan-style
LCSs have been proposed. Most of them use a reinforcement
learning procedure to evaluate on-line the rule set. These ap-
proaches can be grouped in two categories, depending on how
they compute the rule’s fitness: a) strength-based LCSs and b)
accuracy-based LCSs. The first practical implementations of
LCSs corresponded to strength-based LCSs. In these systems,
rules’ fitness was based on the strength, i.e., an estimate of the
reward that the system would receive if the action of the rule
was performed. However, several limitations were identified in
this approach such as the presence of over-general classifiers,
due to the difficulty of distinguishing them from accurate
classifiers [32].

During this period of increasing research on LCSs, Wilson
presented XCS [3], [4] which came to solve the typical prob-
lems of strength-based LCSs with the idea of basing fitness on
the accuracy of the reward prediction instead of on the reward
itself. This means that the evolutionary algorithm searches
for rules that are accurate in their prediction, regardless of
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the expected reward of each rule. This new architecture also
brought another view of the kind of rules that need to be
evolved. Whilst strength-based LCSs only need to maintain
all the highly-rewarded rules (i.e., rules that receive a high
payoff), accuracy-based LCSs such as XCS need to create all
possible classifiers with minimum prediction error, regardless
of the payoff they receive.

Since the introduction of XCS, a great amount of research
has been conducted on accuracy-based LCSs, resulting in
different LCSs with a core architecture inherited from XCS.
One of the most prominent proposals is UCS [5], which
inherits the main components of XCS, but specifies them
for supervised learning tasks. In [5] and [33], UCS was
able to overcome the fitness dilemma [9] detected in XCS
and to achieve accurate models quicker than XCS; moreover,
UCS reached higher accuracy rates in imbalanced problems
and multi-class problems. The on-line architecture enabled
learning from a stream of examples, without going through
the whole data set in each learning iteration. This feature is
really useful for learning incrementally from large data sets,
as shown later in this paper.

UCS works as a model-free on-line learner. For each input
example e with its associated output ¢, UCS forms the match
set [M], which consists of all the classifiers in the population
[P] with their matching condition e. The next steps depend
on whether the system is on exploration (or training) mode
or exploitation (or test) mode. Under exploration mode, the
system creates the correct set [C] with all classifiers in [M] that
advocate c. If [C] is empty, the covering operator is triggered.
It creates a new rule whose condition is generalized from e
and which predicts the class c. Then, the parameters of the all
rules in [M] are updated depending on whether they predicted
e correctly. Eventually, a genetic algorithm is triggered on
the correct set [C], creating two new classifiers by means of
crossover and mutation. The offspring are introduced in the
population, and other classifiers are removed from the popu-
lation if there is no room for the new rules. The combination
of niched-based selection and population-based replacement
is mainly responsible for the generalization pressure in UCS.
Under exploitation mode, each classifier in [M] emits a vote
weighted by the fitness of the rule for the class it predicts.
The most voted class is selected as output.

C. Related Work on Learning Fuzzy-Classifier Systems

Several authors have proposed strength-based Michigan
style LFCS, which have basically been applied to solve
reinforcement learning and control tasks. Valenzuela-Rendén
[20] introduced the first Michigan-style LFCS, which consisted
of a fixed-size fuzzy-rule set and a fuzzy message list. The
system was applied to solve function approximation tasks. The
quality of the fuzzy rules was given according to the accuracy
in which the output was estimated. Thus, the initial approach
was not a pure reinforcement learning architecture. The system
was later enhanced with true reinforcement learning [21].

Several strength-based Michigan-style LFCS have been pro-
posed since [21]. Parodi and Bonelli [22] presented an LFCS
that automatically learned fuzzy relations, fuzzy membership

functions, and fuzzy weights. The fitness (strength) of each
rule was used for a double purpose. First, it served to compute
the selection and replacement probability of the rule. Second,
it permitted stronger rules to participate more soundly in the
inference process.

Furuhashi et al. [23] designed an LFCS that used multiple
stimulus-response fuzzy rules operating in tandem. The system
was applied to a control task in which a simulated ship had to
reach a target without moving the obstacles found on its way.
The same problem was addressed by Nakaoka et al. by using
a single rule list [34].

Velasco [24] defined a new LFCS architecture designed
for fuzzy process control. The system introduced the so-
called limbos, i.e., a special workspace where new rules were
generated and evaluated before being used in the real process
plant. In this way, the system avoided using poorly-evaluated
rules in the control system.

Ishibuchi et al. [25] designed one of the first proposals
of LFCS for pattern classification. They used a fixed-size
rule set where don’t care symbols were defined to permit
generalization in the fuzzy rules. A certainty factor, derived
from a heuristic procedure prior to fitness evaluation, together
with the predicted class formed the consequent of the rule.
An evolutionary algorithm, which operated only on the rule
antecedent, was responsible for creating promising new rules.
Recently, a hybridization of Pittsburgh-style and Michigan-
style LCSs has been presented by two of the aforementioned
authors [35], in which a single iteration of a Michigan-style
LCS—i.e., rule selection, generation, and replacement— is
applied to each individual of a Pittsburgh-style rule set.

Finally, the classic “competition versus cooperation” prob-
lem in genetic fuzzy systems was addressed in Bonarini’s work
[36], [37]. Bonarini proposed a Michigan-style LCS called
ELF, which faced the dilemma between the desired cooper-
ation among fuzzy rules that match a given input state and
the competition of these rules in the evolutionary algorithm.
In ELF, the rule set was divided into several subpopulations,
each one with the same antecedent. Then, the rules of differ-
ent subpopulations cooperated to produce the control action,
whilst the members of each subpopulation competed with each
other. Moreover, ELF controlled the instability of general rules
that participated in different subpopulations by providing each
rule a reinforcement normalized on the difference between the
maximum and the minimum reinforcement obtained by the
subpopulation to which the rule belongs. In this way, ELF
overcame some of the problems of strength-based LCSs. ELF
was applied to several reinforcement learning problems, such
as the coordination of autonomous agents.

All the LFCS described through this section are strength-
based systems. In reinforcement learning, the first successful
accuracy-based fuzzy rule-based system with generalization
capability was proposed in [26]. To the best of our knowledge,
no accuracy-based LFCS specifically designed for classifica-
tion has been proposed.

In our system, we take an accuracy-based approach to
benefit from the advantages that these types of systems have
introduced to LCSs, which are summarized as follows.
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e Accuracy-based LCSs can distinguish over-general from
accurate rules [38].

o There are theoretical analyses that support the theory
that, for binary representation, LCSs such as XCS will
evolve a rule set with maximally-general and highly
accurate rules if certain conditions are met [9], [39], [40].
Although similar analyses in the continuous space are
lacking, the positive conclusions extracted for the binary
representation promote the use of Michigan-style LCSs.

Moreover, we have designed our system to solve classification
tasks. For this purpose, our system is inspired by UCS, one
of the most significant LCSs for supervised learning. In the
following section we introduce the system, which is addressed
as Fuzzy-UCS.

III. DESCRIPTION OF Fuzzy-UCS

Figure 1 schematically illustrates Fuzzy-UCS. The system
works in two different modes: exploration or training and
exploitation or test. In the exploration mode, Fuzzy-UCS seeks
to evolve a maximally general rule set that minimizes the
training error. In the exploitation mode, Fuzzy-UCS uses the
evolved knowledge to infer the class of unlabeled examples.
A concise description of the system is provided below.

A. Knowledge Representation

Fuzzy-UCS evolves a population [P] of classifiers which
jointly represent the solution to a problem. Each classifier
consists of a rule whose condition is in conjunctive normal
form and a set of parameters. The fuzzy rule follows the
structure

IF 2, is A¥ and --- and x,, is A¥ THEN ¢* WITH w"
ey
where each input variable z; is represented by a disjunction of
linguistic terms or labels Af ={ A1V...VA;,}. Inourex-
periments, all input variables share the same semantics, which
are defined by means of triangular-shaped fuzzy membership
functions. Note that this representation intrinsically permits
generalization since each variable can take an arbitrary number
of linguistic terms. The consequent of the rule indicates
the class c¥ which the rule itself predicts. w* is a weight
0< wh < 1) that denotes the soundness with which the rule
predicts the class ¢*. These types of rules with a weight in the
consequent are known as fuzzy rules of type II [19].

The matching degree ax(e) of an example e with a
classifier k£ is computed as follows. For each variable z;,
we compute the membership degree for each of its linguistic
terms, and aggregate them by means of a T-conorm (disjunc-
tion). We enable the system to deal with missing values by
considering that p4x(e;) = 1 if the value e; for the input
variable z; is not known. Then, the matching degree of the
rule is determined by the T-norm (conjunction) of the matching
degree of all the input variables. In our implementation, we
used a bounded sum (min{l,a + b}) as T-conorm and the
product (a - b) as T-norm. Note that, if the fuzzy partition

guarantees that the addition of all membership degrees is
greater than or equal to 1—the membership functions used in
our experiments satisfy this condition—, the selected T-norm
and T-conorm allow for a maximum generalization. Therefore,
an input variable z; consisting of two consecutive linguistic
terms will result in a matching degree of p,,(e) = 1 if the
matching of e; with both linguistic terms is greater than zero;
thus, this choice supports the absence of the variable z;.

Each classifier has four main parameters: 1) the fitness F,
which estimates the accuracy of the rule; 2) the correct set size
cs, which averages the sizes of the correct sets in which the
classifier has participated (see Sect. III-B); 3) the experience
exp, which computes the contributions of the rule to classify
the input instances; and 4) the numerosity num, which counts
the number of copies of the rule in the population.

B. Learning Interaction

The learning interaction is inherited from UCS (see Sect.
II-B) and adapted to deal with fuzzy rules. For this purpose,
three main differences with respect to UCS need to be con-
sidered: the matching calculation, the rule structure, and the
inference methodology.

1) Matching calculation. In UCS, the attributes are rep-
resented by intervals [[;, uw;], and thus, a rule matches
an input example if Ve; : [; < e; < wu;. Therefore,
the matching function returns a binary output indicating
whether the classifier matches the example e or not. In
Fuzzy-UCS, a rule k& matches the input example with a
matching degree pi4x(e), where 0 < p4x(e) < 1. High
values of p4x(e) indicate that the prediction of rule k
is fairly accurate.

2) Rule structure. In UCS, a rule predicts a single class
with a certain fitness or quality. Consequently, the pop-
ulation may contain two rules with the same antecedent
advocating different classes. To avoid this situation, rules
in Fuzzy-UCS maintain a weight for each class that
indicates the soundness in which this class is predicted.
The class advocated by the rule is the class with the
maximum weight.

3) Inference methodology. In UCS, all the classifiers in [M]
emit a fitness-weighted vote for the class they advocate,
and the most voted class is chosen as the predicted
output. In Fuzzy-UCS, different fuzzy-logic inference
methods can be used to infer the class from the final
fuzzy rule set [41]. Section III-E presents the three types
of inference used.

The learning interaction of Fuzzy-UCS was redesigned
considering these differences. First, the match set [M] is
created with all the classifiers in [P] that have a matching
degree ju4x(e) greater than zero.! Next, in exploration mode,
the classifiers in [M] that advocate the class ¢ form the correct

"We do not require that rules have a matching degree greater than a certain
threshold to be in [M], as sometimes done in regression [26]. In regression, the
output is formed by means of aggregating rules with different actions. Thus,
a minimum matching degree with the input may be required to participate in
this process. However, in Fuzzy-UCS, the rules in [C] advocate the same class.
In this way, Fuzzy-UCS avoids aggregating rules of different classes in the
learning process, and so, a matching threshold appears to be less necessary.
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Fig. 1.

set [C]. In exploit mode, the class is inferred using one of
the three methodologies detailed in Sect. III-E, and no further
action is taken.

If none of the classifiers in [C] match e with the maximum
matching degree, the covering operator is triggered, which
creates the classifier that maximally matches the input exam-
ple. That is to say, for each attribute of the condition, we
aggregate the linguistic term A;; that maximizes the matching
with the input value e;. If e; is not known, we randomly select
a linguistic term and aggregate it to the attribute. Moreover,
we introduce generalization by permitting the addition of other
linguistic terms with probability Py. The initial values of the
new classifiers are initialized according to the information
provided by the current examples. Specifically, the fitness,
the numerosity, and the experience are set to 1. The fitness
of a new rule is set to 1 to give it opportunities to take
over. Nonetheless, two important aspects should be noted.
First, as the new classifiers participate in new match sets,
their fitness and other parameters are quickly updated to their
average values, and so, the initial value is not crucial. Second,
as specified in the following sections, the system prevents
young classifiers from having a strong presence in the genetic
selection, and protects them from an early deletion. At the end
of the covering process, the new classifier is inserted in the
population, deleting another one if there is not room for it.

C. Parameters Update

At the end of each learning iteration, Fuzzy-UCS updates
the parameters of the rules in [M]. First, the experience of the
rule is incremented according to the current matching degree:

(@)

Next, the fitness is updated. For this purpose, each classifier
internally maintains a vector of classes {ci,..., ¢y}, each of
them with an associated weight {v¥ ... v*}. Each weight

expf, = expf + pia(e)

1

i

|

1

|

: s Appl
: exploitation . Parameter’s e
i Reasoning = Infer class Update

|

|

1

GA = selection +
crossover + mutation

Schematic illustration of Fuzzy-UCS. The run cycle depends on the type of run: exploration (training) or exploitation (test).

vf indicates the soundness with which rule k predicts class j
for an example that fully matches this rule. These weights
are incrementally updated during learning as explained as
follows. The class c* advocated by the rule is the class with the
maximum weight vf. Thus, given that the weights may change
due to successive updates, the class that a rule predicts may
also vary.

To update the weights, we first compute the sum of correct
matchings em” for each class j:

ek, = em, + mik. ) ®
where
, par(e) if j=c
m(k,j) = 4
(k. 3) 0 otherwise @
Then, cm¥,  is used to compute the weights v, ;:
k
em?
Vjiok = —2H ©)
- ks

For example, if a rule & only matches examples of class 7,
the weight vf will be 1 and the remaining weights 0. Rules
that match instances of both classes will have weights ranging
from O to 1. Note that the sum of all the weights is 1.

The fitness is then computed from the weights with the aim
of favoring classifiers that match examples of a single class.
To carry this out, we use the following formula [42]:

k
z : Ujesr

jli#maz

Ftﬁl = ’Uf;’bail)t+1 - (6)
where we subtract the values of the other weights from the
weight with maximum value v¥, .. The fitness F'* is the value
used as the weight w* of the rule (see Equation 1). Note
that this formula can result in classifiers with zero or negative
fitness (for example, if the number of classes is greater than 2
and the class weights are equal). Finally, the correct set size of
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all the classifiers in [C] is calculated as the arithmetic average
of the sizes of all the correct sets in which the classifier has
participated.

Finally, the rule k predicts the class ¢ with the highest
weight associated v¥. Thus, the class predicted is not fixed
when the rule is created, and can change as the parameters
of the rule are updated (especially during the first parameters
updates).

D. Discovery Component

Fuzzy-UCS uses a steady-state niched genetic algorithm
(GA) [43] to discover new promising rules. The GA is applied
to the classifiers that belong to [C]. Thus, the niching is
intrinsically provided since the GA is applied to rules that
match the same input with a degree greater than zero and
advocate the same class.

The GA is triggered when the average time from its last ap-
plication upon the classifiers in [C] exceeds the threshold O 4.
It selects two parents p; and p from [C] using proportionate
selection [28], where the probability of selecting a classifier k
is

o= (F*)Y - pax(e)

T Y ieonriso(F) - pax(e)
where v > 0 is a constant that fixes the pressure toward
maximally accurate rules (in our experiments, we set v=10).
Rules with negative fitness are not considered for selection.
The two parents are copied into offspring ch; and chs, which
undergo crossover and mutation with probabilities x and p
respectively. The crossover operator crosses the antecedents
of the rules by two points. The mutation operator checks
whether each variable has to be mutated with probability
w. If so, three types of mutation can be applied: expansion,
contraction, or shift. Expansion chooses a linguistic term not
represented in the corresponding variable and adds it to this
variable; thus, it can be applied only to variables that do not
have all the linguistic terms. Contraction selects a linguistic
term represented in the variable and removes it; so, it can be
applied only to variables that have more than one linguistic
term. By doing so, we avoid generating rules that do not match
any example. Shift changes a linguistic term for its immediate
inferior or superior.

The new offspring are introduced into the population. First,
each classifier is checked for subsumption [4] with their par-
ents. Subsumption is a mechanism that prevents the creation
of classifiers with specific conditions if there are more general
and accurate classifiers in the population that cover the same
region of the feature space. The process works as follows. If
any parent’s condition subsumes the condition of the offspring
(i.e., the parent has, at least, the same linguistic terms per
variable than the child), and this parent is highly accurate
(F* > F[) and sufficiently experienced (exp® > 0sup), the
offspring is not inserted and the numerosity of the parent
is increased by one. Otherwise, we check [C] for the most
general rule that can subsume the offspring. If no subsumer
can be found, the classifier is inserted in the population.

If the population is full, excess classifiers are deleted
from [P] with probability proportional to the correct set

@)

size estimate cs. Moreover, if the classifier is sufficiently
experienced (exp® > 04.;) and the power of its fitness (F*)¥
is significantly lower than the average fitness of the classifiers
in [P] (F*)” < 6Fp) where Fip) = 3 Y ,cp(F)"), its
deletion probability is further increased. That is, each classifier
has a deletion probability py of:

dy,

Pk = ="+ (8)
ZVjG[P] d;
where
cs-num-F] . v
dk _ WV[P] if e:vpk > 9del and (Fk) < 5F[p]
cs - num otherwise
9)

Thus, the deletion algorithm balances the classifier’s allocation
in the different correct sets by pushing toward deletion of
rules belonging to large correct sets. At the same time, it
favors the search toward highly fit classifiers, since the deletion
probability of rules whose fitness is much smaller than the
average fitness is increased.

E. Fuzzy-UCS in Test Mode

The aim of Fuzzy-UCS is to evolve a minimum set of
maximally accurate rules that cooperate to cover all the input
space. To achieve high classification accuracy, we need to
define effective reasoning methods that use the information
of the rule set to infer the class of new input examples. As
these reasoning methodologies may not use all the rules in the
inference process, rule set reduction techniques can be applied
to remove the rules that are not considered for the reasoning
technique. Herein, we discuss two different inference schemes.
Furthermore, we present a reduction method for each one of
these inference techniques that permits to reduce the number
of rules in the final population without decreasing training
accuracy. Finally, we also introduce a third rule set reduction
mechanism which allows for higher reductions but does not
guarantee that the reduced rule set results in the same training
performance as the original.

1) Class Inference: Once Fuzzy-UCS has evolved a popu-
lation of highly general and accurate rules, this population is
used to infer the class of new examples. Given a new unlabeled
instance e, several rules predicting different classes can match
(with different degrees) this instance. Thus, the knowledge
contained in the set of matching classifiers has to be combined
to decide the most likely output. For this purpose, several
reasoning methodologies have been analyzed in for fuzzy-
rule based systems [41], [44]. Here, we adapt two inference
approaches to Fuzzy-UCS. In both cases, only experimented
rules (ea:p’C > Ocaploit) are considered in the inference, where
Oczploit 1S a user-set parameter that indicates the minimum
experience that a rule must have to participate in the inference
process.

Weighted average inference. In this approach, all the experi-
enced rules vote to infer the output. Each rule £ emits a vote
vy, for class j it advocates, where vy = F¥- i 4% (e). The votes
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for each class j are added:
N
Vj :vote; = Z Vg

k|ck=j

(10)

and the most-voted class is returned as the output.

Action winner inference. This approach selects the rule k
that maximizes p4x(e) - F'*, and chooses the class of the rule
as output [25]. Thus, the knowledge of overlapping rules is
not considered in this inference scheme.

2) Rule set Reduction: At the end of the learning process,
the population is reduced to obtain a minimum set of rules.
We designed three types of reduction, which use one of the
inference schemes presented above.

Reduction based on weighted average. Under the weighted
average scheme, we reduce the final population by removing
all the rules that a) are not experienced enough (exp >
Oczploit) OF b) have zero or negative fitness.

Reduction based on action winner. If action winner inference
is used, only rules that maximize the prediction vote for
a training example are necessary. Thus, after training, this
reduction scheme infers the output for each training example.
The rule that maximizes the vote v; for each example is copied
to the final population.

Reduction based on the most numerous and fittest rules.
This reduction tries to minimize the rule set size by selecting
the most numerous and accurate rules for the final population.
The methodology is a hybrid of the previous approaches. The
reduction process is analogous to the reduction based on action
winner, but now, the rule k that maximizes F* -y 4 (€)-numk.
for each input example is copied to the final population.
By including the numerosity in the vote, we favor the most
numerous and accurate rules. As this reduction may copy
overlapping rules into the final population, weighted average
is used to infer the class of a new example.

In the next section, we will analyze the differences between
these inference and reduction techniques. To facilitate the
notation, these schemes will be addressed as: weighted average
inference (wavg), action winner inference (awin), and most
numerous and fittest rules inference (nfit).

F. Interpretability of Weighted Fuzzy Classification Rules

The inclusion of weights to express the importance degree
of fuzzy classification rules, as Fuzzy-UCS does, has been
studied from different points of view. In general, the inclusion
of additional parameters in the fuzzy rules, such as weights,
results in a decrease of the interpretability degree of the
learned knowledge. However, it is interesting to discuss to
which degree interpretability is lost, and to what extend
accuracy can be improved.

Nauck and Kruse [45] analyze the effect of rule weights
in fuzzy rule-based systems for regression problems. They
argue that rule weights may hinder the interpretability of
such systems, showing that rule weights could be replaced by
the modification of the membership functions of fuzzy rules.
In fact, the use of rules with different importance degrees
could hinder the interpolative reasoning made by the inference

engine when continuous outputs are returned in regression
problems.

In data classification tasks, however, other analyses em-
phasize the benefit of using rule weights as a mechanism to
improve the accuracy while preserving good interpretability.
Indeed, Ishibuchi and Nakashima [46] discuss the importance
of rule weights (certainty degrees) from a completely different
point of view. They point out that the use of weights allows
the system to reach a high degree of accuracy with fixed
membership functions since these certainty degrees effectively
modify the decision areas. Therefore, they advocate the use
of weights to improve accuracy instead of modifying the
membership functions of the given linguistic terms. They also
show that weights play an important role when the fuzzy rule-
based classification system collects rules of different generality
degrees, as in the case of our Fuzzy-UCS algorithm.

Finally, it is worth mentioning that the use of weighted fuzzy
rules in classification is a common practice frequently referred
to in specialized literature [41], [42], [46]-[48].

IV. KNOWLEDGE REPRESENTATION AND DECISION
BOUNDARIES

So far, we have described the Fuzzy-UCS classifier system
with a descriptive or linguistic representation of fuzzy rules.
Linguistic rules are highly interpretable since they share
common semantics; however, as this representation implies
the discretization of the feature space, a single rule may not
have the required granularity to define the class boundary
of a given domain accurately. Thus, Fuzzy-UCS evolves a
set of overlapping fuzzy-rules around the decision boundaries
which match examples of different classes, and the output
depends on how the reasoning mechanism combines these
overlapping rules. Fuzzy-UCS includes three inference and
reduction schemes which lead to a trade-off between the
amount of information used for the inference process (i.e.,
the precision of the prediction) and the size of the rule set.
Consequently, not only the linguistic representation but also
the inference and reduction schemes chosen may impose a
maximum limit on the accuracy rate that the system can reach.

This section studies the interpretability-performance trade-
off in Fuzzy-UCS. We illustrate how the three inference
schemes approximate the decision boundaries of an artificial
problem and compare their differences in terms of accuracy
and interpretability. Moreover, we empirically analyze the sen-
sitivity of Fuzzy-UCS to different configurations, highlighting
its robustness to most of the configuration parameters.

A. Decision Boundaries: Study on an Artificial Domain

We first analyzed the three inference schemes of Fuzzy-
UCS on a case study. We also included UCS with interval-
based representation [5], [33] in the analysis. We graphically
studied how the three inference schemes approximated the
decision boundaries of an artificially designed domain with
respect to interval-based UCS. We chose a two-dimensional
problem to facilitate the visualization: the fao problem [49]
(see Fig. 2(a)). The input range of the two variables of the
tao problem is [-6,6]. This problem presents curved-shaped
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(a) Domain

Fig. 2. Domain of the tao problem (a) and decision boundaries obtained by
UCS (b). UCS achieved 99.80% training accuracy and evolved 1230 rules.

boundaries, whose approximation poses a challenge to the
linguistic fuzzy representation. Moreover, we compared the
training accuracies, as well as the size of the rule set evolved.
This analysis was restricted to the features of the tested
problem, and only estimated the training error; thus, our aim
was not to extract general conclusions, but to provide an
intuitive visualization of the decision boundaries defined by
each inference scheme. This analysis is complemented in the
next section, where the three inference schemes are compared
in a set of real-world problems.

We configured UCS as: numlter=100,000, N=6400,
acco = 0.99, v=10, {0ca,04ei, Osup}=50, x=0.8, 1=0.04,
0=0.1, r¢9=0.2. Similar parameters were used for Fuzzy-UCS:
N=6400, Fy = 0.99, v = 10, {0c 4, bdei, Osup} = 50, Ocaploit
=10, x = 0.8, o = 0.6, 0=0.1, and Py = 0.2, We initialized
the population with quite specific rules since the problem has
only two dimensions and a high density of instances. Figure
2(b) depicts the boundaries evolved by interval-based UCS.
Figures 3, 4, and 5 report the decision boundaries for Fuzzy-
UCS with weighted average inference (wavg), action winner
inference (awin), and most numerous and fittest rules inference
respectively (nfit). In each case, we experimented with 5, 10,
15, and 20 linguistic terms per variable; the grid in the plots
indicates the partitions in the feature space made by the cross-
points of the triangular membership functions associated to
the different fuzzy sets. The training accuracies achieved and
the sizes of the populations evolved are summarized in the
captions of the figures. The results are averages over ten runs
with different seeds.

Several observations can be drawn from the decision bound-
aries evolved. Firstly, the results show the generalization
capabilities of all learners. The rules tend to expand as much
as possible while they are accurate, covering regions in the
feature space where there are no examples. This generalization
pressure is mostly due to subsumption, which replaces the
offspring for more general and accurate rules when possible.
Thus, this operator gives more strength to highly general and
accurate rules.

Interval-based UCS reached the maximum accuracy among
all learners. It evolved a population consisting of 1230 rules
which accurately defined the decision boundaries (see Fig.
2(b)), with 99.8% training accuracy. The accuracy obtained
by Fuzzy-UCS depended on the number of linguistic terms
per variable (see the models built in Figs. 3, 4, and 5).
With 5 linguistic labels per variable, Fuzzy-UCS could not
discover the two inner concepts of the tao problem regardless
of the inference method used. The models only defined one

(a) 5 labels (b) 10 labels

(c) 15 labels (d) 20 labels

Fig. 3. Decision boundaries obtained with weighted average inference and
5 (a), 10 (b), 15 (c) and 20 (d) linguistic terms per variable. Fuzzy-UCS
achieved {82.95%,91.85%,96.68%,97.15%} training accuracy and evolved
{112,441,618,763} rules respectively.

(a) 5 labels (b) 10 labels

(c) 15 labels (d) 20 labels

Fig. 4. Decision boundaries obtained with action winner inference and
5 (a), 10 (b), 15 (c) and 20 (d) linguistic terms per variable. Fuzzy-UCS
achieved {83.24%,91.19%,94.74%,95.57%} training accuracy and evolved
{17,78,144,200} rules respectively.

(a) 5 labels (b) 10 labels

(c) 15 labels

(d) 20 labels

Fig. 5. Decision boundaries obtained with most numerous and fittest rules
inference and 5 (a), 10 (b), 15 (c) and 20 (d) linguistic terms per variable.
Fuzzy-UCS achieved {88.31%,91.85%,96.68%,97.15%} training accuracy
and evolved {15,30,52,65} rules respectively.
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linear class boundary that did not fit the curved boundary
of the domain accurately. As the number of linguistic terms
per variable increased, the boundaries were defined more
accurately. With 20 linguistic terms per variable, the three
types of inference achieved high training performances.

The models evolved by Fuzzy-UCS with the three types of
inference differed in the shape of the decision boundaries and
the rule set size. Weighted average inference defined smooth
boundaries which resulted from the vote of several overlapping
rules (see Fig. 3). However, it maintained a high number of
rules in the final population. Action winner inference created
more reduced rule sets, but the boundaries defined were more
abrupt. Note that the decision boundaries followed the parti-
tions produced by the fuzzy membership functions, especially
when 15 and 20 linguistic terms were used. This is because
only the rules that maximized the product of p 4« (e) - F' were
kept in the final population. Most numerous and fittest rules
inference evolved the most compact rule sets. Furthermore,
the boundaries were smoother than those obtained with action
winner scheme. This type of inference maintained the most
numerous and accurate rules in the final population. As this
process could insert overlapping rules into the final population,
the weighted average inference was used to infer the class,
thus forwarding the interpolative reasoning. For this reason
the decision boundaries were not as abrupt as those evolved
by the action winner inference.

B. Comparison among the three Inference Schemes

This section furthers the study on the three types of in-
ference of Fuzzy-UCS. Specifically, we examine the trade-off
between precision and rule set size already pointed out in the
previous section for the three types of inference methodologies
of Fuzzy-UCS.

1) Methodology: We selected a collection of 20 real-world
data sets whose characteristics are summarized in table I. All
the data sets were obtained from the UCI Repository [50],
except for tao, which was selected from a local repository
[49].

The performance of the methods was measured by the test
accuracy rate, i.e., the proportion of correct predictions on
previously unseen instances. We collected the evolved rule set
sizes to compare the interpretability of the three configurations
of Fuzzy-UCS. To obtain reliable estimates of these metrics,
we used a ten-fold cross validation procedure [51].

The results were statistically analyzed following the recom-
mendations pointed out in [52]. In all the analysis we used
non-parametric statistical tests to compare the results obtained
by the different learning algorithms. Parametric tests require
that the input data (in our case, the tables of results) satisfy
strong conditions, and the tests to check these conditions need
large amounts of data (i.e., large number of data sets) to
be effective [53]. For this reason, non-parametric tests are
recommended [52], since they relax the requirements on the
input data.

We applied multiple-comparison statistical procedures to
test the null hypothesis that all the learning algorithms per-
formed equivalently on average. Specifically, we used Fried-
man’s test [54], [55], a non-parametric equivalent of the

repeated-measures ANOVA [56]. If Friedman’s test rejected
the null hypothesis, we used the non-parametric Nemenyi test
[57] to compare all learners to each other. The Nemenyi test
defines that two results are significantly different if the corre-
sponding average rank differs by at least a critical difference
CD computed as

ng(’lu —+ 1)

CD = q, ona

(1)

where n, and ngs are the number of learners and the number
of data sets respectively, and g, is the critical value based on
the Studentized range statistic [53]. The Nemenyi test is said
to be quite conservative, especially when a large number of
learners are compared, so that it might not detect some existent
differences between learners. Therefore, we complemented
the statistical analysis by comparing the performance of each
pair of learners by means of the non-parametric Wilcoxon
signed-ranks test [58]. The approximate p-values resulting
from the pairwise analysis, calculated as indicated in [53],
were provided in the analysis.

The configuration used for Fuzzy-UCS was the same as in
section IV-A, but we set Py = 0.6 to initialize the population
with more general rules. In the remainder of this paper, we
refer to this configuration as the default configuration, since it
uses equivalent parameter values to those usually set for XCS
and UCS. Moreover, we fixed the number of linguistic terms
to 5. We did not consider a larger number of linguistic terms
since it could hinder the interpretability desired in a linguistic
representation.

2) Results: Table II shows the test accuracy and the number
of rules of the models evolved by Fuzzy-UCS with each
inference scheme. The two last rows supply the average rank
and the position of each algorithm in the ranking. The ranks
were calculated as follows. For each data set, we ranked the
learning algorithms according to their performance; the learner
with highest accuracy held the first position, whilst the learner
with the lowest accuracy held the last position of the ranking.
If a group of learners had the same performance, we assigned
the average rank of the group to each of the learners in the
group. The same process was followed with the number of
rules, but in this case, the model with the lowest number of
rules held the first position of the ranking.

The multiple-comparison test rejected the hypothesis that
all learners performed the same on average at a significance
level of 0.0001. The post-hoc Nemenyi test, at a significance
level of 0.10, identified two inference schemes that performed
equivalently: action winner and most numerous and fittest rules
inferences. The weighted average inference resulted in the
most accurate models. The same significant differences were
found with the pairwise statistical analysis.

Friedman’s test also rejected the hypothesis that the popu-
lation sizes were equivalent on average at a significance level
of 0.0001 (see Table II). The post-hoc Nemenyi test, at a sig-
nificance level of 0.10, supported the hypothesis that the four
learners evolved populations with significantly different sizes.
The pairwise comparisons yielded the same conclusions. In
fact, a simple quantitative analysis highlighted the differences
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TABLE I

PROPERTIES OF THE DATASETS. THE COLUMNS DESCRIBE: THE IDENTIFIER OF THE DATASET (ID.) THE NAME OF THE DATASET (DATASET), THE NUMBER

OF INSTANCES (#INST), THE TOTAL NUMBER OF FEATURES (#FEA), THE NUMBER OF REAL FEATURES (#RE), THE NUMBER OF INTEGER FEATURES
(#IN), THE NUMBER OF NOMINAL FEATURES (#NO), THE NUMBER OF CLASSES (#CL), THE PROPORTION OF INSTANCES OF THE MINORITY CLASS

(%MIN), THE PROPORTION OF INSTANCES OF THE MAJORITY CLASS (%MAJ), THE PROPORTION OF INSTANCES WITH MISSING VALUES (%MISINST),

AND THE PROPORTION OF FEATURES WITH MISSING VALUES (%MISATT).

Id. dataset #Inst #Fea #Re #In #No #Cl %Min %Maj “%Mislnst % MisAtt
ann Annealing 898 38 6 0 32 5 0.9 76.2 0 0
aut Automobile 205 25 15 0 10 6 1.5 327 22.4 28
bal Balance 625 4 4 0 0 3 7.8 46.1 0 0
bpa Bupa 345 6 6 0 0 2 42 58 0 0
cme Contraceptive method choice 1473 9 2 0 7 3 22.6 42.7 0 0
col Horse colic 368 22 7 0 15 2 37 63 98.1 95.5
gls Glass 214 9 9 0 0 6 4.2 35.5 0 0
h-c Heart-c 303 13 6 0 7 2 455 54.5 23 15.4
h-s Heart-s 270 13 13 0 0 2 444 56.6 0 0
irs Iris 150 4 4 0 0 3 333 333 0 0
pim Pima 768 8 8 0 0 2 349 65.1 0 0
son Sonar 208 60 60 0 0 2 46.67 53.33 0 0
tao Tao 1888 2 2 0 0 2 50 50 0 0
thy Thyroid 215 5 5 0 0 3 14 60 0 0
veh Vehicle 846 18 18 0 0 4 235 25.8 0 0
wbed | Wisc. breast-cancer 699 9 0 9 0 2 34.5 65.5 2.3 11.1
wdbc | Wisc. diagnose breast-cancer 569 30 30 0 0 2 37.3 62.7 0 0
wne Wine 178 13 13 0 0 3 27 39.9 0 0
wpbc | Wisc. prognostic breast-cancer 198 33 33 0 0 2 23.7 76.3 2 3
200 Zoo 101 17 0 1 16 7 4 40.6 0 0

TABLE II
rules.

COMPARISON OF THE TEST ACCURACY AND THE NUMBER OF RULES OF
THE MODELS CREATED BY FUzzY-UCS WITH WEIGHTED AVERAGE
INFERENCE (WAVG), FUzzy-UCS WITH ACTION WINNER INFERENCE
(AWIN), AND FUuzzyY-UCS WITH MOST NUMEROUS AND FITTEST RULES

These results showed the performance-interpretability trade-
off in Fuzzy-UCS already pointed out in the previous section.

INFERENCE (NFIT). Weighted average inference significantly outperformed the
Performance Number of Rules other two 1n}°erence schemes since it combmf:d the knowledge
wavg awin _ nfit | wavg awin  nfit of all experienced rules in the final population. As shown in
ann 98.85 9739 98.61 | 2769 75 36 the case study of the previous section, this allowed Fuzzy-UCS
aut 7442 6742 6932 | 3872 114 74 : :
bal 8865 8440 8340 | 1212 114 75 to fit complex b'our'ldarles even though the fuzzy representation
bpa 59082 5942 5893 | 1440 73 39 made a discretization of the feature space. Fuzzy-UCS could
cme | 5172 49.67 4942 | 1881 430 271 approximate these boundaries by means of evolving a set of
col 8501 8246 7850 | 4135 154 8l artially overlapping fuzzy rules. However, the interpretabilit
gs | 60.65 5721 5743 | 2799 62 36 p y pping tuzzy rues. o P Y
h-c 8439 82.62 8205 | 3574 113 46 of the rule set was degraded by the high number of rules.
h-s 81.33  80.78  78.11 | 3415 117 62 The other two inference schemes considerably improved the
irs 9367 9547 9373 | 480 18 7 readability, since they produced large reductions of the rule
pim 74.88 7411 7432 | 2841 192 62 ’ . . .
son 80.78 7371 71.66 | 3042 178 160 set. Nonetheless, this went against the test performance, which
tao 81.71  83.02 8753 | 111 19 14 was significantly surpassed by the weighted average inference
thy 88.18 89.49 91.25 1283 37 11 scheme
veh 67.68 6535 6534 | 3732 332 147 ’
wbed | 96.01 9573 9529 | 3130 138 28
wdbc | 9520 94.61 9451 | 5412 276 101
wne | 9412 9486 91.82 | 3686 95 26 C. Sensitivity of Fuzzy-UCS to Configuration Parameters
wpbe | 7606 7605 7169 | 3772 156 115 ] - o
200 96.50 9478 9590 | 773 16 10 In common with many competitive Michigan-style LCSs,
Rank | 125 22 2.5 3 2 ! Fuzzy-UCS has several configuration parameters, which en-
Pos 1 2 3 3 2 1

in the population sizes. Fuzzy-UCS with weighted average
inference built populations that consisted of thousands of rules.
Consequently, although using a linguistic representation, this
high number of rules hampered the interpretability of the rule
set. The other two types of inference of Linguistic Fuzzy-
UCS, especially the most numerous and fittest rules inference,
resulted in populations with a moderate number of rules.
Fuzzy-UCS with most numerous and fittest rules inference
built populations that ranged from tens of to few hundreds of

able it to adjust the behavior of the system to evolve models
of maximal quality for particular problems. At first glance,
choosing a correct configuration may seem a crucial task
only suitable for expert users. Nonetheless, several analy-
ses identified the robustness of Michigan-style LCSs to the
majority of configuration parameters. Actually, most of the
applications of Michigan-style LCSs used the same default
parameters to solve pattern recognition problems [5], [9],
[10], [49], [59]. We consider that this robustness is also
present in Fuzzy-UCS. Therefore, we used the same default
configuration to solve the collection of real-world problems.
In this section, we empirically show the behavior of Fuzzy-
UCS with different configurations and relate this analysis to
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TABLE III
CONFIGURATIONS USED TO TEST THE SENSITIVITY OF FUZZY-UCS TO CONFIGURATION PARAMETERS.

Cp |[ N=6400, F = 0.99, v = 10, {0G A, 0de1> Osub} = 50, Oempion = 10, x = 0.8, o = 0.1,
0=0.1, and Py = 0.2

Dit C1 Py =02

Cc2 Py =04

C3 v=1

Cc4 v=>5
3 C5 0ca = 04e; = Osyp = 100 and numliter = 100, 000
E“ C6 || 0ga = O4e1 = Osyup = 200 and numIter = 100, 000
< c7 0ca = 04e; = Osyp = 100 and numliter = 200,000
O c8 0ca = 04e; = Osyp = 200 and numliter = 400,000
Y [C9 [[6=1

TABLE IV
COMPARISON OF THE SENSITIVITY OF FUZZY-UCS TO CONFIGURATION PARAMETERS. EACH CELL SHOWS THE AVERAGE RANK OF EACH
CONFIGURATION FOR A GIVEN INFERENCE SCHEME. THE BEST RANKED METHOD IS IN BOLD. THE SYMBOL & INDICATES THAT THE CORRESPONDING
METHOD SIGNIFICANTLY DEGRADES THE RESULTS OBTAINED WITH THE BEST RANKED METHOD.

Performance Rule set size

wavg awin nfit wavg awin nfit
Cp 1.83 1.83 1.83 1.67 1.50 1.75

th C1 242 6 250 &6 225 © 1.75 292 © 3.00 ©
2 1.75 1.67 1.92 258 © 1.58 1.25

Cp 1.25 1.42 1.42 1.08 233 © 267 ©
Cc3 283 6 275 &6 283 6 3.00 o 1.25 1.17

= c4 1.92 1.83 1.75 192 6 242 5 217 ©
2 Cp 1.92 2.13 2.13 342 6 3.17 3.17
2 C5 400 © 342 358 © 342 © 350 2.92
< c6 433 © 463 & 417 o 1.75 2.83 2.58
< c7 2.33 2.25 2.29 342 6 333 3.17
< c8 242 2.58 2.83 3.00 2.17 3.17
Cp 1.25 1.54 1.50 1.33 1.75 1.75
«© c9 1.75 1.46 1.50 1.67 1.25 1.25

theoretical and empirical studies of the sensitivity of LCSs—
particularly XCS and UCS—to configuration parameters.

Theoretical and empirical analyses of the sensitivity of
LCSs? to configuration parameters detected two crucial param-
eters: (i) population initialization [60], and (ii) fitness pressure
[61]. Moreover, facetwise models were derived to explain how
the genetic algorithm could maintain the different niches of the
system [40]. The other parameters became nearly constant.
Herein, we empirically show this behavior for Fuzzy-UCS.
For this purpose, we analyzed the accuracy and size of the
models evolved by Fuzzy-UCS related to the changes of four
parameters or groups of parameters: (1) rules generalization in
initialization, i.e., P#; (2) fitness pressure, i.e., v; (3) setting
of the genetic algorithm, i.e., 0ga, ger, and Osyp; and (4)
deletion pressure, i.e., §. We compared different configuration
settings to the default configuration (Cp). Given the large
number of configurations tested, we used a reduced collection
of data sets: bal, bpa, gls, h-s, irs, pim, tao, thy, veh, wbcd,
wdbc, and wne.

Table III summarizes the different configurations and the
changes that they introduced with respect to the default con-
figuration. Table IV provides the average rank of the model’s
accuracy and size for each configuration and inference scheme.
We divided the configuration settings into four groups, and
each group was compared to the default configuration. The

>These analyses refer to XCS and UCS, but could be easily extended to
other Michigan-style LCSs.

best ranked configurations for each comparison are marked
in bold. The symbol & indicates that the corresponding
configuration significantly degraded the results obtained with
the best configuration according to a Bonferroni-Dunn test at
a=0.1[62].

The results show that the generalization in the initial popu-
lation is essential to the success of Fuzzy-UCS, supporting the
theoretical analyses in the literature [60]. For all the inference
schemes, configurations Cp and C2 (i.e., Py = {0.6,0.4})
were statistically equivalent, on average, and significantly
better than C'1 (i.e., Py = 0.2) in terms of accuracy. In
terms of model size, the following significant differences were
found: (i) for weighted average inference, C'p and C'1 evolved
the smallest rule sets; (ii) for action winner and most numerous
and fittest rules inference, C'1 created significantly larger rule
sets than Cp and C2. The last point can be easily explained
as follows. As C1 used a low value of Py, final populations
contained more specific classifiers than populations created
with C'p and C2. Action winner and most numerous and fittest
rules schemes kept in the final populations only the classifiers
that maximized the product of fitness and matching degree
with a training instance. As classifiers were more specific, a
larger number of them were placed in the final population.
With weighted average, the biggest population sizes were
obtained with C2. This could be due to the existence of
slightly general classifiers that were all maintained in the final
population.
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The second comparison shows the negative influence of
having low fitness pressure. In terms of accuracy, better results
were obtained as the fitness pressure increased (i.e., v took
higher values). Population sizes varied with the fitness pressure
depending on the inference scheme. For weighted average
inference, C'p led to the significantly smaller rule sets. This
is because the fitness pressure drove toward a highly general
and accurate set of rules. For the other two inference schemes,
configuration C'1 resulted in the significantly smaller rule sets.
That is, as the fitness pressure was low, populations were full
of over-general rules, which were kept in the final populations
in detriment to fitter and more specific classifiers.

The third comparison shows the influence of the parameters
related to the genetic algorithm, i.e., 0G4, O4e1, and O,p. Initial
intuition indicates that, if all niches receive the same number
of genetic opportunities, the quality of the final models should
remain the same. To test this, configurations C'7 and C'8 set
0ca = 04er = Osup = {100,200} and increased numlter =
{200000, 400000} respectively. In this way, all niches received
approximately the same number of genetic events. Configura-
tions C5 and C6 fixed 0ga = 04er = Osup = {100,200}
but maintained the same number of iterations as C'p. So, we
expected that the quality of the models evolved by C5 and
C6 was significantly lower than the quality of the models
created by the three other configurations. This hypothesis was
clearly supported by the experimental analysis, which showed
that Cp, C7, and C8 resulted in the most accurate models.
Moreover, significant differences on the population sizes were
only found for the weighted average inference. The multiple
comparison test detected that the smaller models were created
with configurations C'6 and C8, the two configurations in
which the period of application of the GA was higher.

Finally, the fourth comparison highlights the robustness of
Fuzzy-UCS to the deletion pressure toward unfit classifiers,
that is, the parameter §. The pairwise analysis indicated that
the hypothesis that configurations C'p and C'9 are equivalent
could not be rejected, according to a Wilcoxon signed-ranks
test at o = 0.05.

The study conducted in this section empirically showed
that there are two crucial parameters to guarantee the success
of Fuzzy-UCS: generalization in initialization Py and fitness
pressure v. Changing the setting of the other parameters had
little effect on Fuzzy-UCS behavior. We acknowledge that
better results could be individually obtained if we tuned Fuzzy-
UCS for each particular problem. Nonetheless, as we are
interested in robust systems that perform well on average, we
use the default configuration for all the experiments in the next
section.

V. COMPARISON OF FuzzyY-UCS TO SEVERAL MACHINE
LEARNING TECHNIQUES

In this section, we study whether the behavior of Fuzzy-
UCS is comparable to some of the most-used machine learning
techniques. For this purpose, we compared Fuzzy-UCS to two
sets of learners: fuzzy rule-based learners and “non-fuzzy”
(crisp) learners. With the former comparison, we analyzed the
behavior of Fuzzy-UCS with respect to other techniques that

use the same representation, which may limit the maximum
performance that can be achieved in certain domains. With the
latter comparison, we study whether, even with the limitations
that may impose the fuzzy representation, Fuzzy-UCS is
competitive with a large number of the most-representative
learners, regardless of the knowledge representation they use.
Below, we first present the experimental methodology, and
then compare Fuzzy-UCS to the other learners.

A. Experimental Methodology

The methodology followed is similar to the one presented
in the previous section. We selected the same collection of
20 real-world problems, whose characteristics are summarized
in Table I. The experiments were ran on a ten-fold cross
validation, and the test accuracy rate was used to measure
the performance of the different learners.

The performance of Fuzzy-UCS was compared with a
large variety of learning algorithms, which we organized
in two groups. The first group consisted of the following
fuzzy rule-based classification systems: Fuzzy GP, Fuzzy GAP,
Fuzzy SAP, Fuzzy AdaBoost, Fuzzy LogitBoost, and Fuzzy
MaxLogitBoost. Fuzzy GP [63]-[65] is a genetic programming
algorithm that builds a fuzzy classifier for each class of the
domain by searching for a tree that relates the input and
the output variables as accurately as possible. Fuzzy GAP
[63], [64] works similarly to Fuzzy GP, but the optimization
system is a hybrid between genetic algorithms and genetic
programming. Fuzzy SAP [65] combines genetic operators
with simulated annealing [66] to create data models similar
to those built by Fuzzy GP and Fuzzy GAP. Fuzzy AdaBoost
[47] is a modification of the boosting algorithm AdaBoost [67]
to deal with fuzzy rules. Fuzzy LogitBoost [48] and Fuzzy
MaxLogitBoost [68] are boosting algorithms that iteratively
invoke a genetic algorithm to extract simple fuzzy rules that
are combined to decide the output of new examples. The basic
difference between both algorithms is that Fuzzy MaxLogit-
Boost may reject a new rule provided by the genetic algorithm
if it does not improve the expected global performance. All
these methods were run using KEEL [69]. We followed the
recommended parameter values given in the KEEL platform
to configure the methods [69], which also corresponded to
the settings used in the bibliography of these methods. We
only changed the maximum population size of AdaBoost,
LogitBoost, and MaxLogitBoost. We tried population sizes of
N={8, 25, 50, 100} for all the data sets, and selected the
results of N=50 since they generally allowed us to achieve
higher performance ratios than N=8 and N=25, and did not
significantly differ from N=100. For all the methods, we used
5 linguistic terms per variable. Fuzzy-UCS was configured as
detailed in Sect. IV-B.

The second group gathered a large number of learners with
different knowledge representations: ZeroR, C4.5, IBk, Naive
Bayes, Part, SMO, GAssist, and UCS. ZeroR is a simple
classifier system that always predicts the majority class in
the training data set. We use this algorithm to provide a
baseline result. C4.5 [11] is one of the most used decision
trees, which derives from ID3 and introduces methods to
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deal with continuous variables and missing values. IBk [13]
is a nearest neighbor algorithm; it decides the output of a
new example as the most numerous class of the k nearest
neighbors. Naive Bayes [70] is a probabilistic classifier that
estimates the parameters of a Bayesian model. Part [71] is
a learning architecture that combines the creation of rules
from partial decision trees and the separate-and-conquer rule
learning technique to create a classifier without using global
optimization. SMO [12] is a support vector machine that
implements the Sequential Minimization Algorithm. GAssist
[72] is a recent Pittsburgh-style LCS. UCS [5] is a Michigan-
style LCS derived from XCS [3], [4] and specialized for
supervised learning tasks. All the methods except for GAssist
and UCS were run using Weka [73]. For GAssist, we used
the open source code provided in [74]. For UCS, we used our
own code. If not stated differently, all open source methods
were configured with the parameters values recommended
by default. For UCS we set (see [4], [5], [75] for notation
details): numlter=100,000, N=6400, accy = 0.99, v=10,
{04, Odel, Osup }=50, x=0.8, u=0.04, §=0.1, r¢=0.6. Fuzzy-
UCS was configured with standard values as indicated in the
previous section.

We applied the following statistical analysis to the results.
We used the non-parametric Friedman’s test [54], [55] to check
whether all the learning algorithms performed the same on
average. If significant differences were found, two procedures
were applied to detect differences between methods. We first
aimed at comparing the performance obtained by each of the
inference types of Fuzzy-UCS to all other learners (instead of
comparing all learners with the others as done in Sect. IV). To
achieve this, we applied the non-parametric Bonferroni-Dunn
[62] test. We computed this test as proposed in [52], where
the critical value is calculated using the same equation as for
the Nemenyi test (see Equation 11) but adjusting the critical
values g, according to the number of comparisons made (i.e.,
ng¢—1). Moreover, the analysis is complemented by performing
pairwise comparisons among learners by means of a Wilcoxon
signed-ranks test [58].

B. Comparison to Fuzzy Rule-Based Classification Systems

In the following, we compare the test performance and the
interpretability of Fuzzy-UCS with the three types of inference
to the aforementioned set of fuzzy rule-based learners.

Comparison of the performance. Table V details the test
accuracies obtained with selected fuzzy learners and fuzzy
UCS with the three inference schemes. The average perfor-
mance of AdaBoost and MaxLogitBoost for the problems ann
and aud is not provided since neither system was able to
extract competent fuzzy rules from the two domains, leaving
nearly all the feature space uncovered. The authors confirmed
that this behavior could be due to high number of nominal
attributes that these two problems have. The last two rows of
the table provide the average rank and the absolute position
in the ranking of each learner.

The experimental results show that the three configurations
of Fuzzy-UCS were the best ranked in the comparison. The
next methods in the ranking were the boosting algorithm Fuzzy
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Fig. 6. Comparisons of one learner against the others with the Bonferroni-
Dunn test at a significance level of 0.1. All the learners are compared to three
different control groups: (1) Fuzzy-UCS with weighted average inference,
(2) Fuzzy-UCS with action winner inference, and (3) Fuzzy-UCS with most
numerous and fittest rules inference. The learners connected are those that
perform equivalently to the control learner.

LogitBoost, the genetic programming-based systems Fuzzy-
GP and Fuzzy-SAP, and Fuzzy AdaBoost. Finally, we have
Fuzzy GAP, and Fuzzy MaxLogitBoost.

Friedman’s test rejected the hypothesis that all the methods
performed the same on average at a significance level of
0.0001. Thence, we compared Fuzzy-UCS with each inference
type with all the other learners to detect significant differences.
Figure 6 graphically represents the rank of each learner and
groups the classifiers that perform equivalently to (1) Fuzzy-
UCS with weighted average inference, (2) Fuzzy-UCS with
action winner inference, and (3) Fuzzy-UCS with most numer-
ous and fittest rules inference according to a Bonferroni-Dunn
test at a significance level of 0.1. The statistical procedure
supported the following hypotheses:

o Using Fuzzy-UCS with weighted average inference as
the control learner, the statistical test supported the hy-
pothesis that the performance of the control learner was
equivalent to the performance of Fuzzy-UCS with the
other two inference types. Moreover, Fuzzy-UCS with
weighted average outperformed all the other learners.

e Using Fuzzy-UCS with action winner inference as the
control learner, the test indicated that this learner per-
formed equivalently to Fuzzy-UCS with the other two
types of inference and Fuzzy LogitBoost.

e With respect to Fuzzy-UCS with most numerous and
fittest rules inference, the test did not reject the hy-
pothesis that all the fuzzy learners except for Fuzzy
MaxLogitBoost and Fuzzy GAP performed equivalently
on average.

We complemented the statistical study by comparing each
pair of learners. Table VI shows the approximate p-values for
the pairwise comparison according to a Wilcoxon signed-ranks
test. The symbols & and © indicate that the method in the row
significantly improves/degrades the performance obtained with
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COMPARISON OF THE PERFORMANCE OF FUZZY-UCS WITH WEIGHTED AVERAGE (WAVG), ACTION WINNER (AWIN), AND MOST NUMEROUS AND

TABLE V

FITTEST RULES (NFIT) WITH THE PERFORMANCE OF THE FUZZY LEARNERS.

GP GAP SAP AdaBoost LogitBoost MaxLogitBoost Fuzzy-UCS
wavg  awin nfit

am | 7786 7720 78.02 - 7630 - 9885 9739 9861
aut | 4465 4521  41.00 ] 32.63 ] 7442 6742 69.32
bal | 6973 6433 6580  85.54 88.30 75.58 88.65 8440 83.40
bpa | 5662 5791 6230 6534 6446 56.53 5982 5942 5893
cme | 4700 4657 4627  49.55 51.10 4521 5172 4967 49.42
col | 7915 7351 8189  63.06 63.06 63.06 8501 8246 78.50
os | 4880 4724 4642 6252 68.18 62.18 6065 5721 5743
he | 7398 7509 7418 6040 62.09 57.48 8439 8262 8205
hs | 7370 7200 7207 5756 59.33 57.33 8133 8078 78.11
irs | 9447 90.80 9153 9547 9533 92.00 9567 9547 93.73
pim | 7532 7662 7792 70.69 71.84 7254 7488 741l 7432
son | 6452 6599 6870  46.62 5338 46.62 8078 7371  71.66
o | 8036 8175 8115 9146 91.73 84.52 8171 8302 87.53
thy | 8698 8494 8555 9735 97.08 95.33 88.18 8949 91.25
veh | 4616 4459 4296  30.82 3725 38.05 6768 6535 6534
whed | 9331 9253 9272 9488 94.12 91.83 9601 9573  95.9
wdbe | 9093 9049 9152  37.26 6274 37.26 9520 9461 9451
wne | 8291 7823 7985  85.59 85.02 77.68 9412 9486 91.82
wpbe | 7477 7447 7437 2365 76.35 2365 7606 7605 71.69
00 | 7118 6665 6608  41.89 41.89 41.89 9650 9478  95.90
Rank | 355 625 580 330 703 743 210 318 390
Pos. 3 S 65 65 7 9 7 7 3

the method in the column. Similarly, the symbols + and — de-
note a non-significant improvement/degradation. The symbol
= indicates that each method outperforms and degrades the
other in the same number of data sets. At a significance level of
0.05, the test indicated that Fuzzy-UCS with weighted average
inference significantly outperformed all the other learners,
including the two other types of inference of Fuzzy-UCS.
Moreover, Fuzzy-UCS with action winner and most numerous
and fittest inference schemes significantly improved all the
other fuzzy learners.

Comparison of the interpretability. The study conducted
in Sect. IV-B showed the interpretability-performance trade-
off among the different inference schemes in Fuzzy-UCS.
As shown, the excellent results of Fuzzy-UCS with weighted
average with respect to all the other learners were hampered
by the large number of fuzzy rules evolved by the method.
The other two types of inference appeared as a positive
alternative since they resulted in a moderate number of rules.
Although they sightly degraded the accuracy rate with respect
to the former approach, they were still valuable since they
outperformed all the other fuzzy learners. The comparison
made above confirmed the suitability of Fuzzy-UCS with
action winner and most numerous and fittest rules inferences,
since both systems significantly outperformed all the other
fuzzy learners. In this section, we qualitatively analyze if the
rule set evolved by these two methods is competitive in terms
of readability.

As the type of rules evolved by the systems differ, we
qualitatively evaluated the size of the models by extracting
some characteristics. Figure 7 shows examples of partial
models evolved by the fuzzy learners for the fao problem.
The models built by Fuzzy GP, Fuzzy GAP, and Fuzzy SAP
consisted of a rule for each class of the domain. Each rule was
directly extracted from an expression codified in a tree. The

rules were represented by an arbitrary number of conjunctions
(AND) and disjunctions (OR) of conditions over the variables
of the domain. One example of these types of rules for a two-
dimensional problem is

1

IF (z1is A} AND 2, is Al) OR (12)
(z1is A2 AND z, is A2) THEN cl

where each variable z; was represented by a linguistic term :47
={ A;1V...VA;,, }. All variables shared the same semantics
which were defined by the combination of triangular-shaped
and trapezoidal-shaped fuzzy membership functions (see Fig.
7(a)).

The fuzzy rule-based boosting algorithms created a set of
linguistic fuzzy rules that take the following form:

IF z, is A, and --- and z,, is A,, THEN
c1 WITH w¥, - ¢,, WITH w”, (13)

where each variable x; was represented by a linguistic term
A; = { Aa V...V Ay, }. All variables shared the same
semantics, which was defined by means of triangular-shaped
fuzzy membership functions (see Fig. 7(b)). These boosting al-
gorithms supported the absence of a variable by not assigning
any linguistic term to the variable. The maximum population
size N was a configuration parameter. In our experiments, the
set N=50.

To compare these two types of representations to the rule
sets evolved by Fuzzy-UCS, we evaluated the size of the
models as follows:

o We calculated the size of the models built by Fuzzy GP,
Fuzzy GAP, and Fuzzy SAP by counting the number
of AND, OR, and IS of the model. This gives us an
idea of the average size of the rule. However, note that,
due to the flexibility of these types of rules, it was
not possible to directly compare them with the rules
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TABLE VI
PAIRWISE COMPARISON OF THE PERFORMANCE OF FUZZY LEARNERS BY MEANS OF A WILCOXON SIGNED-RANKS TEST.
GP GAP SAP AdaBoost LogitBoost MaxLogitBoost Fuzzy-UCS

wavg  awin nfit

GP 0366 2627 0522 115 0090 0001 0001 0006

GAP | © 2180 .1005 4781 0187 0002 0002 0002

SAP | — 4 0674 4330 o111 0003 .0005 0036

AdaBoost | —  — - 0038 0231 0045 0079 0137

LogitBoost | —  — - o 0003 0100 0276 0438

MaxLogitBoost | &  © o o o 0005 0009  .0007

Fuzzy-UCS (wavg) | & @ o @ ® @ 0032 .0051

Fuzzy-UCS (awin) (&) ® (&3] (&3] b &b o 2627

Fuzzy-UCS (nfit) (<] ® (&) (&) ® (&) © —

if y is triangle(-6.0,-3.0,0.0) then red
if ( (x is trapezoid(3.0, 6.0) or x is trapezoid(3.0, 6.0))
or (x is triangle(0, 3.0, 6.0) or x is trapezoid(3.0, 6.0)) )

and

( (x is triangle ( -3, 0.0, 3.0) or x is trapezoid(3.0, 6.0)

or...)

then blue

(a) GP-based learners

if xisL and yis L then blue with -5.42 and red with 0.0
if x is M and y is XS then blue with 2.21 and red with 0.0
if x is M and y is XL then blue with -2.25 and red with 0.0

(b) Boosting learners

Fig. 7.

if x is XL then blue with w=1.00
if x is XS then red with w=1.00
if x is {XS or S} and y is {XS or S} then red with w=0.87

(c¢) Fuzzy-UCS

Examples of part of the models evolved by (a) the GP-based methods, i.e., Fuzzy GP, Fuzzy GAP, and Fuzzy SAP; (b) the boosting learners, i.e.,

Fuzzy AdaBoost, Fuzzy LogitBoost, and Fuzzy MaxLogitBoost; and (c) Fuzzy-UCS for the two-dimensional tao problem. In the fuzzy learners, we used the
following five linguistic terms per variable: {XS, S, M, L, XL}. All fuzzy learners use triangular-shaped membership functions. Moreover, GP-based learners

also use trapezoid-shaped membership functions.

evolved by the three boosting algorithms and Fuzzy UCS.
The rules evolved by Fuzzy GP, Fuzzy GAP, and Fuzzy
SAP permit the combination of different logic operators,
whose associativity and priority is given by the position
of the operators in the tree. An equivalent conjunctive
normal form for these rules could be found by applying
De Morgan’s laws. However, this transformation is not
in the scope of this paper, and so, we only qualitatively
evaluated the model sizes.

o The size of the rule sets created by the boosting algo-
rithms and Fuzzy-UCS were computed as:

N ¢
1 Labels — Labels(x;
size:Z— max Labels — numLabels(x;) (14)
i=1

maxLabels — 1

~

j=1
where N is the number of rules in the population, ¢
the number of variables, and maxLabels the number of
linguistic labels (in our experiments, maxLabels = b).
This formula reckons the total number of variables in the
model that have, at least, one linguistic term assigned. It
also benefits general variables that have more than one
linguistic label. To achieve a totally fair comparison, we
also referred to the number of rules evolved by Fuzzy-
UCS (see Table II).
Table VII shows the size of the models created by each
fuzzy learner. Table VIII illustrates the approximate p-values
resulting from the pairwise comparison between the learners

according to a Wilcoxon signed-ranks test. For the three meth-
ods based on genetic programming, we considered the average
number of variables for each rule (i.e., column is divided
by the number of classes of the problems). The comparison
shows that Fuzzy SAP, followed by Fuzzy GP, Fuzzy GAP,
and Fuzzy MaxLogitBoost, were the methods that created the
smallest models according to a Wilcoxon signed-ranks test at
a significance level of 0.05. We have already discussed how
the representation of Fuzzy GP, Fuzzy GAP, and Fuzzy SAP
was much more flexible and by far less interpretable than
the representation of the other learners (see the number of
conjunctions and disjunctions with different associativity and
priority in the rules). Thus, although the number of attributes
per rule was smaller, the interpretability of the model was
poor due to the flexibility of the rule (see the partial example
provided for the tao problem in Fig. 7(a)). Fuzzy-UCS with
weighted average and with action winner created the biggest
and the second biggest populations of the comparison. On the
other hand, Fuzzy-UCS with most numerous and fittest rules
created rule sets that, on average, were not significantly bigger
than the rule sets built by Fuzzy-GP, Fuzzy AdaBoost, and
Fuzzy LogitBoost; thus, disregarding the three learners based
on genetic programming, whose rule sets were poorly readable
due to the rule form, only Fuzzy MaxLogitBoost created more
reduced populations.



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. Y, MONTH XXXX

TABLE VII
SIZE OF THE MODELS EVOLVED BY THE FUZZY LEARNERS.
GP_ GAP SAP AdaBoost | LBoost | MaxLBoost Fuzzy-pCS

and or is [and or is [and or is wavg | awin | nfit
ann | 30.0 344 643|274 314 588 50 6.8 11.8 - 17.9 - 1038.6 | 272 | 127
aut 27.3 31.8 59.1 (303 355 658 | 53 69 121 - 39.2 - 1555.7 | 45.1 | 28.7
bal 275 328 603 |21.0 202 41.1| 41 45 86 19.8 23.8 14.3 578.0 | 543 | 39.0
bpa 17.6 373 549|179 252 431 | 18 29 46 353 36.0 13.3 795.5 | 40.0 | 199
cme | 222 251 472|176 183 359 | 48 35 83 29.1 27.9 2.0 984.6 | 223.1 | 135.8
col 146 238 384|122 151 273 | 21 25 46 45.0 44.1 0.8 1469.3 | 50.8 | 26.0
gls 28.8 329 61.7|275 292 567 |78 74 152 29.2 31.0 22.8 1293.7 | 27.8 | 145
h-c 13.6 200 336|114 135 249 | 1.7 26 43 39.6 38.9 1.0 11883 | 342 | 142
h-s 16.8 26.1 429 | 87 132 219| 24 34 59 40.3 39.2 15.0 1173.0 | 372 | 188
irs 187 21.6 404|115 123 237 |25 27 52 234 26.9 4.0 231.2 7.6 2.8
pim | 183 199 382|137 146 283 |20 17 3.7 36.9 34.0 13.3 1327.1 | 86.8 | 28.0
son 182 283 465|151 17.1 322 | 20 23 43 223 21.6 0.9 1208.1 | 70.7 | 63.4
tao 19.0 203 392|133 19.1 324 | 33 34 6.7 40.1 43.2 18.0 753 | 121 8.6
thy 182 200 381|124 13.0 254 | 28 24 51 25.7 29.4 8.8 624.4 | 163 5.0
veh 18.8 21.7 404|169 189 358 | 34 41 74 40.3 373 25.6 1641.7 | 143.8 | 63.7
wbed | 204 40.1 605|179 202 381 | 26 39 65 24.0 27.7 13.1 1033.9 | 389 8.4
wdbc | 147 1577 304|102 123 225| 19 20 39 449 439 0.9 2108.7 | 1054 | 38.4
wne | 158 195 353|145 149 294 |25 27 52 30.8 31.2 26.9 1437.7 | 33.1 9.0
wpbc | 240 38.1 62.1 119 192 31.1| 28 46 74 449 44.0 0.8 1536.6 | 62.3 | 453
200 340 349 689|378 382 760 82 9.7 179 42.0 36.2 0.9 263.4 5.0 33

TABLE VIII

PAIRWISE COMPARISONS OF THE SIZES OF THE FUZZY LEARNERS BY MEANS OF A WILCOXON SIGNED-RANKS TEST.

GP GAP SAP AdaBoost LogitBoost MaxLogitBoost Fuzzy-UCS
wavg  awin nfit

GP .0003  .0001 .0005 .0001 .0137 .0001 .0003 2179
GAP [S) .0001 .0002 .0001 1671 .0001 .0002  .0228
SAP [S) S] .0001 .0001 .0276 .0001 .0001 .0001
AdaBoost D 52 ) .8666 .0001 .0001  .0793  .1790
LogitBoost (%) ® D — .0001 .0001  .1005  .1084
MaxLogitBoost S} - 52} S} S) .0001  .0002 .0105
Fuzzy-UCS (wavg) D 53] @ 52} 2] D .0001  .0001
Fuzzy-UCS (awin) & ® @ + + 5] o .0001
Fuzzy-UCS (nfit) = @ ® — — fesy ) o)

The results provided in this section highlighted the high
competitiveness of Fuzzy-UCS in terms of performance and
interpretability with respect to other fuzzy learners. In the next
section, we broaden the analysis and compare Fuzzy-UCS to
a set of general purpose non-fuzzy learners.

C. Comparison with Non-Fuzzy Learners

Now we compare Fuzzy-UCS to a set of general-purpose
learners that use different knowledge representations: ZeroR,
C4.5, IBk, Part, Naive Bayes, SMO with polynomial kernels of
order 3, SMO with Gaussian kernels, GAssist, and UCS. The
systems were configured as recommended in the open source
implementation, with exception of the following aspects. We
ran IBk with k {1,3,5}. We ranked the performance
obtained by the three configurations, and we only provide
the results with the settings that maximized the average rank,
that is, £ = 5 (IB5). The analogous process was carried
out for SMO with polynomial kernels. We experimented
with polynomial kernels of order 1 and 3, and supplied the
results obtained with polynomial kernels of order 3 since they
maximized the average rank. We did not introduce the same
system with different configurations in the comparison to avoid
biasing the statistical analysis of the results.

Comparison of the performance. Table IX shows the ac-

curacy of the learners on the same collection of real-world
problems. The two last rows of the table provide the average
rank and the position in the ranking of each learner.

Several observations can be drawn from the results. Firstly,
let us highlight the good performance presented by Fuzzy-
UCS with weighted average inference. This learner is the third
best method in the ranking. Its average rank is really close
to UCS, by which Fuzzy-UCS was inspired. Thus, the fuzzy
representation does seem not to limit the capabilities of Fuzzy-
UCS if all rules evolved are used to infer the class of new
examples. Moreover, the average rank is also close to the best
ranked method: SMO with polynomial kernels. The other two
inference schemes presented higher average ranks. Fuzzy-UCS
with action winner inference and most numerous and fittest
rules inference occupy the 7th and 9th position in the ranking.

Multiple-comparison Friedman’s test rejected the hypothesis
that all the learners performed the same on average at a sig-
nificance level of 0.0001. Post-hoc Bonferroni-Dunn test only
permitted to reject the hypothesis that the best ranked learners
performed equivalently to Fuzzy-UCS with the most numerous
and fittest rules inference, SMO with Gaussian kernel, and
Zero-R. However, the test has a low discriminatory power for
large numbers of learners [52]. Thus, we also compared the
performance of each pair of learners by means of a Wilcoxon
signed-ranks test (see Table X). Figure 8 uses a graph to
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TABLE IX
COMPARISON OF THE PERFORMANCE OF FUZZY-UCS WITH WEIGHTED AVERAGE (WAVG), ACTION WINNER (AWIN), AND MOST NUMEROUS AND
FITTEST RULES INFERENCE (NFIT) WITH THE PERFORMANCE OF THE NON-FUZZY LEARNERS.

ZeroR C4.5 1IB5 Part NaiveBayes SMOp3 SMOrbf GAssist UCS Fuzzy-UCS
wavg awin nfit
ann | 7620 9800 97.34 9857 86.33 99.34 91.90 9788 00.05 | 98.85 9739 98.61
aut 3263 8094 64.03 7441 58.79 78.09 45.55 68.63 7741 | 7442 6742 69.32
bal 4546 7742 88.18 82.86 90.57 91.20 88.30 7957 7732 | 88.65 84.40 83.40
bpa | 5799 6231 5885 67.56 55.97 59.97 57.99 6224 6759 | 59.82 59.42 58.93
eme | 4270 52.62 4651 50.04 50.65 48.75 42.70 53.58 5027 | 51.72 49.67 49.42
col 63.06 8532 8149 8451 78.23 75.59 82.41 9430 9626 | 85.01 8246 78.50
gls 3565 6615 64.68 66.62 48.95 66.15 35.65 6506  70.04 | 60.65 5721 57.43
h-c 5445 7845 83.16 7420 82.80 78.59 82.48 80.00  79.72 | 84.39 82.62 82.05
h-s 55.56 79.26 80.74 80.00 83.33 78.89 82.59 7767 7463 | 8133 8078 78.11
irs 3333 9400 96.00 94.00 96.00 92.67 93.33 96.20  95.40 | 95.67 9547 93.73
pim | 65.11 7423 7332 74.88 75.80 76.70 65.11 7376 7461 | 7488 7411 7432
son 5338 71.07 84.05 74.38 69.71 85.52 69.26 7581 7649 | 80.78 7371 71.66
tao 4989 9592 97.14 9433 80.98 84.22 83.63 91.59  87.00 | 81.71 83.02 87.53
thy 69.83 9491 94.85 94.33 97.16 88.91 69.83 9252  95.13 | 88.18 89.49 91.25
veh 2542 7114 6891 73.39 46.28 83.30 41.71 67.00 7140 | 67.68 6535 6534
wbed | 6552 9499 97.14 9571 96.15 96.42 96.13 9559 9628 | 96.01 9573 95.29
wdbe | 6311 9440 9678 94.46 93.13 97.58 92.88 9424 9596 | 9520 94.61 94.51
wne | 39.93 93.80 96.67 93.30 97.19 97.75 39.93 93.19  96.13 | 94.12 94.86 91.82
wpbe | 7297 7161 7885 70.05 69.45 81.25 72.97 7233 69.40 | 76.06 7605 71.69
z00 41.80 9281 9047 9381 94.47 97.83 76.03 9397 9678 | 96.50 94.78 95.90
Rank | 77.50 595 528 5095 6.63 428 8.05 625 465 | 468 650 740
Pos 12 55 4 55 9 1 11 7 2 3 8 10
TABLE X
PAIRWISE COMPARISON OF THE PERFORMANCE OF NON-FUZZY LEARNERS BY MEANS OF A WILCOXON SIGNED-RANKS TEST.
ZeroR C45 IB5 Part NaiveBayes SMOp3 SMOrbf GAssist UCS Fuzzy-UCS
wavg awin nfit
ZeroR 0001 0001 .0001 10001 10001 0010 0001 .0001 | .0001 .0001 .0001
c4.5 & 7089 9039 2627 4209 0072 9405 2043 | 7938 3905 .0793
IBS ® = 7938 0534 4115 .0004 4553 8519 | 8228 .1084 .0304
Part ® + 2471 2959 .0057 4330 2180 | 4209 3135 .0251
NaiveBayes ® - - - 0674 0333 1084 1354 | 0333 .1790 .3703
SMOp3 ® + + + + .0032 2059 6542 | .1672 .0400 .0366
SMOTbf ® < e o e o 0032 .0064 | .0004 .0025 .0152
GAssist ® - - - + - @ 2180 | 5016 3135 0859
ucs ® + = + + - @ + 4330 0674 0366
Fuzzy-UCS (wavg) | @ + = + ® - @ + - 0032 .0051
Fuzzy-UCS (awin) (&) = — — + S &® — — S 2627
Fuzzy-UCS (nfit) 3} — o O + S b - S S -

illustrate the significant differences between learners. The test
confirmed that Fuzzy-UCS with weighted average inference
was one of the best learners in the comparison. It significantly
outperformed Naive Bayes, SMO with Gaussian kernels, Ze-
roR, and Fuzzy-UCS with the other two types of inference.
Moreover, Fuzzy-UCS with weighted average inference did
not significantly degrade the results obtained with any other
learner. Fuzzy-UCS with action winner inference was only
significantly outperformed by SMO with polynomial kernels,
and Fuzzy-UCS with weighted average inference. Besides, it
significantly improved SMO with Gaussian kernel and ZeroR.
Fuzzy-UCS with most numerous and fittest rules inference
presented the poorest results among the three configurations
of Fuzzy-UCS. It significantly degraded the results obtained
by SMO with polynomial kernels, UCS, IB5, Part, and Fuzzy-
UCS with weighted average inference. However, note that
it performed equivalently to well-known algorithms such as
C4.5, Naive Bayes, and GAssist.

Comparison of the interpretability. Here, we qualitatively
compare the readability of the models created by the different

learners. We do not consider IBk, SMO, and Naive Bayes
since their knowledge representation can hardly be compared
to the other learners. IBk is a lazy classifier that does not
use any knowledge representation; to predict the output of
a new input example, IBk returns the majority class among
its k nearest neighbors. SMO represents the knowledge by
(") support vector machines (where n. is the number of
classes), each one consisting of a set of real-valued weights.
Therefore, the models created by these two learners are very
difficult to interpret. On the other hand, Naive Bayes builds
interpretable models formed by a set of parameters which
estimate the independent probability functions and the so-
called class-prior of a Bayesian model. In [76], a close
connection between Naive Bayes and Neuro-Fuzzy Classifier
Systems was identified, providing a framework that maps a
Naive Bayes classifier into a Neuro-Fuzzy Classifier with
the aim of improving its capabilities. The discussion on the
difference in the interpretability of Naive Bayes and their
similarity to Neuro-Fuzzy Classifier Systems or Fuzzy Rule-
Based Systems is out of the scope of this paper. The reader is
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1B5 Fuzzy-UCS wavg SMOp3
p=0.033 p= 0 0051
p=0.0032 p 0.0366  p=0.0366 pm«
p=0.04
/ p 00251
[Fuzzy-UCS awin] [Fuzzy-UCS nﬁt]

Fig. 8.

Illustration of the significant differences (at a = 0.05) of performance among non-fuzzy methods and Fuzzy-UCS. An edge L1

Pvalue

—"“ Lo indicates

that the learner L1 outperforms the learner Lo with the corresponding p.,qiqe. To facilitate the visualization, ZeroR and SMO with Gaussian kernels, the two

most outperformed algorithms, were not included in the graph.
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(a) SMO

| | y<=4.25:blue (6.0)

[
|
I 17 x <=-3:red (11.0/1.0)
[
[
I 11 y>4.25: red (4.0)

(b) C4.5

x <= -3.25: red (308.0)

y <= 1.75: red (55.0)

if x < -3.25 then red (308)
else if x > 2.75 then blue (347/1)
else if y < 0 and x > -1 then red (192/1)

(c) Part

if x > 2.72 and (y is [0.92,4.61] or y > 5.07) then blue
else if ( x is [-0.54, 0.54] or x > 2.72) and y is [-4.28, -2.57] then blue

otherwise red

(d) GAssist

if x is [-6.00, -0.81] and y is [-6.00, 0.40] then red with acc= 1.00
and y is [-5.26, 4.91] then blue with acc =1.00
if x is [-6.00, -0.87] and y is [-6.00, 0.74] then red with acc =1.00

if x is [2.84, 6.00]
(e) UCS

Fig. 9.
problem.

referred to [76] for further details.

Thus, in the remainder of this analysis we focus on the
comparison of the rule-based and tree-based learners, i.e.,
C4.5, Part, GAssist, UCS, and Fuzzy-UCS. Figure 9 plots
examples of the models evolved by these learners for the two-
dimensional tao problem; besides, an example of the weights
created by SMO is also depicted. C4.5 evolves trees in which
the nodes represent a decision over one variable (see Fig.
9(b)). We evaluated the model size by counting the number
of leaves of the tree. Part and GAssist create a set of rules
which are defined by conjunction of conditions over their
variables, and are interpreted as an ordered activation list (see
Figs. 9(c) and 9(d)). Moreover, GAssist uses a default rule.
UCS evolves a rule set similar to Fuzzy-UCS, but replacing
linguistic rules with interval-based rules (see Fig. 9(e)). Each
rule can be regarded as an expert classifier in the region of the
feature space it covers. We used the number of rules evolved
as the metric of interpretability for Part, GAssist, UCS, and

if x is XL then blue with w=1.00
if x is XS then red with w=1.00
if xis {XS or S} and y is {XS or S} then red with w=0.87

) Fuzzy UCS

Examples of part of the models evolved by (a) SMO, (b) C4.5, (c) Part, (d) GAssist, (¢) UCS, and (f) Fuzzy-UCS for the two-dimensional tao

Fuzzy-UCS, although we acknowledge that the measure is not
directly comparable as we later discuss. Note that we did not
use equation 14 to compute the model size because some of
the learners are represented by an ordered activation list.

Table XI shows the model sizes of the rule-based and
tree-based systems. Qualitatively, it is worth mentioning the
following aspects:

o Fuzzy-UCS with weighted average, jointly with UCS,
were the two methods in the ranking with higher perfor-
mance from those that use a rule-based representation.
Thus, when performance prevails over interpretability,
Fuzzy-UCS is a good approach to face new problems.

o Fuzzy-UCS with weighted average inference, as well as
the other two inference schemes, significantly created
smaller populations than UCS according to a Wilcoxon
signed-ranks test (at a = 0.05). Thus, Fuzzy-UCS
achieved one of the main objectives of this work: to create
smaller models than those evolved by UCS.
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TABLE XI
AVERAGE SIZES OF THE MODELS BUILD BY C4.5, PART, GASSIST, UCS
AND FuzzY-UCS WITH WEIGHTED AVERAGE (WAVG), ACTION WINNER
(AWIN), AND MOST NUMEROUS AND FITTEST RULES INFERENCE (NFIT).

C45 Part GAssist UCS Fuzzy-UCS

wavg awin nfit
ann 38 15 5 4494 | 2769 75 36
aut 44 21 7 4565 | 3872 114 74
bal 45 37 8 2177 | 1212 114 75
bpa 25 9 6 2961 | 1440 73 39
cmce 162 168 15 3634 | 1881 430 271
col 5 9 5 3486 | 4135 154 81
gls 24 15 5 3359 | 2799 62 36
h-c 29 21 6 2977 | 3574 113 46
h-s 17 18 5 3735 | 3415 117 62
irs 5 4 3 1039 480 18 7
pim 19 7 7 3605 | 2841 192 62
son 14 8 5 520 | 3042 178 160
tao 36 17 6 807 111 19 14
thy 8 4 4 1994 | 1283 37 11
veh 69 32 7 4941 | 3732 332 147
whbed 12 10 3 2334 | 3130 138 28
wdbc 11 7 4 5206 | 5412 276 101
wne 5 5 3 3685 | 3686 95 26
wpbc 12 7 4 5299 | 3772 156 115
z00 11 8 6 1291 773 16 10

e Fuzzy-UCS was the only method in the comparison in
which the same semantics (adapted to the universe of
discourse of each variable) is shared among all variables,
and only 5 linguistic terms were specified. Consequently,
Fuzzy-UCS rules were more readable.

The results also indicate that, even the moderate-sized popu-
lations provided by Fuzzy-UCS with action winner inference
and most numerous and fittest rules, these techniques still are
not competitive (in number of rules) to Part and C4.5 (if we
consider the number of leaves as a comparative measure to
the number of rules), and especially to GAssist. However, two
important distinctions need to be considered to justify these
differences:

e Fuzzy-UCS and, in general, Michigan-style LCSs evolve
rules that, by themselves, are experts on the region of the
feature space that they cover and collaborate to classify
all the input space. Thus, each rule can be regarded as
an expert classifier; if the human expert is only interested
in a region of the feature space, only the rules involved
in this region need to be considered. On the other hand,
the rules evolved by Part and GAssist form an ordered
activation list. That is, to classify a new example, rules are
checked in order and the first rule that matches determines
the output. In the case of GAssist, a default rule is used
to classify all the examples not matched by any rule in
the activation list. This implies that all the previous rules
need to be considered to understand why the system is
giving this prediction.

o Fuzzy-UCS evolves the rule set incrementally, whilst the
other learners go through the data several times to extract
the classification model. Incremental learning gives a big
advantage to Fuzzy-UCS when learning from large data
sets.

The analysis supplied in this section showed that Fuzzy-

UCS is highly competitive with respect to a large set of
general-purpose machine learning techniques. The proposed
weighted average version of Fuzzy-UCS was one of the best
performers. Thus, a fuzzy rule-based system could achieve
accuracy rates as good as—or even better than—other machine
learning techniques with knowledge representations that have
poor meaning for human experts such as support vector
machines or instance based algorithms. Moreover, Fuzzy-
UCS with the two other inference schemes appeared also
to be competitive. Fuzzy-UCS with action winner inference
evolved substantially reduced rule sets, although not as much
as the ones evolved by GAssist and Part, and it was only
statistically surpassed by SMO with polynomial kernels, and
our Fuzzy-UCS with weighed average inference. The next
section explores the capabilities of Fuzzy-UCS to learn from
large volumes of data.

VI. Fuzzy-UCS FOR MINING LARGE DATA SETS

The two essential differences between Fuzzy-UCS and other
rule-based learners are that Fuzzy-UCS a) does not perform
any form of global optimization, and b) incrementally evolves
the rule-based knowledge. Based on a rule set roughly initial-
ized in the first learning iterations by the covering operator,
the system is responsible for incrementally evaluating the
parameters of the rules and refining the rule-based knowledge
by creating more general and more accurate rules. This process
provides two main advantages with respect to other learners:

e Fuzzy-UCS learns from a stream of examples. This
enables the system to learn from changing environments.
This differs from other machine learning methods, such as
C4.5, IBk, SMO, and Pittsburgh-style LCSs, which need
to process all the training data set in order to produce the
final model.

o The learning can be stalled whenever required, and the
rule set evolved can be used for predicting the class of
new input examples. The more learning iterations the
system has performed, the more general and accurate the
rules should be. Consequently, the cost of the algorithm
increases linearly with the maximum population size IV,
the number of variables per rule a, and the number of
learning iterations Neqrn

COStFuzzy—UCS’ =0 (a “N - nlearn) (15)

but it does not depend directly on the number of exam-

ples. In static data sets, it is recommended that n;eq,1, be,

at least, the number of examples in the training data set.

In this section, we exploit the benefits of on-line learning

in Fuzzy-UCS and apply the system to mine very large data

sets. Specifically, we test the performance of Fuzzy-UCS on

the 1999 KDD Cup intrusion detection data set [77]. In the

following, we describe the data set and present the results
obtained.

A. Data Set Description

The 1999 KDD Cup intrusion detection data set gathers
a large collection of examples of a wide variety of network
intrusions simulated in a military environment. We used the
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TABLE XII
TEST PERFORMANCE AND NUMBER OF RULES EVOLVED BY Fuzzy-UCS
IN THE 1999 KDD CUP INTRUSION DETECTION DATASET AT DIFFERENT
NUMBER OF LEARNING ITERATIONS.

#ter wavg awin nfit
perf. #rules | perf. #rules | perf. #rules
500,000 | 99.32 1944 | 99.13 541 99.27 417
1,000,000 | 99.36 2089 | 99.07 492 99.25 369
1,500,000 | 99.37 2178 | 99.02 460 99.24 350
2,000,000 | 99.36 2257 | 99.00 428 99.19 323

subset of 494,022 examples provided in [77] that advocate 23
different classes. Examples consist of 35 continuous attributes
and 6 nominal attributes, which usually characterize network
traffic behavior. We used a ten-fold cross validation procedure
to estimate test accuracy.

B. Results

We ran Fuzzy-UCS on the KDD’99 domain with the
default configuration as in the previous section except for
fca = 200 and Py = 0.2. We increased the period of GA
application (fga = 200) to permit the classifiers to receive
more parameter updates before undergoing a genetic event. We
also diminished the probability of generalization in covering
(Py = 0.2) since the dispersion of the examples was very
low. We ran the experiment for 2,000,000 learning iterations,
so that Fuzzy-UCS only received each learning instance an
average of 5 times.

Figure 10 plots the evolution of the test performance and
the population size of Fuzzy-UCS with action winner inference
in the first 150,000 learning iterations. Note that the system
quickly evolved a highly accurate population. After seeing the
first 35,000 examples, that is, a 7% of the whole training data
set, the test performance was already about 99%. Increasing
the number of learning iterations did not significantly improve
the average performance, but it did create more general and
equally accurate classifiers. This behavior can be observed in
Table XII, which depicts the test accuracy and the rule set
size obtained by Fuzzy-UCS with weighted average inference
(1st column), action winner inference (2nd column), and most
numerous and fittest rules inference (3rd column) at different
learning iterations. That is, every 500,000 learning iterations,
we used the corresponding test set to calculate the accuracy
with the three types of inference. While sampling the test
examples, all the learning mechanisms of Fuzzy-UCS were
disabled, so that rule set was not modified.

The results show that the number of rules in the final popu-
lation for the action winner and the most numerous and fittest
rules inference decreased as the number of learning iterations
increased. Thus, the system was pushing the population to
obtain maximally general and accurate rules. This behavior
was not so clear with the weighted average inference since
this inference scheme used all the experienced rules in the
final population that have positive fitness, regardless of their
generality.

Finally, let us highlight the differences of Fuzzy-UCS with
respect to a Pittsburgh-style LCS. In the last section, we
configured GAssist with a population of 400 individuals. At
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Fig. 10. Evolution of test accuracies and the population size of Fuzzy-UCS
with action winner inference in the first 150,000 learning iterations of the
1999 KDD Cup data set.

the initialization phase, these 400 individuals needed to be
evaluated. Thus, the condition of all the rules of each classifier
was matched with each of the training instances. This means
that, in the population initialization, a Pittsburgh-style LCSs
would go through all the data set 400 times, seeing about
180,000,000 instances. After that, the system would have only
the first approximation, and the evolutionary pressures would
create new individuals that needed to be evaluated. This makes
these types of systems computationally expensive for large
data sets. On the other hand, note that Fuzzy-UCS only needed
to see 35,000 examples to extract a highly accurate model, and
that further iterations were to create a more general rule set.
These results emphasize the advantages of on-line learning.

VII. SUMMARY, SELF-ANALYSIS, AND FURTHER WORK
A. Summary

In this paper, we proposed a Michigan-style on-line Learn-
ing Fuzzy-Classifier System for supervised learning which
iteratively evolves a set of linguistic fuzzy rules which collab-
orate to cover all the input space. Three schemes of inference
and reduction algorithms were designed to infer the output
of unknown examples from reduced rule sets. These three
mechanisms were proposed to offer different levels of rule set
reduction and consequently lead to different accuracy rates.

We performed a detailed analysis of the performance and
interpretability of the rule sets evolved by Fuzzy-UCS. First,
we carefully analyzed the three inference and reduction mech-
anisms in Fuzzy-UCS. Second, we also compared Fuzzy-UCS
with six fuzzy-rule-based learners and nine general-purpose
learners with different types of representation. The analysis
showed that Fuzzy-UCS was highly competitive to both groups
of learners. The many benefits of the on-line fuzzy-rule-based
architecture, as well as some drawbacks detected in this study,
are detailed in the SWOT analysis of the next section.

In the final step of the analysis, we exploited the incremental
learning architecture of Fuzzy-UCS to extract a model from a
large data set: the 1999 KDD Cup intrusion detection data
set. It was found that Fuzzy-UCS could quickly evolve a
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highly accurate model, having only seen the ten percent of the
total number of examples in the domain. Incremental learning
enabled us to have a rough approximation of the model after
a few thousand learning iterations, further refining the rule set
as the system received more examples.

B. SWOT Analysis

All the evidence provided through the experimentations is
summarized in the SWOT analysis presented in Table XIII,
where strengths represent the main advantages of Fuzzy-UCS,
weaknesses show its drawbacks, opportunities outline some
suggested further lines of investigation, and threats include
some optional approaches considered by other methods that
could compete with our proposal.

Fuzzy-UCS has four main strengths. First, the system pre-
sented a high performance, which supports the use of Fuzzy-
UCS in complex problems. Second, it uses linguistic fuzzy
rules, which are much more readable than interval-based rules
since all the variables share the same semantics and only
a small number of linguistic terms per variable are defined
(specifically, in our experiments we only used five linguistic
terms per variable). This is really important for domains with
high dimensionality where each variable presents different
ranges. Third, Fuzzy-UCS is an on-line process that performs
incremental learning, and so, the system neither has knowledge
about the data set nor does any kind of global optimization.
And fourth, since the run-time complexity of Fuzzy-UCS does
not depend on the number of instances in the data set, our
system is very useful for mining large amounts of data as we
showed with the KDD’99 problem, which consists of about
half a million instances, 41 features, and 23 classes.

The main weakness of the system is that, despite the
reduction schemes applied, it evolves slightly larger rule sets
than those created by other machine learning techniques such
as GAssist. Consequently, the number of rules may hinder
the interpretability of the evolved knowledge. However, it is
worth highlighting the comments made in Sect. V-C about the
type of rules evolved by GAssist and Fuzzy-UCS, which may
approach their readability capacities. GAssist does not share
any semantics between variables, makes the rules available
in an ordered activation list, and uses a default rule. A less
important feature of our system is that, although it can work
with categorical input variables, fuzzy rules are especially
useful for real or integer-valued variables, since in the former
case the rule would be equivalent to a classical crisp (or non-
fuzzy) one.

We also want to honestly mention some possible threats
to Fuzzy-UCS. On the one hand, an expert might find a
small number of interval-based rules more legible than many
linguistic fuzzy rules (in fact, the degree of interpretability of
a system is very difficult to assess when different knowledge
representations are compared). On the other hand, there are
hybrid learning approaches to deal with problems with large
data sets, such as the inclusion of preprocessing algorithms
to reduce the data set size, which would allow some of the
systems compared in this paper to address these problems.

Finally, the proposed Fuzzy-UCS algorithm shows some
interesting opportunities which will be developed in future

work. Firstly, because of its incremental learning capability,
the system can be applied to extract information from data
streams, which is currently a topic of increasing interest [78].
Secondly, the use of fuzzy logic allows the system to be
adapted for managing vague and uncertain data, very common
in many real-world problems [79]. Furthermore, as future
work we can consider the inclusion of some of the techniques
proposed by other systems (such as inference based on an
activation list with default rule as in GAssist) and the design
of new techniques to achieve greater reductions of the fuzzy
rule set without a significant loss of test performance, as
well as a more detailed research of other fuzzy knowledge
representations.
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