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Introduction

Predictive induction: it involves generating legible models that
describe with the highest reliability the whole data set that
represents the analyzed system

In predictive induction, we look for a rule set rather than individual
patterns

With the aim of generating legible enough models (which, no
doubt, is one of the fundamental premises in any knowledge
extraction process), we propose to use fuzzy rule-based systems as
knowledge representation

Automatic extraction of rules: greedy algorithms, artificial neural
networks, evolutionary computation, etc.



Introduction

o Why we bet genetic algorithms (GAs)?

« They have a powerful search capacity that allows us to work with
multiobjective optimization = interpretability-accuracy balance

= They can manage flexible representation structures mixing coding schemes
or including restrictions = DNF-type fuzzy rules that provide a high degree
of compactness and knowledge synthesis

e To do predictive induction (rule sets) with GAs, the Pittsburgh style
(where each individual encodes a complete set of rules) seems to

be the best approach to properly assess the interaction among the
different fuzzy rules



DNF-type fuzzy rule

o DNF-type fuzzy rule:

Regression: IFX, is A, and ...and X_is A THEN Y is B
Classification: IF X, is A, and ...and X, is A, THEN Class =c

Ai ={A, or...orA; }

e Advantages:
= Compact knowledge representation
= Absence of input variables in the rule is allowed
= Scalability to higher number of variables and/or linguistic terms

e Drawbacks:

= When a set of DNF-type fuzzy rules is simultaneously learnt (as Pittsburgh-
style GA does), several difficulties arise



DNF-type fuzzy rule

o Difficulties of {DNF-type fuzzy rule + Pittsburgh-style GA}:

= Consistency: each combination of antecedent (one label per input variable)
should have only one possible class

= Completeness: every training data example should fires at least one fuzzy
classification rule

= Compactness: the lowest number of rules to accurately represent input-
output relationships should be obtained. Among other issues, it involves to
avoid redundant rules

= Non-overgeneral rules: a DNF-type fuzzy rule should be general enough as
to represent in a compact way the input space but specific enough as to avoid
covering input areas without data

e Although we focus our study in fuzzy rules, these concepts may be
extrapolated to interval rules when generality is considered



Consistency in DNF-type fuzzy rules

' IF X, is{A,orA;}and X,is{B,orB,orB;} THEN Y isC, | IF X;isA,and X, is B, THEN Y is C,

' IF X, is A;and X, is B, THEN Y is C, ! IF X, is {A, or Ag} and X; is B THEN Y is C,

(a) Inconsistent solution (2 rules) (b) Consistent solution (4 rules)
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Redundancy in DNF-type fuzzy rules

e Redundancy:
= IF X;is Ay and X, is {B; or B,} THEN Y is C;
IF X, is Ay and X, is B; THEN Y is C;

If a rule subsumes another one, just remove the more specific one
= IF X;is Ay and X, is {B; or B,} THEN Y is C;
IF X;is {A; or A,} and X, is B; THEN Y is C;

This case is more difficult to be solved, but its effect is not very disruptive for
the final fuzzy rule set
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Over-generality In DNF-type fuzzy rules
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(a) Over-general solution (1 rule) (b) Solution with optimal generality (2 rules)
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How to Address These Difficulties?

e Solutions to ensure consistency, completeness, compactness, and non
over-generality:

= Ignore bad solutions
= Penalize fitness of bad solutions [Wang et al., 2005]
= A posteriorirepair bad solutions [Wang et al., 2005]

= Constrain the search space to avoid generating bad solutions

[Wang et al., 2005] H. Wang, S. Kwong, Y. Jin, W. Wei, and K.-F Man. Agent-based evolutionary
approach for interpretable rule-based knowledge extraction. IEEE Transactions on Systems, Man,
and Cybernetics—Part C: Applications and Reviews, 35(2):143-155, 2005

e We opt for the latter option by designing genetic operators that only
explore correct solutions

J. Casillas, P. Martinez, A.D. Benitez, Learning consistent, complete and compact sets of fuzzy
rules in conjunctive normal form for regression problems, Soft Computing (2008). In press




Pitts-DNF Scheme

Parameters: Population size, crossover probability, antecedent mutation probability,
and consequent mutation probability
Input: Data set: D = {(z,y) | z € R", y € R™}. Membership function definitions
Output: Set of non-dominated solutions, each one with a different number of rules/accuracy
trade-off. Each solution is a consistent, non redundant, non over-general, and complete
DNF-type fuzzy rule set
begin
Initialization(P)
CH «—— Covering_Hypermatrix(D)
Evaluation(P, )
while not stop condition do
P1 «—— Multiobjective_Selection(P)
P2 —— Crossover(P1)
P3 «—— Antecedent_Mutation(P2, CH)
P4 «—— Consequent_Mutation(P3)
P5 «—— Completeness_Operator(P4, D)
Evaluation(P5, D)
P —— Multiobjective_Replacement(P5, P)
end
end
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Coding Scheme

e Binary coding scheme in the antecedent (allele ‘1’ stands for the
corresponding label is used) and integer coding in the consequent (the
allele indicates the index of the corresponding class)

e Example: Let us assume we have two input variables with three linguistic
terms (Small [S], Medium [M], Large [L]) each of them

i

e The chromosome will be a set of such a rules, i.e., variable-length
concatenation of their strings
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Initialization

Since we are looking for optimal completeness, we need starting with
rules which cover all (and only) the examples

Because of that, we generate the antecedent structure by the Wang-
Mendel algorithm

Specifically, every chromosome is generated with the minimum number of
rules that cover the examples according to this algorithm and with a
random class for every rule

Except one chromosome that uses the class of the most highly covered
example for each rule (greedy solution)

All chromosomes start with the same number of rules, being those so
specific as possible (i.e., with a simple conjunction structure instead the
conjunctive normal form)



Covering Hypermatrix Computation
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The objective of this step is to generate a data structure which will be
used when generating new rules to efficiently avoid over-generality

The structure stores the label combinations of the antecedent that cover
everyone of the examples in the data set

Notice that the hypermatrix represents the highest allowed input covering,
but it does not show whether a lower number of rules would completely
cover the training data set or not, so it can not be used to ensure
completeness

A hash table is used for efficient key searching



Crossover Operator

Function: Crossover Operator

Input: Two individuals (parents)

Output: Two new individuals (children)

Preconditions: The received individuals have not internal inconsistencies

Postconditions: The generated individuals do not have either inconsistencies or redundancies
by subsumption, but redundancies by partial overlapping are possible. Lack of completeness can
also appear

1.
2.

Put all the rules of the two parents into a set, S.

Analyze those inconsistent rules among them (which always will come from two parents, due to the
preconditions). These rules do not have to be inconsistent in pairs. For instance, a rule of the first
parent can be inconsistent with two rules of the second one.

Divide every group of inconsistent rules into two subsets depending on the parent of which they come
from and take these rules out of S. Assign each subset to a different child.

4. Take an uniform random number » ~ UJL,|S|], which will give the number of rules that will be
assigned to the first child, being the rest (|S| — r) the number of rules assigned to the second child.
5. Choose at random r rules from S and assign them to the first child.
6. Assign the rest to the second child.
7. This process can generate redundancies in the children. To avoid it, for every child, check if the
antecedent of every rule is subsumed by another one and, if so, delete the more specific rules.
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Crossover Operator

Inconsistent rules _

Consistent rules
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Antecedent Mutation Operator

Function: Antecedent Mutation Operator

Input: One individual and the covering hypermatrix

Output: The input individual mutated in its antecedent

Preconditions: The received individual has no internal inconsistencies

Postconditions: The generated individual has not neither inconsistencies nor subsumed rules,
but redundancies by partial overlapping are possible. Lack of completeness can also appear

1. Randomly choose a specific input variable of the rule set to be mutated.

2. Choose at random one of the two following operations: contraction or expansion. Sometimes, it will

not be possible to apply some of these operations, i.e., contraction is not possible if the variable only

takes a label and expansion is not possible if the variable already takes all the labels. In such a case,
directly choose the available operation.

If contraction is chosen, apply a movement at random.

4. If expansion is chosen, compute all the set of candidate movements which do not provoke inconsistency
or over-generality. If this set is not empty, choose a candidate movement at random and apply it. If
the set is empty and contraction can be done, go to step 3; otherwise, if there are still no analyzed
input variables, go to step 1, else skip this mutation.

5. Redundancies by subsumption may appear in the rule set after applying expansion, remove the rules
subsumed by the mutated rule.

“
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Consequent Mutation Operator
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It creates new rules by changing the class

It consists on randomly selecting a rule that is not partially overlapped
with other rules (it would be the only problematic case since the
consequent mutation operator receives consistent and non-subsumed
rules)

Then, the class is randomly changed

The operation does not cause over-generality or lack of completeness



Completeness Operator
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Function: Completeness Operator

Input: One individual and the training data set
Output: The input individual with some fuzzy rules
added, if needed

Preconditions: None

Postconditions: The generated individual covers the
whole data set. i.e., at least a fuzzy rule matches each
training example

1. From the data set, extract such examples that are not
covered by any fuzzy rule encoded in the analyzed indi-

vidual.

rules that represent them.

redundancy problems arise.

. Apply Wang-Mendel algorithm over this example subset
to generate the minimum number of Mamdani-type fuzzy

. Add these fuzzy rules to the rule base encoded in the
individual. Since these rules come from data that were
not covered by any previous rule, neither consistency nor

I Workshop on Knowledge Extraction based on Evolutionary Learning
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Multiobjective Approach
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Multiobjective optimization is performed with the elitist replacement
strategy of NSGA-I1

Crowding distance in the objective function space is considered

Binary tournament selection based on the nondomination rank (or the
crowding distance when both solutions belong to the same front) is
applied

The crowding distance is normalized for each objective according to the
extreme values of the solutions contained in the analyzed front



Objective Functions

e Performance (for maximization): In regression, mean squared error; in
classification, proportion of instances correctly classified by the rule set

o Complexity (for minimization): Number of DNF-type fuzzy rules

= The algorithm is designed to ensure optimal covering, so we do not care on the
linguistic complexity of each single fuzzy rule. In a natural way, the most
general the fuzzy rules, the fewer the number of rules

= It simplifies the design of an interpretability-based objective function. Other
authors consider one or more additional objectives to evaluate the complexity
of each fuzzy rule (rule length, number of premises, etc.)
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Experimental Setup for Regression

e Regression problems (5-fold cross validation)

Problem | #InputVar #Erxam  #LingTerms
Diabetes 2 43 7
Elel 2 495 7
Laser 4 993 5]
Ele2 4 1066 5
DEE G 365 5

e Learning methods to compare

Algorithm type Representation No. rules

Automatic

Mamdani

Wang-Mendel [l
COR-BWAS Ant colony Mamdani Automatic

Thrift Pittsburgh Mamdani Automatic

Pittsburgh Pittsburgh DNF Automatic

Fuzzy-GAP GA-P Conjunctions and |Fixed
disjunctions
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Experimental Results iIn Regression

Elel problem Ele2 problem

#I MSFE;yq MSFE;qt 7R MSE,, MSE, .,
Method T o T o T o Method T a T o T a

Wang-Mendel [22.0 1.4| 423466 80690 | 455262 19043 Wang-Mendel 65.0 0.0]112270 1498112718 40685
COR-BWAS 22.0 1.4 354304 7065| 417142 9823 COR-BWAS 65.0 0.0]102664 1080 |102740 4321
Thrift 46.4 1.0| 335086 5285 | 435373 57252 Thrift 524.6 6.4 146305 12991 | 168472 20135
Pittsburgh 17.2 4.3 | 342464 19209 | 738691 543165 Pittsburgh 240.0 21.1 210717 32027 | 265130 30161
Fuzzy-GAP 11 0| 481603 58989 | 548122 70968 Fuzzy-GAP 33.0 00279166 00017 | 200062 89155
Pitts-DNF min | 2.0 0.0| 767922 55787 | 760271 56310 Pitts-DNF min | 12.2 0.7 202943 43684 | 212018 44616
Pitts-DNF med | 8.2 0.7] 344636 8999 | 415266 71200 Pitts-DNF med | 18.6 1.4 | 86030 3055| 00310 12996
Pitts-DNF max | 14.0 1.1 |330496 4815 | 440692 40370 Pitts-DNF max | 32.4 6.6| 70207 1658 | 88017 8968

Laser problem DEE problem

ZR MSE;,. MSE, AR MSEyq MST s

Method T o T o T o Method I o T o T o

Wang-Mendel 584 10| 26521 20.68| 27858 4555 Wang-Mendel 178 2| 0.14117 0.0074| 0.22064 0.0264
COR-BWAS 58.4 1.0| 22083 8.06| 232.77 54.16 COR-BWAS 178 2| 0.12463 0.0052|0.20513 0.0231
Thrift 517.8 10.1| 461.24 05.05| 490.10 114.73 Thritt 13020 33| 0.38778 0.0357| 0.45830 0.0804
Pittsburgh 196.8 2.0 231.30 31.56| 311.88 132,51 Pittsburgh 082 56| 0.42111 0.0784| 0.72109 0.3263
Fuzzy-GAP 29.0 0.0| 540.20 200.95| 567.61 279.50 Fuzzy-GAP 89 0)0.17751 0.0130| 0.20633 0.0172
Pitts-DNF min | 11.4 1.6| 641.70 258.86 | 633.88 258.08 Pitts-DNE min 34 1|0.22073 0.0219| 0.30635 0.0884
Pitts-DNF med | 20.6 1.0] 163.01 11.13| 234.69 7253 Pitts-DNF med 57 3] 0.13821 0.0060| 0.27465 0.1366
Pitts-DNF max | 33.6 3.2/109.16 11.39(199.19 090.74 Pitts-DNF max 98 5]0.11267 0.0035| 0.21692 0.0359
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Experimental Results iIn Regression

e COR-BWAS (MSE, . = 356137 / 370626, #R=22)

X1
XS5 Vs S | M| L | VL | XL
XS5 XS VS
VS XS VS | VS | VS
S VS S S S M
Xo| M VS M s | VL
L M S | XL
VL VS L M
XL M

o Pitts-DNF (MSE, ., = 348914 / 390556, #R=7, #R__ =16)
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X1
XS vs, S |\ M L | VL | XL

XS XSy VL~

VS| XS; |VSs VS3 VS,

S| VSz [ S5 Ss Ss  Ss

Xo| M| V52 | Mg

L VL~

VL Mo VS
XL
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F, (MSE)

Pareto Fronts
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Experimental Setup for Classification

o Classification problems (10-fold cross validation)

Id. dataset #Inst #Fea  #Cl
bpa Bupa 345 6 2
gls Glass 214 9 6
irs Iris 150 4 3
tao Tao 1888 2 2
thy Thyroid 215 5 3
wbed | Wisc, breast-cancer 699 9 2

e Learning methods to compare
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Wang-Mendel
Fuzzy GP

Fuzzy
MaxLogitBoost

Algorithm type
Greedy

Rule representation

Conjunction

Genetic programming

Antecedent in disjunctive normal form

Boosting + GA

Weighted rules with antecedent in
conjunctive normal form




Experimental Results in Classification

e Performance

Bost ace. Pltﬁ;;ﬁﬂ ¢ Besi Size Wang-Mendel | Fuzzy MLB | Fuzzy GP

bpa 53.91% 53.35% 46.67% 54.16% 56.53% 56.62%

gls 61.98% 58.79% 44.44% 55.35% 62.18% 48.89%

irs 92.67% 92.00% 88.00% 87.33% 92.00% 94.47%

fao 89.56% 89.56% 87.61% 76.80% 84.52% 80.36%

thy 91.64% 92.10% 84.17% 89.74% 95.33% 86.98%

whed 96.24% 94.81% 66.00% 96.00% 91.83% 93.31%
Pitts-DNF-C outperforms Wang-Mendel (statistically significant)
Pitts-DNF-C does not perform statistically differently than Fuzzy MLB and Fuzzy GP

o Complexity
Pitts-DNF-C , A Fuzzy GP
Best acc.  Median  Best size Wang-Mendel | Fuzzy MLB and or is
bpa 37.7 254 19.9 120.9 13.3 176 373 549
gls 42.6 34.1 27.8 88.6 22.8 28,8 329 617
irs 8.7 8.3 5.4 44.6 4 187 21.6 404
tao 5.4 54 4.7 21.0 18 19.0 203 392
thy 12.2 10.2 7.2 48.0 8.8 18.2  20.0 38.1
whed 205.5 264.25 231.5 301.8 13.1 204  40.1  60.5
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Conclusion: Self-analysis
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SWOT analysis:
= Strengths: main advantages of Pitts-DNF
= Weaknesses: drawbacks of Pitts-DNF
= Opportunities: further works on Pitts-DNF

« Threats: optional approaches considered by other methods than can
compete with Pitts-DNF

Positive Negative

Weaknesses

Internal Strengths

External Opportunities Threats

Jorge Casillas I Workshop on Knowledge Extraction based on Evolutionary Learning Granada, May 16, 2008



Conclusion: Self-analysis

Strengths Weaknesses

o Its performance, both in o It only works in data-driven problems

interpretability and accuracy, is
competitive compared with other

e The considered properties
(consistency, completeness and

approaches ) : :
optimal generality) may involve to
o It uses a flexible fuzzy rule structure generate a higher number of rules in
for a better knowledge synthesis some problems
o It generates consistent, complete, o Although it is better prepared for
compact, and non over-general fuzzy dealing with high dimensional
rule sets problems than other approaches, it

still needs to be improved to properly

o It performs multiobjective generalize the fuzzy rules

optimization to return solutions with
different interpretability-accuracy
trade-offs
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Conclusion: Self-analysis

Opportunities Threats

o To adapt the algorithm to learn e Solutions based on guiding the search

Takagi-Sugeno fuzzy rules

e To combine Pitts-DNF with a
membership function parameter
learning/tuning process

e To study more complex solutions for
avoiding over-generality without
leaving uncovered regions

o To analyze other fuzzy rule structures
even more flexible than DNF-type for
a more compact knowledge
representation

process by objective functions that
penalize the lack of some of the
analyzed properties may obtain good
solutions in the practice due to the
search flexibility

Consistency may be obtained by
applying a two-stage sequential
approach: generation of Mamdani-
type fuzzy rules plus an a posteriori
rule grouping process

30
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