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The Multiple Instance Problem
This learning appears in complex applications of 
machine learning where the learner has partial or 
incomplete knowledge about each training example.
Each training example can be represented by 
means of a bag composed of one or several feature 
vectors.
The learner only knows that each example can be 
represented by one of a set of potential feature 
vectors instead of knowing which particular instance 
or set of them represent the concept which we want 
to learn. 
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Training
Set

Training 
Set

Supervised Learning

Multi-Instance Learning

Object  ≅
 

Instance

Object  ≅
 

Several Instances

I know the class of
the object

I know the class of the
object, but I do not know 
the class of each instance

V1 (v11 ,v12 , … v1n )
V2 (v21 ,v22 , … v2n )

…
Vp (vp1,vp2 , … vpn )

V(v11 ,v12 , … v1n )
The instance
is positive

The bag is positive,
only I know that at
least one instance

is positive.

V1 (v11 ,v12 , … v1n ) ?
V2 (v21 ,v22 , … v2n ) ?

…
Vp (vp1,vp2 , … vpn ) ?

V(v1 ,v2 , … vn ) +
The instance
is negativeV(v1 ,v2 , … vn ) -

The bag is negative,
I know that all

instances are negatives

V1 (v11 ,v12 , … v1n ) -
V2 (v21 ,v22 , … v2n ) -

…
Vp (vp1 ,vp2 , … vpn ) -

Supervised learning vs. multi-instance learning
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Definition and Notation
M is the set of all objects mi uses in the learning process.
The goal consist of learning a function f(mi) which return 0 for the 
negative case and 1 for positive case.
For multi-instance learning, an object or example mi can have 
several instances νi, that is, mi,1, mi,2, …, mi,νi

.

Each instance is represented by means of feature vector V(mi,j ). 
Thus, a training example is represented by:

We can model the problem by introducing a second function      
g(V(mi,j)) that takes a single instance and produces a result:

This definition is known as Dietterich hypothesis.

〈
 

{V(mi,1 ), V(mi,2 ), …, V(mi,νi )}, f(mi ) 〉

f(mi ) = 
1,   si ∃j / g(V(mi,j )) = 1

0,   otherwise

⎧
⎨
⎩
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Generalized Multiple Instance Learning
Scott et al. generalized the MIL model in 2003:

A bag is positive if and only if it contains a collection of instances are 
predicted to be positive according to function g(V(mi,j).

This generalized model is much more expressive than the 
conventional multiple instance model and show significant 
advantages over the conventional MIL model on certain application 
areas.

Introduction

f(mi ) = 
1,   si ∃
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of j} / g(V(mi,j )) = 1

0,   otherwise

⎧
⎨
⎩

S. Scott and J. Zhang and J. Brown. On Generalized Multiple-Instance Learning. 
International Journal of Computational Intelligence and Applications, 5 pp.21-35. 
2005. (In 2003, they publish a Technical Report)
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Drug activity prediction
The first  work in MIL was motivated by the problem of determining 
whether a drug molecule will bind strongly to a target protein. 
Some drug molecules bind well (they are positive examples) and 
some  do not bind well (they are negative ones). 
This problem and his datasets have been extensively used as 
benchmark in evaluating and comparing MIL methods.

Drug 
molecule

Receiver

Target protein
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Drug activity prediction
A molecule may adopt a wide range of shapes or conformation. 

A positive molecule has at least one shape that can bind well -- but we 
do not know which one.
A negative molecule means none of its shapes can make the molecule 
bind well.

This problem fits in the MIL setting as a very natural way
Each molecule as a bag. 

The shapes it can adopt as the instances in that bag. The features of an 
instance (shape) are the distances from an origin to different positions 
on the molecule surface at the corresponding shape.
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Content-based image retrieval and 
classification

The key to the success of image retrieval and image classification is the 
ability of identifying the intended target object(s) in images.

This is made more complicated by the fact that an image may contain 
multiple and possibly heterogeneous objects. Thus, the global description of 
a whole image is too coarse to achieve good classification and retrieval
accuracy it is a hard problem in the supervised learning setting.

This problem can fit in the MIL setting well: 
Each image itself is considered as a bag.
A region or segment in an image is considered as an instance.

A bag can have two kinds of labels - positive and negative.

Given many bags (images) of instances (regions) with labels on each of 
them, our goal is to classify new bag.

Applications of Multiple Instance Learning



Text Categorization
Similar to the argument made on images, a text document can 
consist of multiple passages that are of different topics, and thus 
descriptions at the document level might be too rough it is a hard 
problem in the supervised learning setting.

This problem can fit in the MIL setting well: 
Each document is represented as a bag.
Each passages (with a fixed number of words) of each document is
represented as instances of a bag. 

A dataset used to evaluate the algorithm has been TREC9 
document categorization sets, unfortunately without comparisons 
with traditional text categorization methods.

Applications of Multiple Instance Learning



Web Index Recommendation
Web index pages are pages that provide titles or brief summaries
and leaving the detailed presentation to their linked pages. For
example, the entrance of health at Yahoo!



Web Index Recommendation
This problem consists of labelling unseen web index 
pages as positive or negative. 

A positive web index page is such a page that the user is 
interested in at least one of its linked pages. 
A negative web index page is such a page that none of its linked
pages interested the user.

The difficulty lies in that the user only specifies whether 
he or she is interested in an index page, instead of 
specifying the concrete links that he or she is really 
interested in.

Applications of Multiple Instance Learning



Web Index Recommendation
This problem can fit in the MIL setting well: 

Each web index page represents a bag.
Each link in the web index page represents a instance of the bag.

BAG

INSTANCE

INSTANCE

Applications of Multiple Instance Learning
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Learning Axis-Parallel Concepts

It is the first class of algorithms that were proposed to solve MIL problems. 
The idea is to find an axis-parallel hyper-rectangle (APR) in the feature 
space to represent the target concept. Intuitively, this APR should contain at 
least one instance from each positive example and meanwhile exclude all 
the instances from negative examples.
They consider three general designs for APR learning algorithms:

A noise-tolerant “standard” algorithm. The naive APR algorithm just forms the 
smallest APR that bounds the positive examples. 
An “outside-in” algorithm. This algorithm is a variation on the “standard” 
algorithm. It constructs the smallest APR that bounds all of the positive examples 
and then shrinks this APR to exclude false positives. 
An “inside-out” algorithm. This algorithm starts with a seed point in feature 
space and “grows” a rectangle with the goal of finding the smallest rectangle that 
covers at least one instance of each positive example and no instances of any 
negative example. 

T. G. Dietterich, R.H Lathrop & T. Lozano-Pérez. Solving the multiple instance 
problem with axis-parallel rectangles. Artificial Intelligence 89:1-2 (1997), pp 31-71.
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Learning Axis-Parallel Concepts

X

Y

APR
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Diverse Density (DD)

Diverse Density (DD) was proposed by Maron and Lozano-Perez in 
1998 as a general framework for solving multi-instance learning 
problems. 
The main idea of DD approach is to find a concept point in the 
feature space that are close to at least one instance from every
positive example and meanwhile far away from instances in 
negative examples. 
The optimal concept point is defined as the one with the maximum
diversity density, which is a measure of how many different positive 
bags have instances near the point, and how far the negative 
instances are away from that point. 

O. Maron & T. Lozano Pérez. A Framework for Multiple-Instance Learning In Proc. 
of the 1997 Conference on Advances in Neural Information Processing Systems 
(1998) pp 570-576.
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Diverse Density (DD)

X

Y

Punto con DDmax
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Expectation Maximization Diverse Density 
(EM-DD)

It is a extended version of Diversity Density, this algorithm combine 
DD algorithm and Expectation Maximization approach. 

In the MIL setting, the label of a bag is determined by the "most 
positive" instance in the bag, i.e., the one with the highest probability 
of being positive among all the instances in that bag. The difficulty of 
MIL comes from the ambiguity of not knowing which instance is the 
most likely one. 

In this algorithm the knowledge of which instance determines the
label of the bag is modeled using a set of hidden variables, which are 
estimated using the Expectation Maximization style approach. 

k

Q. Zhang & S. Goldman. EM-DD: An improved multiple-instance learning 
technique. In Proc. of Neural Information Processing System 14 (2001) pp 
1073-1080.
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The popular k Nearest Neighbor (k-NN) approach was adapted for 
MIL problems by Wang and Zucker in 2000. 

In the context of the multiple-instance problem, an example is a bag 
that contains multiple instances therefore it is necessary to define 
a distance between two objects composed of two sets of instances. 

They proposed the use of minimum Hausdorff distance to 
measure the proximity of objects.

This distance was used as the bag-level distance metric, defined as 
the shortest distance between any two instances from each bag.

J. Wang & J.-D. Zucker Solving the multiple-instance problem: a lazy learning 
approach. In Proc of 17th International Conference on Machine Learning (2000), 
pp 1119-1125.

Review of Multiple Instance Algorithms
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Dist(A,B) = min (Dist(ai , bj )) = min min ||a-b||
a∈A1≤i≤n

1≤j≤m

b∈B

Review of Multiple Instance Algorithms
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Bag A
Bag B

Dist(A,B)



Bayesian k-NN Algorithm

The classic k-NN approach uses the majority vote to determine the 
class.

Bayesian method provides a probabilistic approach that calculates 
explicit probabilities for hypothesis. 

J. Wang & J.-D. Zucker Solving the multiple-instance problem: a lazy learning 
approach. In Proc of 17th International Conference on Machine Learning (2000), 
pp 1119-1125.

arg max δ

 
(c, ci )

c ∈

 

{positive, negative}
Σ
i=1

k

arg max p(c | { c1 , c2 , …, ck }) =
c ∈

 

{positive, negative}

p({ c1 , c2 , …, ck } | c)

p({ c1 , c2 , …, ck })

p(c)

arg max p({ c1 , c2 , …, ck } | c) p(c)
c ∈

 

{positive, negative}

arg max =
c ∈

 

{positive, negative}
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Citation k-NN Algorithm

Another way to adapt k-NN to the multiple-instance problem was 
inspired to us by the notion of citation from library and information 
science.

One well-known method is based on references and citers
If a research paper does cite another previously published paper (as known 
as its reference), the paper is said to be related to the reference. 
Similarly, if a paper is cited by a subsequent article (as known as its citer), 
the paper is also said to be related to its citer. 
Both citers and references are considered to be candidate documents 
related to a given paper.

This algorithm uses the R-nearest references and the C-nearest 
citers of an unseen bag b to derive its class.

J. Wang & J.-D. Zucker Solving the multiple-instance problem: a lazy learning 
approach. In Proc of 17th International Conference on Machine Learning (2000), 
pp 1119-1125.
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Decision Tree Algorithm
Zucker and Chevaleyre (2001) presented an extension of the ID3 and C4.5 
decision trees, named multi-decision tree (ID3-MI, C45-MI), to solve MIL 
problems.

The growing of a decision tree is based on the information gain of a feature 
to set of instances, which is related to the entropy of the instances. They 
extended the concept of information gain and entropy to bags of instances 
in the MIL framework.

Y. Chevaleyre & J.-D. Zucker. Solving Multiple-Instance and Multiple-Part 
Learning Problems with Decision Trees and Rule Sets. Application to the 
Mutagenesis Problem. In E. Stroulia & S. Matwin (Eds): Proc. of the 14th Biennial 
Conference of the Canadian Society on Computational Studies of Intelligence 
2001, LNAI 2056, pp 204-214, 2001.

Entropymulti (S) = - log2 - log2

u(S)

u(S) + v(S)

u(S)

u(S) + v(S)

v(S)

u(S) + v(S)

v(S)

u(S) + v(S)

InfoGainmulti (S,F) = Entropymulti (S)  - Entropymulti (Sv ) 
u(Sv ) + v(Sv )

u(S) + v(S)
Σ

v ∈

 

Values(F)
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Rule Based System Algorithm
Zucker and Chevaleyre (2001) presented an extension on the rule 
learning algorithm RIPPER, named RIPPERMI, to solve MIL 
problems.

The classic concept of rule coverage it is not enough when the goal 
is to discriminate bags not instances. It is necessary to give a formal 
definition of the multi-instance coverage: 

Y. Chevaleyre & J.-D. Zucker. Solving Multiple-Instance and Multiple-Part 
Learning Problems with Decision Trees and Rule Sets. Application to the 
Mutagenesis Problem. In E. Stroulia & S. Matwin (Eds): Proc. of the 14th Biennial 
Conference of the Canadian Society on Computational Studies of Intelligence 
2001, LNAI 2056, pp 204-214, 2001.
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Support Vector Machine
There are several proposals which extend Support Vector Machine
(SVM) to solve MIL problems.

MI-SVM and mi-SVM

DD-SVM

MIL-based SVMs

S. Andrews, T. Hofmann & I. Tsochantaridis. Multiple instance learning with 
generalized support vector machines. In 18th National Conference on Artificial 
Intelligence (AAAI’02) 2002, pp 943-944.

X. Qi & Y. Han. Incorporating Multiple SVMs for Automatic Image Annotation. 
Pattern Recognition, 40:2 2007, pp 728-741.

Y. Chen & J.Z. Wang. Image Categorization by Learning and Reasoning with 
Regions. Journal of Machine Learning Research, 5 2004, pp 913-939.
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Neural Network
Neural Networks also have been adapted to solve MIL problems.

BP-MIP, is a feedforward neural network algorithm. The key of BP-MIP 
lies in the formal definition of the multi-instance error function

RBF-MIP, is based on popular methods of radial based function. The 
key of RBF-MIP lies int the use the a measure that consider the 
distance between bags.

Z.H. Zhou & M.L. Zhang. Neural Networks for Multiple Instance Learning. In Proc. 
Of the 19th International Conference on Machine Learning, July 2002

M.L. Zhang & Z.H. Zhou. Adapting RBF Neural Networks to Multiple Instance 
Learning. Neural Processing Letters 23:1-26, 2006
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Ensembles
Ensemble algorithms have emerged as an effective strategy in 
bioinformatics for improving the prediction accuracy by exploiting the 
synergetic prediction capability of multiple algorithms. Its adaptation to MIL 
perspective as was to be expected.

Ensembles-MI

MILogisticRegression y MIBoosting

CCE

X. Xu & E. Frank. Logistic Regression and Boosting for Labeled Bags of Instances. 
In Proc. Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2003, 
pp 272-281.

Z.H. Zhou & M.L. Zhang. Ensembles of Multiple Instance Learners. In N., Lavrac 
and D., Gamberger and H., Blockeel and L., Todorovski (Eds.) ECML 2003, 
Lecture Notes in Artificial Intelligence, 2837, pp 492-502.

Z.H. Zhou & M.L. Zhang. Solving Multi-instance Problems With Classifier 
Ensemble Based on Constructive Clustering. Knowledge and Information 
Systemas, 11:2 2007, pp 155-170.
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Inductive Logic Programming (ILP)
ILP becomes interesting when the expressive power of first-order 
representation provides comprehensibility to learning result and
capability to handle more complex data consisting of their relations. 
We can find proposals with use this approach:

TILDE-MI

FOIL-MI

PROGOL-MI

H. Bolckeel, L. De Raedt, N. Jacobs & B. Demoen. Scaling up inductive Logic 
Programming by Learning from Interpretations. Data Mining Knowledge Discovery, 
3:1 1999, pp 59-93.

J.R. Quinlan. Learning Logical Definitions From Relations. Machine Learning, 5 
1990, pp-239-266

A. Srinivasan & S.H. Muggleton. Comparing the Use of Background Knowledge by 
Inductive Logic Programming Systems. In Proc. Of International Workshop on 
Inductive Logic Programming 1995, pp-60-67.

Review of Multiple Instance Algorithms



Programming 
Genetic for Multiple 
Instance Learning



Motivations
Almost all popular Machine Learning algorithms have 
been applied to solve the multiple instance problem.

There was no work about adapting Evolutionary 
Algorithm to this scenario.

Evolutionary algorithms have shown its suitability solving 
learning problems in the supervised framework when the 
classic techniques do not work well.

Our initial motivation was analyzing the suitability of 
Evolutionary Learning algorithms for solving problems in 
the Multiple Instance framework.

Programming Genetic for Multiple Instance Learning



Genetic Programming
Genetic Programming (GP), introduced by Koza, is 
becoming a popular paradigm in diverse tasks: both for 
obtaining classification rules and for prediction task, such 
as feature selection. 
Their results show that they can achieve of efficient way 
low rate of error.
Their main characteristics are

A priori knowledge is not needed about the statistical 
distribution of the data.
Can operate directly on the data in their original form.
Can detect unknown relationship that exists among 
data.
Can discover the most important discriminative 
features of a class.

Programming Genetic for Multiple Instance Learning



Grammar Guided Genetic Programming
G3P (Grammar Guided Genetic Programming) is a 
variant of GP where:

Individuals are syntactic trees. 
A grammar is used to enforce syntactic constraints and satisfy 
the closure property.

A grammar is composed of a set of non-terminal symbols, a set of 
terminal symbols, a starting symbol and a list of production rules.
An individual is created by the complete derivation of the starting 
symbol, applying the production rules and forcing all individuals to 
evolve satisfying the grammar.

We proposed a extension of G3P algorithm to evolve 
rule sets to handle multiple instance learning:

We learn rules to classify instances, not bags.
We use the definition of Dietterich to classify bags.
The fitness measure the capacity of rules to classify correctly 
bags.



Individual Representation
An individual represents a rule which can contains multiple antecedents
attached by conjunction or disjunction which predict the same class.

Programming Genetic for Multiple Instance Learning

antecedent := comparison | 
“OR” comparison antecedent | 
“AND” comparison antecedent

comparison:= numericalComparator valuesToCompare |
categoricalComparator <attribute>

numericalComparator := “<” | “>=”

categoricalComparator := “CONTAIN” | “NOT_CONTAIN”

valuesToCompare := <attribute> <value>

antecedent := comparison | 
“OR” comparison antecedent | 
“AND” comparison antecedent

comparison:= numericalComparator valuesToCompare

numericalComparator := “<” | “>=”

valuesToCompare := <attribute> <value>

antecedent := comparison | 
“OR” comparison antecedent | 
“AND” comparison antecedent

comparison:= categoricalComparator valuesToCompare

categoricalComparator := “CONTAIN” | NOT_CONTAIN”

valuesToCompare := <attribute> <value>

Numerical Categorical



Individual Representation
The individual genotype represents rules which are applied on instances

The individual phenotype represents a complete classifier applied on 
objects according to the classical MIL hypothesis

Programming Genetic for Multiple Instance Learning

RuleINS (instancej )  ⇒
 

IF (antecedent (instancej ))
THEN The instancej is positive
ELSE The instancej is negative

RuleBAG (bagi ) ⇒
 

IF (∃
 

instancej ε
 

bagi : RuleINS (instancej ))
THEN The bagi is positive
ELSE The bagi is negative



Genetic Operator
Selective Crossover: The selective crossover is performed by swapping 
the sub-trees of two parents which have the same root symbol according to 
the defined grammar.

Programming Genetic for Multiple Instance Learning

<antecedente>

OR <comparacion> <antecedent>

NO-CONTAINS

<attribute><cagegoricalComparator>

Attribute3
(categorical)

AND <comparison> <antecedent>

<comparison values>

Attribute4
(numerical)

Value

<numericalComparato>

>=

<comparison>

<comparison values>

Attribute5
(numerico)

Value

<numericalComparator>

<

RuleINS (instancej ) ⇒
IF (attribute1 < Value) OR (CONTAIN attribute2))

THEN La instancej is positive
ELSE La instancej is negative

<antecedent>

OR <comparison> <antecedent>

NO-CONTAINS

<attribute><categoricalComparator>

Attribute3
(categorical)

AND <comparison> <antecedent>

<comparison values>

Attribute4
(numerical)

Value

<numericalComparatorl>

>=

<comparison>

<comparison values>

Attribute5
(numerical)

Value

<numericalComparator>

<

RuleINS (instancej ) ⇒
IF ( (NOT CONTAIN attribute3) OR ((attribute4>=Value) AND 

(attribute5<Value)) )
THEN The instancej is positive.
ELE The instanciej is negative.



<antecedente>

OR <comparacion> <antecedente>

NO-CONTAINS

<atributo><opComparacionCategorico>

Atributo3
(categorical)

AND <comparacion> <antecedente>

<valores comparacion>

Atributo4
(numerico)

Valor 

<opComparacionNumerico>

>=

<comparacion>

<valores comparacion>

Atributo5
(numerico)

Valor 

<opComparacionNumerico>

<

<antecedente>

OR

<valores comparacion>

Atributo1
(numerico)

<comparacion>

<comparacion> <antecedente>

Valor 

CONTAINS

<opComparacionNumerico>

< <atributo><opComparacionCategorico>

Atributo2
(categorico)

<antecedent>

OR

<comparison values>

Attribute1
(numerical)

<comparsion> <antecedent>

Value

<numericalComparator>

<

<comparison>

CONTAINS

<attribute><categoricalComparison>

Attribute2

<comparacion>

<comparison values>

Attribute4 Value

<opComparacionNumerico>

>=

<antecedent>

OR <comparison> <antecedent>

NO-CONTAINS

<attribute><categoricalComparator>

Attribute3

AND <antecedent>

<comparison>

<comparison values>

Attribute5 Value

<numericalComparator>

<

CONTAINS

<attribute><categoricalComparator>

Attribute2
(categorical)

<comparison>



Genetic Operator
Selective Mutation: The selective mutation operator randomly selects a 
node in the tree and the grammar is used to derive a new sub-trees which 
replaces the subtree in this node. If the new offspring is too large, it will be 
eliminated to avoid having invalid individuals

Programming Genetic for Multiple Instance Learning

RuleINS (instanciaj ) ⇒
IF ( (NOT CONTAIN attribute1) OR ((attribute2>=Value) AND 

(attribute3<Value)) )
THEN The instancej is positive
ELSE The instancej is negative

<antecedent>

OR <comparison> <antecedent>

NO-CONTAIN

<attribute><categoricalComparator>

Attribute1
(caetegorical)

AND <comparison> <antecedent>

<comparison values>

Attribute2
(numerical)

Value

<numericalComparator>

>=

<comparison>

<comparison values>

Attribute3
(numerical)

Value

<numericalComparator>

<



Genetic Operator
<antecedente>

OR <comparacion> <antecedente>

NO-CONTAINS

<atributo><opComparacionCategorico>

Atributo1
(caetegorico)

AND <comparacion> <antecedente>

<valores comparacion>

Atributo2
(numerico)

Valor 

<opComparacionNumerico>

>=

<comparacion>

<valores comparacion>

Atributo3
(numerico)

Valor 

<opComparacionNumerico>

<

<antecedente>

AND <comparacion> <antecedent>

<comparison values>

Attribute2
(numerical)

Value

<numercialComparator>

>=

<comparison>

<comparison values>

Attribute3
(numerical)

Value

<numericalComparator

<

<antecedent>

OR <comparison>

NO-CONTAIN

<attribute><categoricalComparator>

Attribute1
(caetegorical)

<antecedent>

<comparison>

<comparison values>

Attribute3
(numerical)

Value

<numericalComparator>

<
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Fitness Function
The rule evaluation uses basic criteria of supervised learning
adapted to Multi-instance Learning:

Accuracy, is the proportion of cases correctly identified
according to all cases.
Sensitivity or Recall, is the proportion of positive cases correctly 
identified.
Specificity, is the proportion of negative cases correctly 
identified.
Precision, is the proportion of positive cases correctly identified
according to all cases identified as positives cases.

Programming Genetic for Multiple Instance Learning

Accuracy = 
tp + tn

P + N tp

tp + fn
Sensitivity or Recall = 

tn

tn + fp
Specificity =

tp – number of positive basg correctly identified.
tn – number of negative basg correctly identified.
fp – number of positive bags not correctly identified
fn – number of negative bags not correctly identified.
P y N – positive and negarive bags

tn

tp + fp
Precision =



G3P-MI Algorithm
According to previous specifications, G3P-MI would be

Programming Genetic for Multiple Instance Learning

Generate and 
evaluate initial 

population

End
?

Select 
parents

Update 
population

Generate Offspring
Selective 
Crossover
Selective

Mutation

START

END

NO
YES

The individuals are 
generated randomly 

using different number 
of grammar productions

Binary Tournament 
selector

For updating we use 
elitism

Stop criteria: Maximum 
number of generations

Evaluate offspring by 
means of precision, 
recall and accuracy.



MOG3P-MI Algorithm
It is a first proposal to extend multi-objective grammar guided genetic
programming (MOG3P) to handle Multi-instance Learning. It is
derived from traditional G3P method and SPEA2 multi-objetive 
algorithm.

Programming Genetic for Multiple Instance Learning

P0 new initial population
A0 empty set

Pt assign fitness values to its individuals
At assign fitness values to its individuals
At+1 non dominated individuals in Pt y At

At+1 > N

Decrease At+1

At+1 < N

Increase  At+1

Select parents

Do recombination

Do  mutation

Generate Offspring

Pt+1 new generated 
offsprings

FINISH?

Has specified maximum 
number of generations 
been reached?

t 0

t t+1

yes

no

yes

no

no

yes

The parents are 
selected according to 

binary tournament 
selector

The individuals are 
generated randomly 
using different number 
of grammar productions.

An external elitist set of 
non-dominated solutions 
is maintaned.

The offspring is the next 
individual generation.

A nearest neighbour 
density estimation 
technique and a truncation 
method that guarantees 
the preservation of 
boundary solutions.

Evaluate offspring by 
means of sensitivity and 

specificity.



Experiments and 
Results



Datasets used for testing G3P and MOG3P 
algorithms

In our experiments we used data from two real-world application
domains:

Drug activity prediction
Musk, the aim is to predict whether a new molecule is of “musk" or 
“non-musk" type. The Musk problem has two versions, Musk1 and 
Musk2
Mutagenesis, the aim is to predict whether a new molecule has 
“mutagensis” property or does not have this property. The 
Mutagenesis problem has two versions, Mutagenesis-hard, 
Mutagenesis-easy.

Web index recommendation
The aim is to predict whether a web index page is interesting for the
user or not. This problem considerers 9 dataset, each dataset is a 
user that classify each web index page as interesting or not
interesting.

Experiments and Results



Drug Activity Prediction
The next table list the key properties of datasets used in this
application.

Musk Mutagenesis

Datasets Musk1 Musk2 Easy Hard
Number of Bags 92 102 188 42
Number of positive bags 47 39 125 13
Number of negative bags 45 63 63 29
Number of instances 476 6598 10486 2132
Minimum bag size 2 1 28 26
Maximum bag size 40 1044 88 86

Experiments and Results



Drug Activity Prediction
Parameters used by our algorithms

Algorithms G3P-MI MOG3P-MI
Size of Extern Population - 50
Size of Population 1000 1000
Number of generations 100 100
Crossover probability 95 % 95 %
Mutation probability 10 % 10%
Parent selector Roulette Tournament
Generate initial population Random
Maximum tree depth 50 50

Experiments and Results



Drug Activity Prediction

Musk1 Musk2

Algoritmo Acc Acc

BP-MIP-PCA 88.0 83.3

MI-BOOST 87.9 84.0

BP-MIP-DD 85.9 80.4

RELIC 83.7 80.4

BP-MIP 83.7 80.4

G3P-MI 81.1 82.0

MI-SVM 77.9 84.3

MULTINST 76.7 84.0

BP 75.0 67.7

C4.5 68.9 58.8

TILDE 87.0 79.0

Musk1 Musk2

Algorithm Acc Acc

EM-DD 96.8 96.0

MOG3P-MI 93.3 97.0

CCE 92.4 87.3

Iterated-discrim

 

APR 92.4 89.2

Citation-kNN 92.4 86.3

MI Kernel 92.4 92.2

GFS elim-kde

 

APR 91.3 80.4

GFS elim-count

 

APR 90.2 75.5

Bayesian-kNN 90.2 82.4

Diverse

 

Density 88.9 82.5

TLC without

 

AS 88.7 83.1

RIPPER-MI 88.0 77.0

NAIVE-RIPPERMI 88.0 77.0

Experiments and Results



Drug Activity Prediction
Pareto Front obtained for Musk data sets
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Drug Activity Prediction
The obtained classifiers are simple and understandable. An example 
of rule obtained for this dataset is the following

IF ( (f10>-220.381) ∧
 

(f7>35.268) ∧
 

(f163≤
 

199.682) 
∧

 
(f55>-84.999) ∧

 
(f134>-216.046) ∧

 
(f34 >216.149) 

∧
 

( (f128≤18.115) ∨
 

(f140>13.682) ∨
 

(f136>78.262))
THEN The molecule is musky.
ELSE The molecule is non musky.

Experiments and Results



Drug Activity Prediction

Experiments and Results

Mutagenesis

 hard
Mutagenesis

 easy
Algorithm Acc Acc

MOG3P-MI 100.0 % 84.0 %

G3P-MI 100.0 % 72.0 %

RIPPER-MI 91.0 % 82.0 %

TILDE 86.0 % 770 %

PROGOL 86.0 % 76.0 %

FOIL 83.0 % 61.0 %



Drug Activity Prediction
Pareto Front obtained for Mutagenesis easy

Pareto Front (Mutagenesis easy)
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Drug Activity Prediction
The obtained classifiers are simple and comprehensivility. An 
example of rule obtained for this dataset is the following

IF ( (element2 = 7.0) ∧
 

(charge1 > -0.486) ∧
 

(charge2 ≤
 

-0.5673) 
∧

 
( (quanta1  ≠

 
9.0) ∨

 
(charge2 > -0.371) )

THEN The molecule is active.
ELSE The molecule is inactive.

Experiments and Results



Web Index Recommendation
Several experiments are performed to evaluate the performance of
our G3P-MI algorithm on web index recommendation problem

With respect to datasets
Data sets that consider all words.
Data sets that considerer words that appear in more of 3 bags 
and less of 40 bags.

With respect to document representation
Binary representation. Each document is a binary feature 
vector, only we know if the word appears in the document or 
not.
Numerical representation. Each document is an integer 
feature vector, we know the frequency of each word in the 
document.

Experiments and Results



Web Index Recommendation
The next table list the key properties of datasets used in this
application.

Dataset
V1 V2 V3 V4 V5 V6 V7 V8 V9

Training Positive 17 18 14 56 62 60 39 35 37
Negative 58 57 61 19 13 15 36 40 38

Test Positive 4 3 7 33 27 29 16 20 18
Negative 34 35 31 5 11 9 22 18 20

Experiments and Results



Web Index Recommendation
Parameters used by our algorithms.

Algorithms G3P-MI MOG3P-MI
Size of Extern Population - 50
Size of Population 1000 1000
Number of generations 100 100
Crossover probability 95 % 95 %
Mutation probability 10 % 30%
Parent selector Roulette Tournament
Generate initial population Random
Maximum tree depth 50 50

Experiments and Results



Web Index Recommendation

Algorithm Acc Se Sp

B
inary

Fretcit-kNN 0.8103 0.7007 0.7803 

Txt-KNN 0.7233 0.7380 0.4847 

Citation-KNN 0.7577 0.6073 0.7407 

G3P-MI 0.7810 0.7723 0.7297 

�MOG3P-MI 0.8480 0.7793 0.7567 

N
um

erical

�Fretcit-kNN 0.8043 0.7117 0.7420 

Citation-KNN 0.7357 0.7020 0.5283 

Txt-KNN 0.7630 0.6130 0.7207 

G3P-MI 0.7313 0.9403 0.4013 

MOG3P-MI 0.8420 0.8727 0.7037 

Experiments and Results



Web Index Recommendation
Results obtained

Majority

 

negative

 

sets Majority

 

positive sets Balanced

 

sets

Algorithm Acc Se Sp Acc Se Sp Acc Se Sp

B
inary

Txt-KNN 0.795 0.636 0.822 0.805 0.863 0.194 0.570 0.715 0.438 

Citation-KNN 0.803 0.397 0.868 0.796 0.863 0.577 0.674 0.562 0.777 

Fretcit-kNN 0.879 0.579 0.919 0.854 0.924 0.634 0.698 0.599 0.788 

G3P-MI 0.807 0.690 0.919 0.825 0.877 0.628 0.711 0.750 0.642 

MOG3P-MI 0.904 0.579 0.950 0.868 0.975 0.557 0.772 0.784 0.763 

N
um

erical

Txt-KNN1 0.795 0.519 0.843 0.812 0.851 0.264 0.600 0.736 0.478 

Citation-KNN1 0.833 0.402 0.907 0.782 0.851 0.498 0.674 0.586 0.757 

Fretcit-kNN1 0.870 0.615 0.904 0.811 0.916 0.470 0.732 0.604 0.852 

G3P-MI1 0.845 0.821 0.904 0.823 1.000 0.201 0.526 1.000 0.099 

�MOG3P-MI1 0.895 0.774 0.919 0.860 1.000 0.466 0.771 0.844 0.726 

Experiments and Results



Web Index Recommendation
Pareto Front obtained for each data set
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Web Index Recommendation
A rule obtained for the first user/dataset using binary representation.

A rule obtained for the first user/datset using numerical 
representacion.

IF ( ((CONTAINS “planet”) AND (CONTAINS “forecast”)) OR 
(CONTAINS “atmospheric“) OR (NOT-CONTAINS “football“) ) 

THEN Recommend page to V1 user.

ELSE Not recommend page to V1 user.

IF ( (“french” > 16) OR ( “house” > 11) OR ( “science” > 2)  OR 
(( “aol” > 7) AND (“online” > 6)) ) 

THEN Recomend page to V1 user.

ELSE Not recommend page to V1 user.

Experiments and Results
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Bibliography - Software
Bibliography about MIL in KEEL web project
http://www.keel.es/
Software about MIL:

MILK – A Multi-Instance Learning Kit in Java. It is 
based on Weka. It can be download in: 
http://www.cs.waikato.ac.nz/ml/milk/
G3P-MI – The two versions of algorithm mono-
objective and multi-objective are been implemented 
in a JCLEC framework (http://jclec.sf.net). 

Internet Resources

http://www.keel.es/
http://www.cs.waikato.ac.nz/ml/milk/
http://jclec.sf.net/


Datasets
http://www.cs.waikato.ac.nz/ml/milk/

It is available the datasest Musk1 and Musk2  and Mutagénesis-easy
and Mutagenesis-hard in weka format.

http://www.cs.columbia.edu/~andrews/mil/datasets.html
It is available the datasets of text categorization and image
classification. This web is mantained by Andrews.

http://www.cs.wustl.edu/~sg/multi-inst-data/
It is available datasets of content-based imagen retrieve and drug 
activity prediction. This web is mantained by Sally Goldman, a 
researcher that work in MIL.

http://www.cs.wisc.edu/~sray/MIPage.html
It is availabe bibliography about MIL. This web is mantainede by S. 
Ray.

Internet Resources

http://www.cs.waikato.ac.nz/ml/milk/
http://www.cs.columbia.edu/~andrews/mil/datasets.html
http://www.cs.wustl.edu/~sg/multi-inst-data/
http://www.cs.wisc.edu/~sray/MIPage.html
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