I Workshop on Knowledge Extraction based on Evolutionary Learning Granada, May 16th, 2008

Low Quality Data

Luciano Sánchez Universidad de Oviedo

Part I

Introduction to Low Quality Data

Summary

• Part I: Introduction to Low Quality Data

- Future directions
- Novel types of data (issues with the representation, fuzzy random variables)
- Preprocessing
- Learning (Inference, Fitness, Genetic optimization)
- Validation
- Part II: Some results on the use of Evolutionary Algorithms for knowledge extraction from low quality data

Future directions in 2005

- Trade-off interpretability vs. precision. Use of MOGAs
- FRBS for high dimensional problems
- GFSs in Data Mining and Knowledge Discovery

Learning genetic models based on vague data

Herrera, F. Genetic Fuzzy Systems: Status, Critical Considerations and Future Directions. International Journal of Computational Intelligence Research. 1 (1). 2005. 59-67

Future directions in 2008

- Multiobjective genetic learning of FRBSs: interpretabilityprecision
- GA-based techniques for mining fuzzy association rules and data mining
 - Learning genetic models based on low quality data
- Genetic learning of fuzzy partitions and context adaptation
- Genetic adaptation of inference engine components
- Revisiting Michigan style GFSs

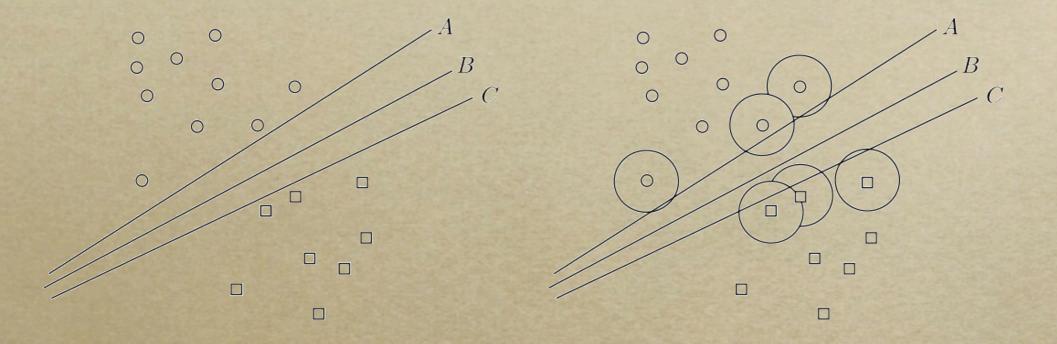
Herrera, F. Genetic Fuzzy Systems: **Taxonomy, Current Research Trends and Prospects**. Evolutionary Intelligence 1 (2008) 27-46

Rationale behind low quality data

- Crisp data-based GFS are standard statistical classifiers and models:
 - Genetic fuzzy classifiers minimize a biased estimation of the classification error (the training error)
 - Genetic fuzzy models minimize an estimate of the squared error of a model
- There might be theoretical differences if artificial imprecision is added to crisp data and a fuzzy fitness-based GFS is used

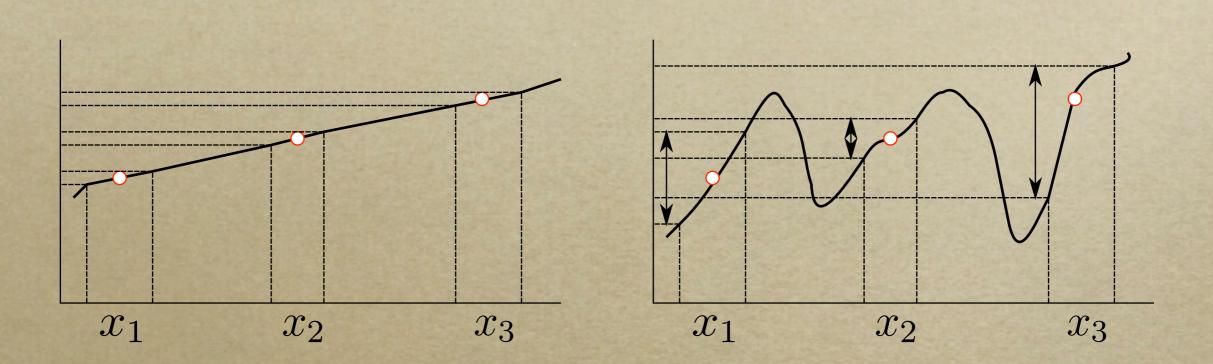
[4] Sánchez, L., Couso, I., Advocating the use of imprecisely observed data in Genetic Fuzzy Systems. IEEE Trans Fuzzy Sys 15(4). 2007. 551-562

Addition of imprecision to crisp data (I)



• There might be a relation between fuzzy fitness-based *GF* classifiers and SVM.

Addition of imprecision to crisp data (II)

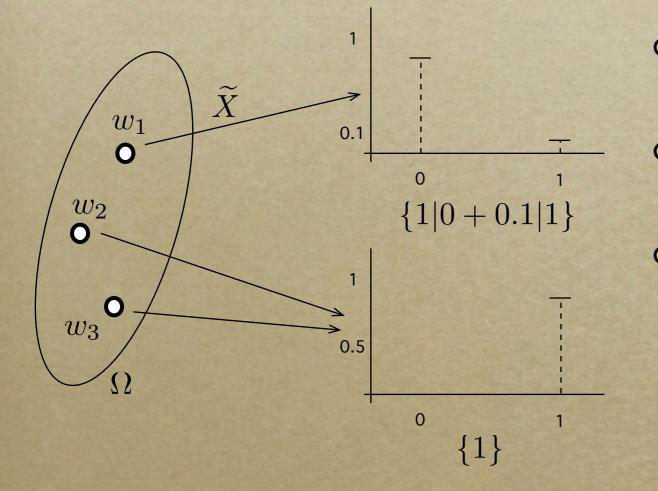


• The same happens with models - the more regular the model, the more specific its fuzzy fitness is, pointing again to relations between regularized models and fuzzy fitness-based GF models.

Further uses of low quality data

- Imprecise / low quality
 - Imprecisely measured data
 - Coarsely discretized data, censored data
 - Missing values
- Novel representations
 - Crisp data + tolerance
 - Aggregated values, lists, conflicting data
 - Addition of imprecision to crisp data

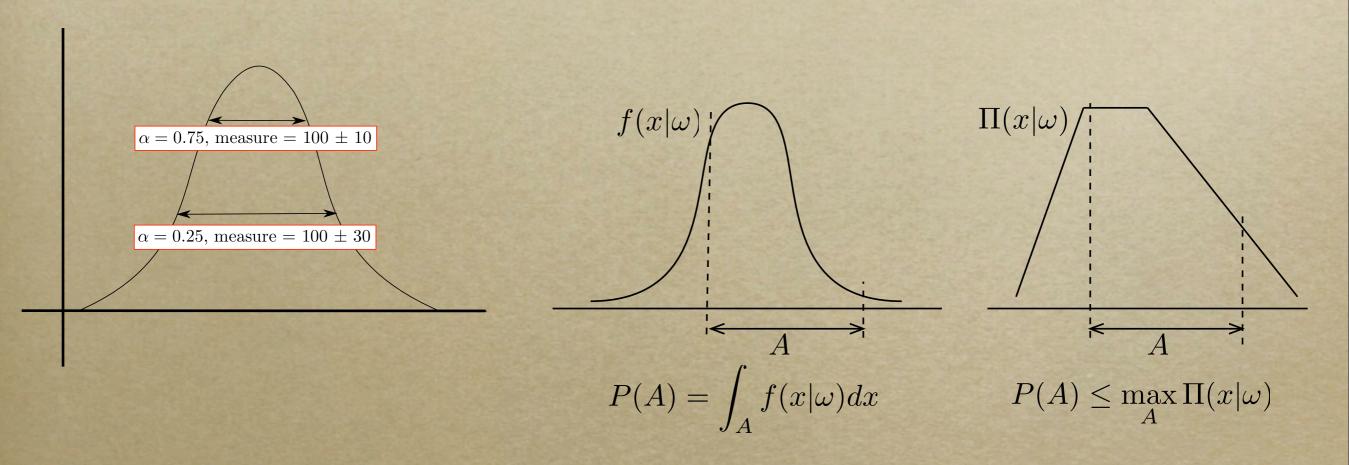
Fuzzy Random Variables



Classical model
Second order model
First order, imprecise probabilities-based

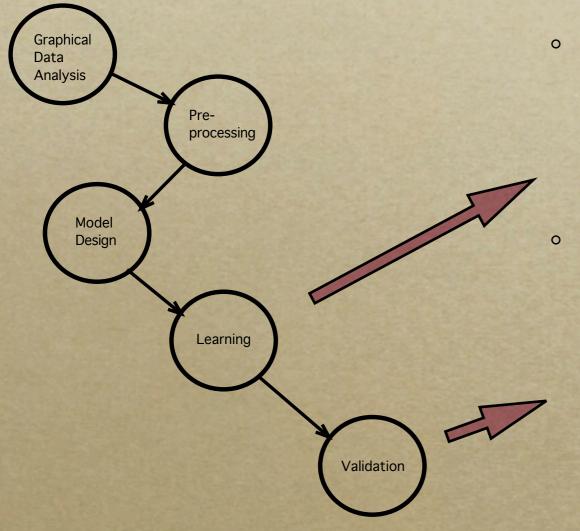
[8] Couso, I., Sánchez, L., **Higher order models for fuzzy random variables**. Fuzzy Sets and Systems 159, 3, 237-258, 2008

Representation



 The first order model has a possibilistic interpretation, coherent with the view of a fuzzy set as a familiy of confidence intervals

Critical considerations

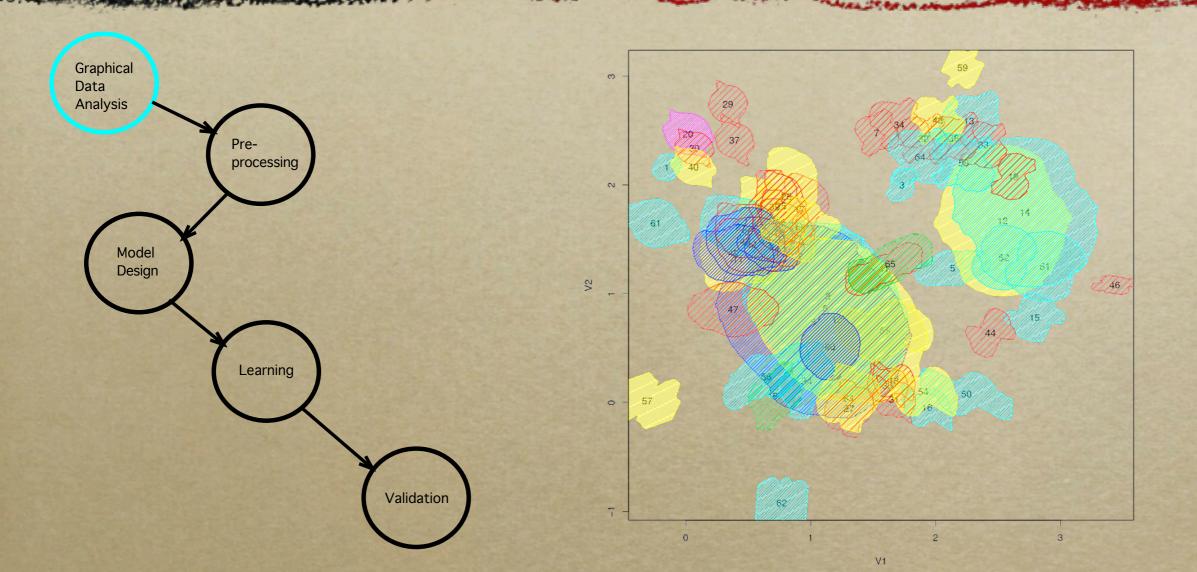


EAs used in GFS Simple GAs 0 The use of novel EAs 0 **Experimental study** 0 reproducibility 0

- Benchmark problems and
- Lack of experimental statistical analysis
- Comparison with the state of the art 0

Herrera, F. Genetic Fuzzy Systems: Status, Critical Considerations and Future Directions. International Journal of Computational Intelligence Research. 1 (1). 2005. 59-67

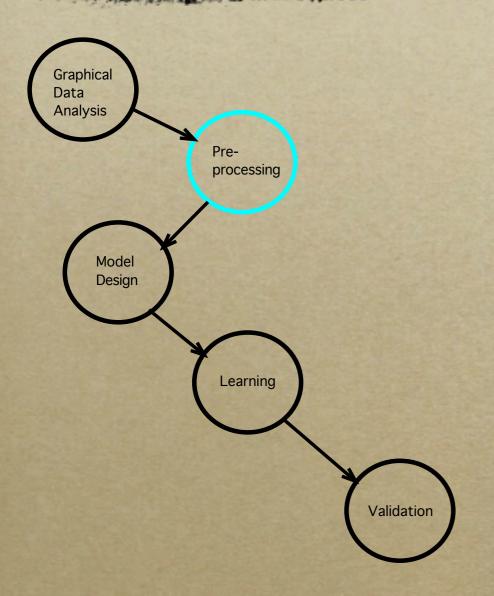
Graphical Analysis



• PCA, ICA, MDS, for interval and fuzzy data

[9] Sánchez, L., Palacios, A., Suárez, M. R., Couso, I. Graphical exploratory analysis of vague data in the early diagnosis of dyslexia. IPMU 08. Málaga.

Preprocessing



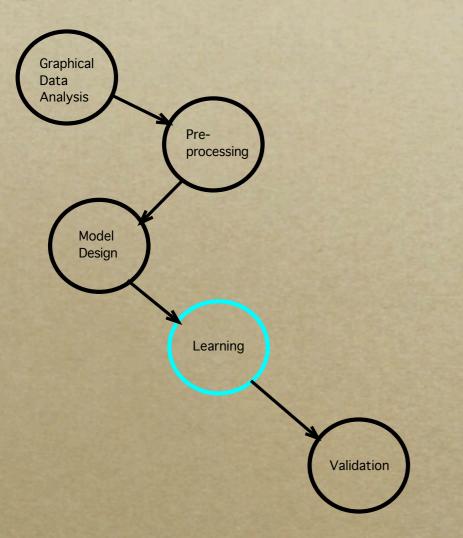
 Feature selection (mutual information between frv, and other wrapper / filter methods)

• Instance selection

• Transformations of sets variables

[7] Sanchez, L., Suarez, M. R., Villar, J. R., Couso, I. Some results about mutual information based feature selection and fuzzy discretization of vague data. Intl. Conf. Fuzzy Systems FUZZ-IEEE 2007, pp. 1-6. 2007.

Fuzzy fitness-based GFS



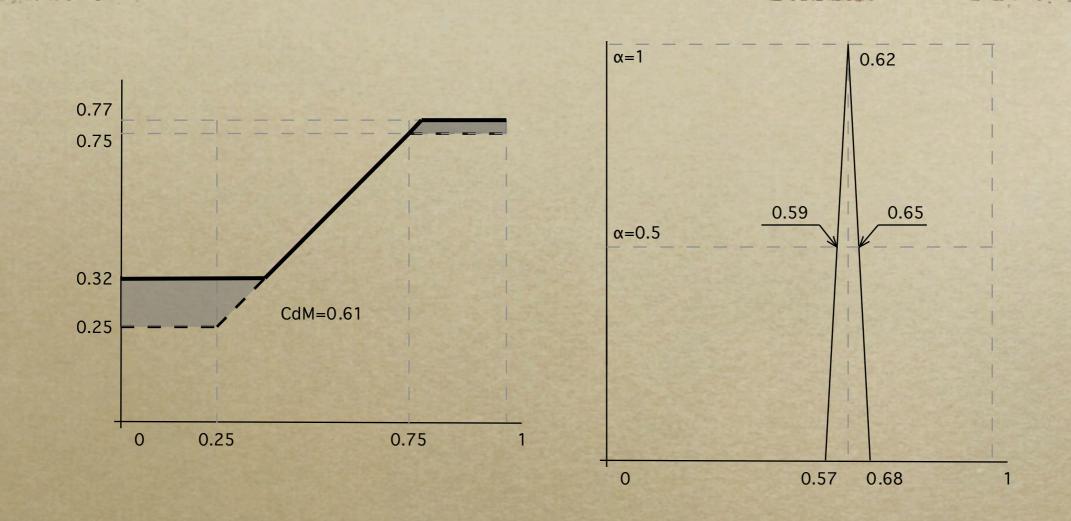
 New inference mechanisms, that are coherent with the representation of interval or fuzzy data

New measures of fitness

 (variance of an frv, error of a classifier on imprecise data, etc.)

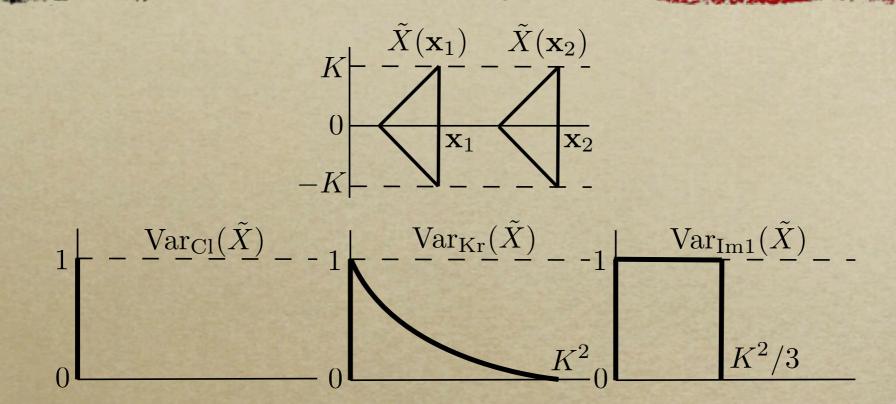
Sanchez, L., Couso, I., Casillas, J., Genetic Learning of Fuzzy Rules based on Low Quality Data. Submitted to Fuzzy Sets and Systems.

Inference



• The reasoning method must be coherent with the possibilistic representation of the data.

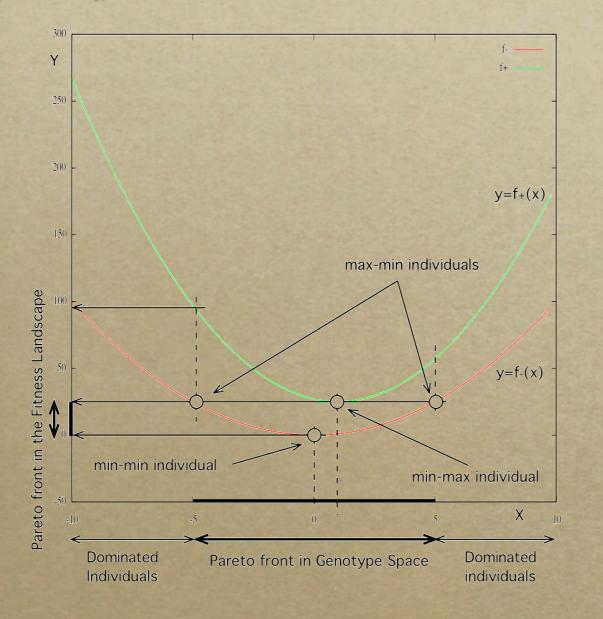
Fitness Function



• The 1st order imprecise model has an intervalvalued (not fuzzy) fitness

[5] Couso, I., Dubois, D., Montes, S., Sanchez, L., **On various definitions of the variance of a fuzzy random variable**. 5th International Symposium on Imprecise Probability: Theories and Applications. ISIPTA'07. 16-19 July 2007

Optimization of interval-valued fitness functions



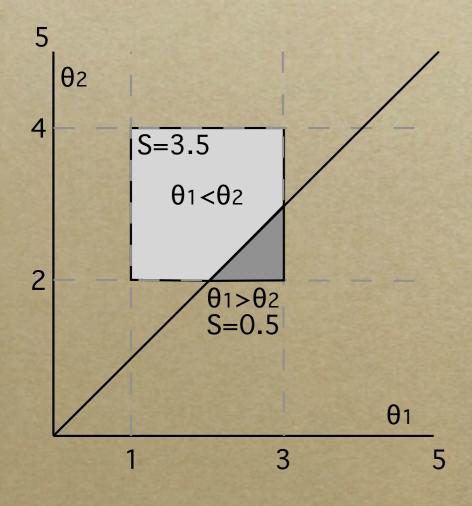
- GAs and Metaheuristics should minimize interval valued functions
- Optimizing an interval valued funcion is analogous to solving a multicriteria problem: the same algorithms (i.e. NSGA-II, SPEA, etc) can be adapted.

NSGA-II for interval-valued fitness

Dominance relation (non dominated sorting) Crowding distance

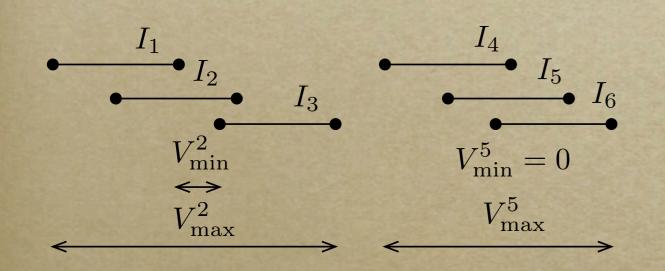
[2] Sánchez, L. Couso, I. Casillas, J. Modelling Vague Data with Genetic Fuzzy Systems under a Combination of Crisp and Imprecise Criteria, in *Proc. of the 2007 IEEE Symposium on Computational Intelligence in Multicriteria Decision Making (MCDM*'2007), pp. 30--37, Honolulu, Hawaii, USA, April 2007

Dominance



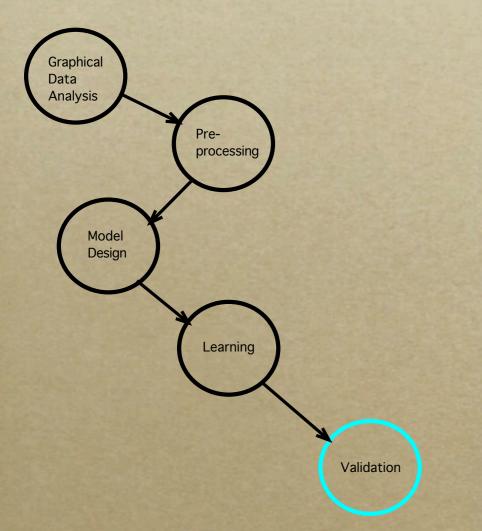
Strong dominance
Uniform prior
Imprecise probabilities based prior

Crowding



• The Haussdorff distance is between the minimum and the maximum distance between the individuals

Validation



 Benchmarks with interval and fuzzy data
 Statistical tests for comparing samples of fuzzy random variables

Couso, I., Sanchez, L., Mark-recapture techniques in statistical tests for imprecise data. International Journal of Approximate Reasoning (submitted)

[10] Couso, I., Sanchez, L., **Defuzzification of fuzzy p-values**. Fourth International Workshop on Soft methods in probability and statistics SPMS'08 (admitted)

Summary of Part I

• Lots of open problems. Some to mention:

- Theoretical study of the relations with SVM
- Graphical analysis tools for coarse data (MDS, ICA, PCA, etc.)
- Feature selection, instance selection, transformations
- New inference mechanisms that match the representation of data
- New measures of fitness for classifiers and models
- Theoretical and practical studies relating MOEAs and optimization of interval and fuzzy-valued fitness functions, new MOEAs and MO metaheuristics for solving problems with mixtures of objectives
- Statistical tests (bootstrap, t-test for imprecise data, etc.)
- Benchmarks for comparing the new algorithms.

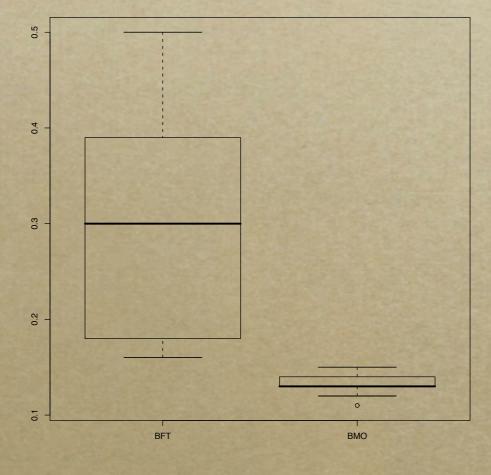
Part II

Some results on the use of Evolutionary Algorithms for extracting knowledge from low quality data

Examples of successful applications

- 1. Artificial addition of imprecision to crisp data, learning with IRL and GCCL (synthetic datasets)
- 2. Aggregates of conflicting data, learning with Pittsburgh-style GFS (marketing models)
- 3. Crisp data + tolerance, evolutionary filtering (GPS trajectories)
- 4. Interval-valued data, Pittsburgh-style GFS (Diagnosis of dyslexia)
- 5. Preprocessing and evolutionary graphical analysis

1. IRL (Boosting) - Extended Data



 The addition of fuzzy imprecision to crisp data, followed by a fuzzy fitness-based GFS, improves the generalization

[1] L. Sánchez, J. Otero, and J. R. Villar, "Boosting of fuzzy models for high-dimensional imprecise datasets," in Proc. IPMU 2006, Paris, France, 2006.

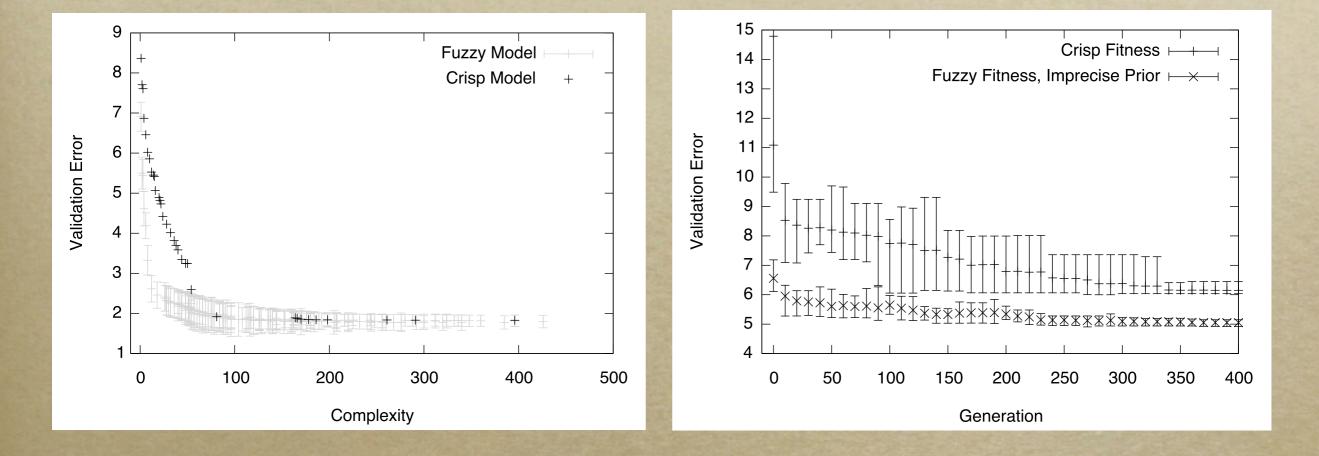
1. GCCL - Extended data

	1%	1%	5%	5%	10%	10%
	BFT	FGCCL	BFT	FGCCL	BFT	FGCCL
f_1	0.89	0.35	6.64	6.25	24.82	24.77
f_1-10	2.66	1.86	9.39	8.31	29.03	28.60
f_2	0.52	0.23	0.60	0.47	1.41	1.23
f_2-10	0.56	0.37	0.97	0.68	1.67	1.70
elec	440	421	581	558	1003	988
		Labels	WM	WLS-TSK	BFT	FGCCL
elec		3	7	8	10	4
machine-CPU		3	20	91	25	4
daily-elec		3	64	427	25	5
Friedman		3	192	242	25	10
building		$3/2^{*}$	789	896*	30	20

• GCCL is better than IRL for low quality data, in complexity and accuracy

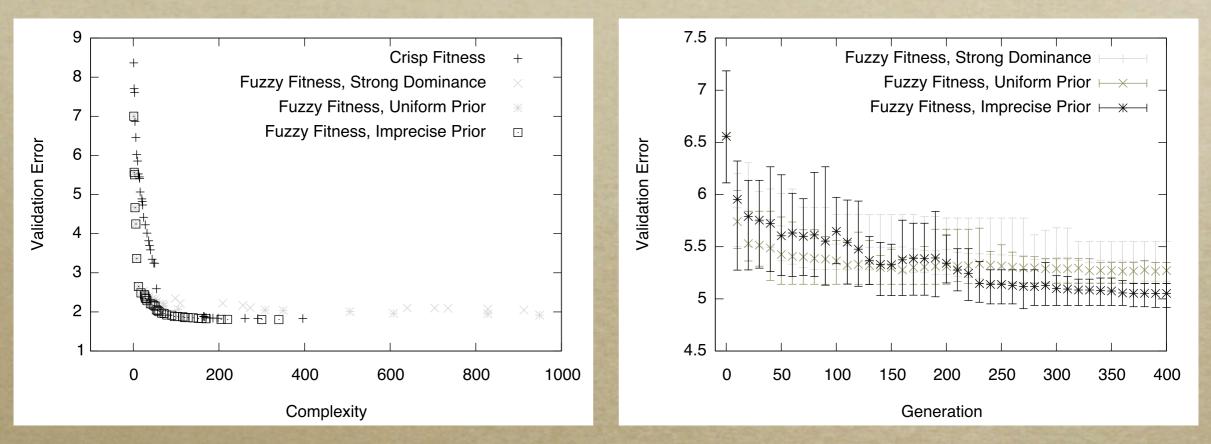
[6] Sanchez, L., Otero, J. Learning fuzzy linguistic models from low quality data by genetic algorithms FUZZ-IEEE 2007, London. pp 1-6, 2007

2. Pittsburgh - Aggregated data (I)



• The fuzzy fitness-based GFS improved the accuracy of the crisp version.

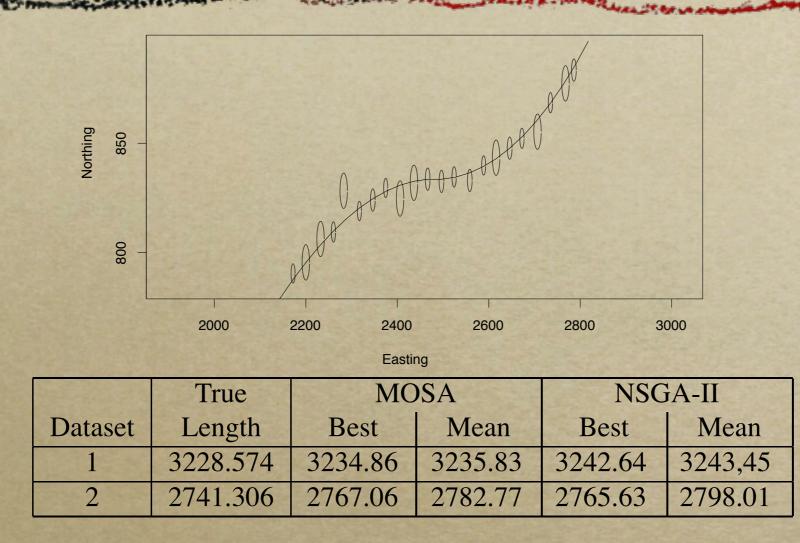
2. Pittsburgh - Aggregated data (II)



• The precedence operator based on imprecise probabilities is more efficient in the latter generations of the GA

[2] Sánchez, L. Couso, I. Casillas, J. Modelling Vague Data with Genetic Fuzzy Systems under a Combination of Crisp and Imprecise Criteria, in *Proc. of the 2007 IEEE Symposium on Computational Intelligence in Multicriteria Decision Making (MCDM*'2007), pp. 30--37, Honolulu, Hawaii, USA, April 2007

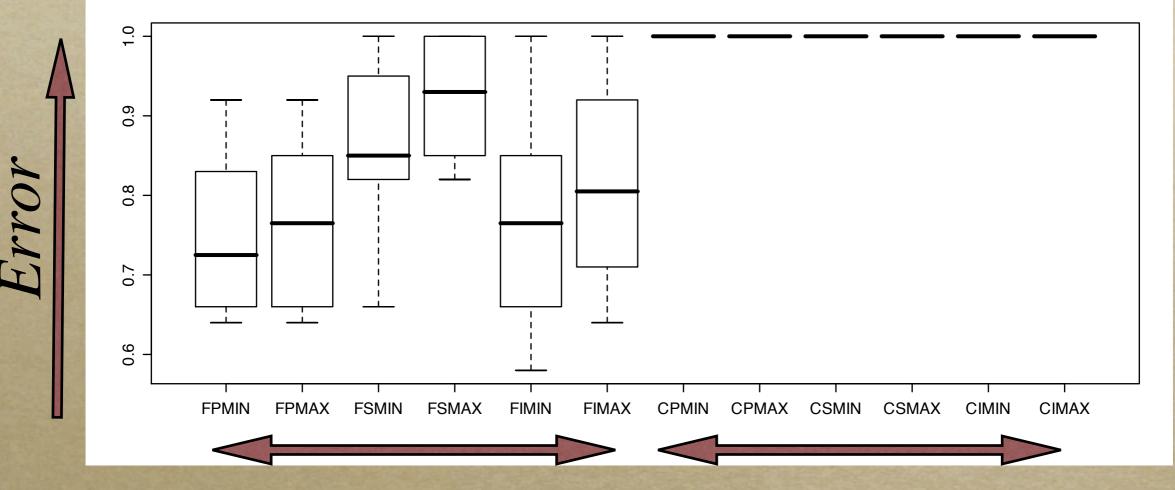
3. Composite data (GPS)



• Population-based SA and NSGA-II were used to find the lowest upper bound of the length of a trajectory

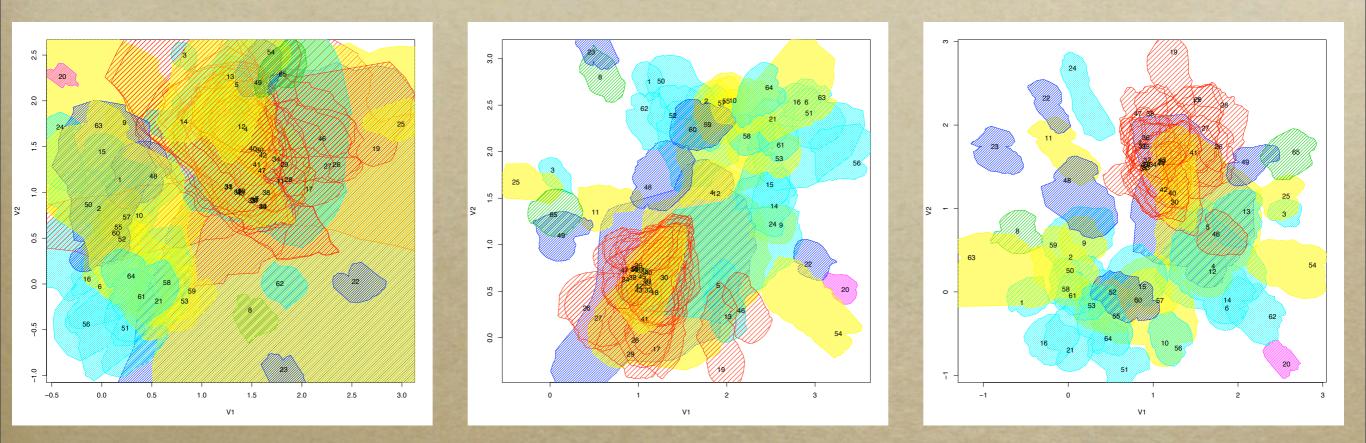
[3] Sanchez, L., Couso, I., Casillas, J. A Multiobjective Genetic Fuzzy System with Imprecise Probability Fitness for Vague Data. Int. Symp. on Evolving Fuzzy Systems (EFS 2006), pp. 131-136, 2006.

4. Feature Selection + Pittsburgh



 Dyslexia diagnosis with interval data. The set of variables selected based on fuzzy techniques are uniformly better than those found by crisp techniques

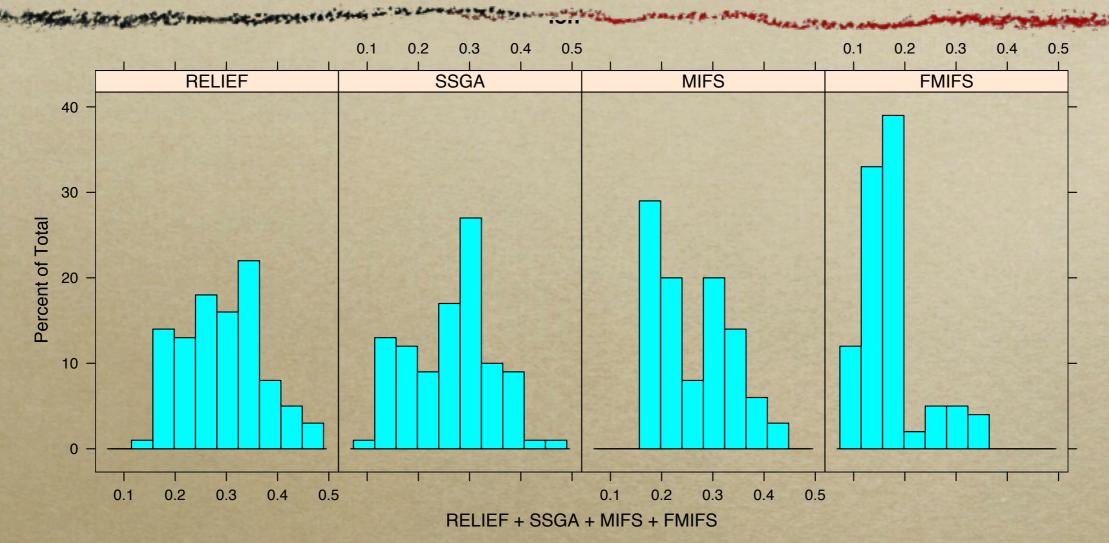
5. MDS, Interval & Missing data



• MDS analysis for different granularities of the linguistic partition

[9] L. Sánchez, J. Otero, and J. R. Villar, "Graphical exploratory analysis of vague data in the early diagnosis of syslexi in Proc. IPMU 2008, Málaga, Spain, 2008.

5. Feature selection, fuzzified data



• The ranking of the features depends on the linguistic partition of the input variables

[7] Sanchez, L., Suarez, M. R., Villar, J. R.; Couso, I. Some Results about Mutual Information-based Feature Selection and Fuzzy Discretization of Vague Data. FUZZ-IEEE 2007, London. pp 1-6, 2007.