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Introduction to Low Quality Data
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Part I: Introduction to Low Quality Data

Future directions

Novel types of data (issues with the representation, fuzzy 
random variables)

Preprocessing

Learning (Inference, Fitness, Genetic optimization)

Validation

Part II: Some results on the use of Evolutionary Algorithms 
for knowledge extraction from low quality data



Future directions in 2005

Trade-off interpretability vs. precision. Use of 
MOGAs

FRBS for high dimensional problems

GFSs in Data Mining and Knowledge 
Discovery

Learning genetic models based on vague data

Herrera, F.  Genetic Fuzzy Systems: Status, Critical Considerations and Future Directions. 
International Journal of Computational Intelligence Research. 1 (1). 2005. 59-67



Future directions in 2008

Multiobjective genetic learning of FRBSs: interpretability-
precision

GA-based techniques for mining fuzzy association rules 
and data mining

Learning genetic models based on low quality data

Genetic learning of fuzzy partitions and context adaptation

Genetic adaptation of inference engine components

Revisiting Michigan style GFSs

Herrera, F. Genetic Fuzzy Systems: Taxonomy, Current Research Trends and Prospects. 
Evolutionary Intelligence 1 (2008) 27-46



Rationale behind low quality data

Crisp data-based GFS are standard statistical classifiers and 
models:

Genetic fuzzy classifiers minimize a biased estimation of 
the classification error (the training error)

Genetic fuzzy models minimize an estimate of the squared 
error of a model

There might be theoretical differences if artificial imprecision 
is added to crisp data and a fuzzy fitness-based GFS is used

[4] Sánchez, L., Couso, I., Advocating the use of imprecisely observed data in Genetic Fuzzy 
Systems. IEEE Trans Fuzzy Sys 15(4). 2007. 551-562



Addition of imprecision to crisp data (I)

 There might be a relation between fuzzy fitness-based 
GF classifiers and SVM.



Addition of imprecision to crisp data (II)

The same happens with models - the more regular the 
model, the more specific its fuzzy fitness is, pointing 
again to relations between regularized models and fuzzy 
fitness-based GF models.



Further uses of low quality data

Imprecise / low quality

Imprecisely measured data

Coarsely discretized data, censored data

Missing values

Novel representations

Crisp data + tolerance

Aggregated values, lists, conflicting data

Addition of imprecision to crisp data



Fuzzy Random Variables

Classical model
Second order model
First order, 
imprecise 
probabilities-based

[8] Couso, I., Sánchez, L., Higher order models for fuzzy random variables. Fuzzy Sets and 
Systems 159, 3, 237-258, 2008
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Representation

The first order model has a possibilistic interpretation, 
coherent with the view of a fuzzy set as a familiy of 
confidence intervals

f(x|ω) Π(x|ω)

A A

P (A) ≤ max
A

Π(x|ω)P (A) =
∫

A
f(x|ω)dx



Critical considerations

EAs used in GFS

Simple GAs

The use of novel EAs

Experimental study

Benchmark problems and 
reproducibility

Lack of experimental statistical 
analysis

Comparison with the state of the art

Graphical!

Data!

Analysis

Pre-!

processing

Learning

Model!

Design

Validation

Herrera, F.  Genetic Fuzzy Systems: Status, Critical Considerations and Future Directions. International Journal 
of Computational Intelligence Research. 1 (1). 2005. 59-67



Graphical Analysis

PCA, ICA, MDS, for interval and fuzzy data

Graphical!

Data!

Analysis

Pre-!

processing

Learning

Model!

Design

Validation

[9] Sánchez, L., Palacios, A., Suárez, M. R., Couso, I. Graphical exploratory analysis of vague data in the early 
diagnosis of dyslexia. IPMU 08. Málaga.



Preprocessing

Feature selection (mutual 
information between frv, and 
other wrapper / filter 
methods)

Instance selection

Transformations of sets 
variables

Graphical!

Data!

Analysis

Pre-!

processing

Learning

Model!

Design

Validation

[7] Sanchez, L., Suarez, M. R., Villar, J. R., Couso, I. Some results about mutual information based 
feature selection and fuzzy discretization of vague data. Intl. Conf. Fuzzy Systems FUZZ-IEEE 2007, 
pp. 1-6. 2007.



Fuzzy fitness-based GFS

New inference mechanisms, 
that are coherent with the 
representation of interval or 
fuzzy data

New measures of fitness 
(variance of an frv, error of a 
classifier on imprecise data, 
etc.)

Graphical!

Data!

Analysis

Pre-!

processing

Learning

Model!

Design

Validation

Sanchez, L., Couso, I., Casillas, J., Genetic Learning of Fuzzy Rules based on Low Quality Data. 
Submitted to Fuzzy Sets and Systems.



Inference

The reasoning method must be coherent with 
the possibilistic representation of the data.
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Fitness Function
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[5] Couso, I., Dubois, D., Montes, S., Sanchez, L., On various definitions of the variance of a 
fuzzy random variable. 5th International Symposium on Imprecise Probability: Theories and 
Applications. ISIPTA’07. 16-19 July 2007

The 1st order imprecise model has an interval-
valued (not fuzzy) fitness



Optimization of interval-valued fitness functions

GAs and Metaheuristics 
should minimize 
interval valued 
functions 

Optimizing an interval 
valued funcion is 
analogous to solving a 
multicriteria problem: 
the same algorithms 
(i.e. NSGA-II, SPEA, 
etc) can be adapted.



NSGA-II for interval-valued fitness

Dominance relation (non dominated 
sorting)
Crowding distance

[2] Sánchez, L. Couso, I. Casillas, J. Modelling Vague Data with Genetic Fuzzy Systems under a 
Combination of Crisp and Imprecise Criteria, in Proc. of the 2007 IEEE Symposium on 
Computational Intelligence in Multicriteria Decision Making (MCDM'2007), pp. 30--37, Honolulu, 
Hawaii, USA, April 2007



Dominance

Strong dominance
Uniform prior
Imprecise probabilities 
based prior
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Crowding

The Haussdorff 
distance is 
between the 
minimum and the 
maximum distance 
between the 
individuals
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Validation

Benchmarks with 
interval and fuzzy data

Statistical tests for 
comparing samples of 
fuzzy random variables

Graphical!

Data!

Analysis

Pre-!

processing

Learning

Model!

Design

Validation

Couso, I., Sanchez, L., Mark-recapture techniques in statistical tests for imprecise data. International 
Journal of Approximate Reasoning (submitted)

[10] Couso, I., Sanchez, L., Defuzzification of fuzzy p-values. Fourth International Workshop on Soft 
methods in probability and statistics SPMS’08 (admitted)



Summary of Part I

Lots of open problems. Some to mention:
Theoretical study of the relations with SVM
Graphical analysis tools for coarse data (MDS, ICA, PCA, etc.)
Feature selection, instance selection, transformations
New inference mechanisms that match the representation of data
New measures of fitness for classifiers and models
Theoretical and practical studies relating MOEAs and 
optimization of interval and fuzzy-valued fitness functions, new 
MOEAs and MO metaheuristics for solving problems with 
mixtures of objectives
Statistical tests (bootstrap, t-test for imprecise data, etc.)
Benchmarks for comparing the new algorithms.



Part II

Some results on the use of Evolutionary 
Algorithms for extracting knowledge from low 

quality data



Examples of successful applications

1. Artificial addition of imprecision to crisp data, 
learning with IRL and GCCL (synthetic datasets)

2. Aggregates of conflicting data, learning with 
Pittsburgh-style GFS (marketing models)

3. Crisp data + tolerance, evolutionary filtering (GPS 
trajectories)

4. Interval-valued data, Pittsburgh-style GFS
(Diagnosis of dyslexia)

5. Preprocessing and evolutionary graphical analysis



1. IRL (Boosting) - Extended Data

The addition of fuzzy 
imprecision to crisp 
data, followed by a 
fuzzy fitness-based 
GFS, improves the 
generalization

BFT BMO
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[1] L. Sánchez, J. Otero, and J. R. Villar, “Boosting of fuzzy models for high-dimensional imprecise 
datasets,” in Proc. IPMU 2006, Paris, France, 2006.



1. GCCL - Extended data

GCCL is better than IRL for low quality data, in 
complexity and accuracy

Fuzzy Regression Models from Imprecise Data with Multiobjective GA 11

WM1 WM2 WM3 CH1 CH2 CH3 NIT LIN QUA NEU TSK BFT BMO GCCL
f1 5.65 5.73 5.57 5.82 8.90 6.93 5.63 130.5 0.00 0.35 0.095 0.327 0.30 0.14

f1-10 6.89 7.19 6.54 6.84 10.15 8.20 7.16 133.91 1.40 1.78 1.62 1.86 1.71 1.65
f1-20 11.07 10.99 11.06 11.33 13.45 12.42 10.63 135.6 5.29 6.42 5.90 6.04 5.98 5.89
f1-50 51.78 46.40 47.80 53.48 48.94 48.16 39.65 166.64 33.53 41.18 36.76 39.62 38.66 38.66

f2 0.41 0.48 0.45 0.40 0.59 0.45 0.43 1.54 1.61 1.48 0.15 0.24 0.26 0.25
f2-10 0.64 0.68 0.68 0.59 0.68 0.60 0.58 1.71 1.75 1.81 0.29 0.42 0.41 0.38
f2-20 1.27 1.16 1.17 1.29 1.15 1.17 0.97 2.04 2.09 0.90 0.76 0.87 0.87 0.90
f2-50 4.34 3.98 3.94 4.47 3.90 3.97 3.59 4.67 4.78 3.76 3.62 3.67 3.72 3.70

Table 5 Comparative test error of FGCCL and the synthetic datasets f1 and f2 (reproduced from reference [28]). The
algorithms include: heuristics (WM, CH), statistical regression (LIN, QUA), neural networks (NEU), rules with a real-valued
consequent (NIT), TSK rules (TSK), genetic backfitting (BFT) and MOSA-based backfitting (BMO). BFT, BMO and GCCL
runs were limited to 25 fuzzy rules. The best of WM, CH, NIT, BFT, BMO and GCCL, plus the best overall model, were
highlighted for every dataset.

Statistical Fuzzy Rule Learning
LIN NEU WM WLS-TSK BFT FGCCL

elec ·10−3 419 616 832 485 444 399
machine-CPU 6204 8955 18057 7533 17857 9536

daily-elec 0.171 0.195 0.305 0.179 0.224 0.196
Friedman 7.33 1.22 7.11 1.80 2.28 1.61

building ·103 4.77 2.76 4.44 2.68 3.15 2.98

Table 6 Performance of a selection of statistical models, heuristic rule learning and GFS in some benchmarks. The most
accurate fuzzy rule learning algorithm is Weighted Least Squares TSK, followed by FGCCL.

Labels WM WLS-TSK BFT FGCCL
elec 3 7 8 10 4

machine-CPU 3 20 91 25 4
daily-elec 3 64 427 25 5
Friedman 3 192 242 25 10
building 3/2∗ 789 896∗ 30 20

Table 7 The number of fuzzy rules generated by FGCCL is much lower than those produced by either example-guided or
grid-guided learning methods. FGCCL improves grid-based learning algorithms by one order of magnitude in the number of
parameters. We have used three linguistic labels in all the variables (but the discrete ones). In the dataset “building”, the
grid-based algorithm depends on partitions of size 2. Otherwise, the number of rules is too high for practical purposes.

6.4 Performance of GCCL over machine learning
databases

The fourth benchmark uses standard Machine Learn-
ing benchmarks to assess the accuracy and the compact-
ness of the FGCCL algorithm, in problems with different
sizes and number of inputs. In order to keep the discus-
sion simple, we have chosen a selection of the algorithms
in the preceding section. CH1, CH2 and CH3 were dis-
carded because they produced a much higher number
of rules than WM, without a noticeable increment of
the accuracy. Also, since we are measuring the linguis-
tic quality by the number of rules, without taking into
account the complexities of the consequent part of the
rules, we discard NIT, because it is less accurate than
weighted linear squares-based TSK, for the same number
of fuzzy rules. The quadratic regression is also removed,
because most of times the corresponding polynomial has
more terms than the multilayer perceptron needed for
obtaining an equivalent accuracy.

Summarizing, linear regression and the neural net-
work are left for reference purposes. Other than this,
we have compared: one example-guided heuristic method
(Wang and Mendel algorithm), one TSK grid-based al-
gorithm (we fitted with weighted least squares a plane
to each set of elements covered by one cell of the fuzzy
grid; the weights are the memberships of the elements to
the cell), an IRL method (genetic backfitting) and Fuzzy
GCCL. The results are given in Tables 6, 7, and Figure
5.

As expected, the example-guided heuristic uses a mod-
erately high number of rules, and it is not very pre-
cise (equivalent or worse than linear regression). The
weighted linear squares obtention of TSK rules is the
most precise method, similar to that of the neural net-
work. Backfitting and FGCCL both perform well and
offer a good compromise between compacteness and ac-
curacy. FGCCL was significantly better than backfitting

Fuzzy Regression Models from Imprecise Data with Multiobjective GA 9

0% 1% 2% 3%
f1 0.13 0.22 1.34 5.30

f1-10 1.59 1.67 2.75 6.69
f1-20 5.98 6.08 7.17 11.05
f1-30 14.37 14.53 15.76 19.92
f1-50 39.22 39.30 40.31 44.16

f2 0.22 0.23 0.34 0.76
f2-10 0.35 0.37 0.50 0.93
f2-20 0.86 0.88 1.00 1.43
f2-30 1.40 1.42 1.55 1.97
f2-50 3.69 3.71 3.83 4.25

elec ·10−3 416 416 416 890

Table 3 Test error when the input data has tolerances ±1%, ±2% and ±3%. When the observation error is combined with a
high slope in the function (function f1 and “elec” problem,) the learning algorithm overtrains. The abnormal values are shown
in boldface.

1% 1% 5% 5% 10% 10%
BFT FGCCL BFT FGCCL BFT FGCCL

f1 0.89 0.35 6.64 6.25 24.82 24.77
f1-10 2.66 1.86 9.39 8.31 29.03 28.60

f2 0.52 0.23 0.60 0.47 1.41 1.23
f2-10 0.56 0.37 0.97 0.68 1.67 1.70
elec 440 421 581 558 1003 988

Table 4 Comparison of FGCCL and Backfitting in datasets with 1%, 5% and 10% of interval-valued imprecision in the
outputs, and tested with crisp data with non-zero mean observation error. FGCCL improved the results in all the tests for
which the observation error was the most relevant source of noise.

The results are shown in Table 4. As expected, GCCL
improved the results in the tests for which the observa-
tion error was the most relevant source of noise, almost
uniformly.

6.3 Influence of the stochastic noise

The third benchmark checks whether FGCCL can be ap-
plied to crisp problems. We have compared the accuracy
of FGCCL with the selection of learning algorithms in
reference [28]. We have intentionally dropped from that
list the real-world datasets1, and focused in the synthetic
datasets, whose degree of contamination with stochastic
noise is known. It is emphasized that, in this case, we
have assumed that the observation error is zero, since
none of the algorithms to which we will compare ours
can use vague data.

The fuzzy rule learning algorithms in reference [28]
are: Wang and Mendel with importance degrees ‘max-
imum’, ‘mean’ and ‘product of maximum and mean’
(WM1, WM2 and WM3, respectively) [36] the same three
versions of Cordón and Herrera’s method (CH1, CH2,
CH3) [3]. Nozaki, Ishibuchi and Tanaka’s (NIT) fuzzy
rule learning [22], TSK rules [34] optimized with Weighted

1 The results of FGCCL on the two dropped problems
building and elec can be found in Table 6. In both cases,
FGCCL is better than all GFSs in reference [28], but the
difference is not relevant in this context.

Least Squares and Genetic Backfitting [27], and MOSA-
based [32] backfitting (BMO) [28]. The same reference
includes the linear regression (LIN), the Quadratic Re-
gression (QUA) and a Conjugate-Gradient trained Mul-
tilayer Perceptron (NEU). This 13 algorithms have been
compared to the Genetic Cooperative Competitive FGCCL.

The best overall result and the most accurate fuzzy
rule base are boldfaced in Table 5. We have also in-
cluded a selection of boxplots in Figure 4. These pro-
vide a graphical insight of the relevance of the differ-
ences between the median, the mean and the variance of
the results. Observe that the performances of the heuris-
tic algorithms are always worse than those of the GFS.
There are not, in general, significant differences in accu-
racy between GFS, statistical nonlinear regression and
neural networks, although there seems to be a small im-
provement in accuracy of FGCCL over the remaining
GFS. The significance of the difference is never statis-
tically sound (95% level). Observe that, if we had used
the results in the first column of Table 3 (which were
obtained after a different set of ten independent runs of
the algorithm) the conclusions are the same.

However, the most important gain, if FGCCL is to
be used in crisp datasets, is not the improved accuracy
but the compactness of the rule base, as we show in the
next section.

[6] Sanchez, L., Otero, J. Learning fuzzy linguistic models from low quality data by genetic algorithms FUZZ-IEEE 
2007, London. pp 1-6, 2007



2. Pittsburgh - Aggregated data (I)

The fuzzy fitness-based GFS improved the accuracy of 
the crisp version.



2. Pittsburgh - Aggregated data (II)

The precedence operator based on imprecise probabilities 
is more efficient in the latter generations of the GA

[2] Sánchez, L. Couso, I. Casillas, J. Modelling Vague Data with Genetic Fuzzy Systems under a 
Combination of Crisp and Imprecise Criteria, in Proc. of the 2007 IEEE Symposium on 
Computational Intelligence in Multicriteria Decision Making (MCDM'2007), pp. 30--37, Honolulu, 
Hawaii, USA, April 2007



3. Composite data (GPS)

Population-based SA and NSGA-II were used to find the lowest 
upper bound of the length of a trajectory
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4. Feature Selection + Pittsburgh

Dyslexia diagnosis with interval data. The set of 
variables selected based on fuzzy techniques are 
uniformly better than those found by crisp techniques

~

FPMIN FPMAX FSMIN FSMAX FIMIN FIMAX CPMIN CPMAX CSMIN CSMAX CIMIN CIMAX

0
.6

0
.7

0
.8

0
.9

1
.0

Er
ro

r



5. MDS, Interval & Missing data

MDS analysis for different granularities of the linguistic partition
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Figure 5: Left: MDS in input space. Right: MDS in activation space. The use of the activation
space instead of the input space gains more insight into the structure of the data, and does not
require scaling. The meaning of the colors is: Red: 0. Green: lower than 1. Blue: 1. Cyan: 2.
Magenta: 3. Yellow: 4

0 1 2 3

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

V1

V
2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30
31

32

33
34

35
36
37

38

39
40

41

42
43

44

45

46

47

48

49

50

5152

53

54

55

56

57

58

59
60

61

62

63

64

65

0.0 0.5 1.0 1.5 2.0 2.5 3.0

!
0
.5

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

V1

V
2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2021

22

23

24

25

26

27

28

29

30

31

32
33

34

353637

3839

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

0.0 0.5 1.0 1.5 2.0

0
.0

0
.5

1
.0

1
.5

2
.0

V1

V
2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

2223

24

25

26

27

28

29

30

31

32

33

34

35

36
37

38

39

40

41

42

43

44

45

46

4748

49

50

5152

53

54

55

56

57

58

59

60

61

62

63

64

65

Figure 6: Three subsets of 8 variables have been examined. Left: Fuzzy Mutual Information
[15]. Center: Analysis of Variance of linear models, with crisp data. Right: Selection of the most
relevant tests, according to the human expert. The crisp selection did not take into account
the vagueness. The set of variables chosen by the expert does not produce a clear distinction
between children with and without dyslexia. The use of fuzzy IM produced reasonable results.
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Figure 7: Interval MDS in activation space, with granularities 3, 5 and 7, and the feature set
obtained by IM. The projection of the set of granularity 7 does not significantly improve the
separability of the data and 3 labels are not enough for separating the cases, thus the best
granularity is 5.[9] L. Sánchez, J. Otero, and J. R. Villar, “Graphical exploratory analysis of vague data in the early diagnosis of syslexia,” 

in Proc. IPMU 2008, Málaga, Spain, 2008.



5. Feature selection, fuzzified data

The ranking of the features depends on the linguistic 
partition of the input variables
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Fig. 5. Histogram of the test error, 1000 runs of HEUR2 (each sample is the mean
test error in a 10 fold cross validation, which was repeated 100 times, with ran-
dom Ruspini partitions of the input variables.) From top to bottom: WINE, ION,
SONAR, PIMA and GERMAN datasets. Observe that there exist datasets (e.g.
ION) for which the density function of the test error in FMIFS is skewed, showing
a correlation between the ranking of the features and the membership functions of
the input variables.
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