
Soft Computing manuscript No.
(will be inserted by the editor)

Evolutionary Rule-Based Systems for Imbalanced Datasets

Albert Orriols-Puig, Ester Bernadó-Mansilla

Grup de Recerca en Sistemes Intel.ligents
Enginyeria i Arquitectura La Salle
Universitat Ramon Llull
Quatre Camins, 2. 08022, Barcelona, Spain.
e-mail: {aorriols,esterb}@salle.url.edu

Abstract This paper investigates the capabilities of
evolutionary online rule-based systems, also called Learn-
ing Classifier Systems (LCSs), for extracting knowledge
from imbalanced data. While some learners may suffer
from class imbalances and instances sparsely distributed
around the feature space, we show that LCSs are flex-
ible methods that can be adapted to detect such cases
and find suitable models. Results on artificial datasets
specifically designed for testing the capabilities of LCSs
in imbalanced data show that LCSs are able to extract
knowledge from highly imbalanced datasets. When LCSs
are faced with real-world problems, they demonstrate
to be one of the most robust methods compared with
instance-based learners, decision trees and support vec-
tor machines. Moreover, all the learners benefit from re-
sampling techniques. Although there is not a resampling
technique that performs best in all datasets and for all
learners, those based in oversampling seem to perform
better in average. The paper adapts and analyses LCSs
for challenging imbalanced datasets and sets the bases
for further studying the combination of resampling tech-
niques plus learner best suited to a specific kind of prob-
lem.

Keywords. Imbalanced data, rule-based systems, data
preprocessing, classification.

1 Introduction

During the last few years, machine learning techniques
have been applied to complex real-world problems with
the aim of extracting novel and useful knowledge. Due to
either the rarity or the cost to obtain them, many real-
world problems contain few examples of the concept to
be described. This results in datasets with either rare

classes or rare cases [30], and learning from these rari-
ties has been identified as one of the main challenges in
data mining. It has been shown that some learners such
as C4.5 or multi-layered perceptrons may suffer when

learning from datasets that contain rare classes1, since
they are biased toward the majority class [14, 15]. On
the other hand, rare cases produce small disjuncts2 [16],
which concentrate the most part of classification error.
In supervised learning, rare classes and rare cases are
closely related; learners tend to create small disjuncts
when learning from datasets with rare classes, and so,
their effect can be hardly studied separately.

Evolutionary rule-based systems are a type of learn-
ers that evolve a set of rules by means of evolution-
ary algorithms. Among the different approaches that fit
this definition, the so-called Learning Classifier Systems
(LCSs) approach [12] is one of their best representatives.
LCSs are online learners which evolve a set of rules that
jointly represent the target concept. Although the ro-
bustness of evolutionary algorithms in imbalanced data
has been widely shown [8], no systematic analyses have
been conducted on Learning Classifier Systems (LCSs),
which intrinsically use evolutionary algorithms to evolve
the rule-based knowledge.

This paper studies the behavior of XCS [32, 33] and
UCS [3], two accuracy-based LCSs that have demon-
strated to perform competitively in classification tasks
[6, 3]. First, we review the theory for learning from im-
balanced data in XCS and UCS. The theoretical analysis
states that both LCSs should be robust to class imbal-
ances if they are properly configured. So, we summa-
rize the guidelines to configure LCSs for an imbalanced
dataset, given its imbalance ratio. Furthermore, we pro-
pose an algorithm that allows XCS/UCS to self-adapt if
imbalances are detected during learning. This approach
is essential in real-world problems, since the presence of
small disjuncts is unknown a priori. The performance of
XCS and UCS is tested on artificial problems that per-
mit to vary separately the concept complexity and the
imbalance level. After that, both LCSs are tested over

1 Also referred as datasets with class imbalances.
2 A disjunct is the definition of a subconcept of the original

concept made by a specific learner.



2 Albert Orriols-Puig, Ester Bernadó-Mansilla

a large set of real-world domains with different imbal-
ance ratios and compared with three other well-known
learners: C4.5 [26], SMO [25], IBk [1].

In highly imbalanced datasets, problems caused by
rare classes and rare cases have been usually tackled
by resampling the training datasets [2]. We investigate
whether resampling techniques are valuable with LCSs
and the other learners, and which of them offer better
improvements.

The remainder of this paper is organized as follows.
Section 2 introduces the problem of mining from rarities
and reviews the main approaches proposed in the lit-
erature to deal with class imbalances. Section 3 briefly
introduces both LCSs. Next, the theory of LCSs in im-
balances is reviewed, and the algorithm that automati-
cally adjusts XCS and UCS is proposed (Sect. 4). Section
5 shows the behavior of both LCSs on artificially imbal-
anced problems, and then, LCSs are compared to C4.5,
SMO and IBk in real world problems. In Sect. 7, four re-
sampling techniques are selected and introduced in the
comparison. Finally, Sect. 8 summarizes, concludes and
discusses further work.

2 Mining from Rarity: Class Imbalance and

Small Disjuncts

In the recent years, several investigations have been con-
ducted on the detection of two types of rarity: rare classes

and rare cases. The concept of rare classes refers to
datasets that contain different proportion of instances
per class. The topic, which is mainly associated to super-
vised learning tasks, has also been addressed as the class

imbalance problem [14]. Learning from datasets with rare

classes usually hinders the performance of different learn-
ers. It has been shown that some learners, such as C4.5
or multi-layer perceptrons, are biased toward the major-
ity class since they aim at minimizing a global measure
of error [15]. The concept of rare cases is associated to
both supervised and unsupervised tasks and refers to
the sparse distribution of examples in the feature space.
Specifically, it analyzes the problems derived from the
presence of a small number of examples belonging to one
class laying in a particular area of the feature space sur-
rounded by examples of other classes. Usually, learners
define a concept by means of several disjuncts3. In [13],
small disjuncts were shown to hinder the performance of
some learners; lately, some studies (e.g., [29]) indicated
that most of the test error tends to concentrate around
the small disjuncts.

In classification tasks, rare classes and rare cases

are closely related. Jo and Japkowicz [17] argued that
the performance degradation in imbalanced datasets was
actually due to the presence of small disjuncts. Lately,

3 A disjunct is a definition of a subconcept of the original
concept.

Weiss [30] presented a unifying framework for both per-
spectives, suggesting that imbalanced datasets and small
disjuncts may produce the same problems to data mining
techniques. In fact, imbalanced datasets tend to present
small disjuncts, as long as they consist of few instances
of one class. In this paper, we consider both perspectives,
and analyze the effect of class imbalances and small dis-
juncts as a whole.

Different approaches have been proposed to deal with
class imbalances, which can be grouped in methods work-
ing at (i) the learner level, or (ii) the sampling level.
Learner-level methods modify the learner to increase the
pressure toward the discovery of the minority class. The
main drawback of these methods is that they are de-
signed for specific learners, and so, can hardly be trans-
ported to other learning schemes. Sampling-level meth-
ods, usually known as resampling techniques, resample
the training dataset to balance the proportion of exam-
ples per class. As they are data-preprocessing methods,
they can be generally used for any learner. Due to their
flexibility, we only consider resampling methods in the
remainder of this paper, and analyze whether they can
improve the performance on several learners.

3 Learning Classifier Systems

Learning Classifier Systems (LCSs) are evolutionary on-
line rule-based learners characterized by evolving a sin-
gle set of rules. The ruleset is incrementally updated
through the interaction with the environment and even-
tually improved by the action of evolutionary algorithms.
XCS [32, 33], one of the best representatives of LCSs,
uses a reinforcement learning scheme to evaluate the
ruleset, while UCS [3] uses a supervised learning scheme.
In the following, both systems are described in more de-
tail.

3.1 Description of XCS

In the following, we provide a brief description of the
different components of XCS. The reader is referred to
[32, 33] for more details about the system, and to [7] for
an algorithmic description.

Representation. XCS evolves a population [P] of clas-
sifiers, where each classifier has a rule and a set of as-
sociated parameters estimating the quality of the rule.
Each rule has the form: condition → class. The condi-
tion specifies the set of inputs where the classifier can
be applied. For binary inputs, the condition is usually
represented in the ternary alphabet: {0, 1,#}n, where n

is the length of the input string. In this case, a condition
(c1, c2, ..., cn) matches an input example (x1, x2, ..., xn),
if and only if ∀i ci = xi ∨ ci = #. The symbol #, called
don’t care, allows the formation of generalizations in the
rule’s condition. If the input attributes are real, the con-
dition is codified as a set of intervals [li, ui]

n, which glob-
ally represents a hyperrectangle in the feature space. The



Evolutionary Rule-Based Systems for Imbalanced Datasets 3

class part of the rule specifies the class that is being pre-
dicted when the condition is satisfied.

Each classifier has a set of parameters estimating the
quality of the rule. The most important ones are: a) the
payoff prediction p, an estimate of the payoff that the
classifier will receive if its condition matches and its class
is selected, b) the prediction error ε, which estimates the
average error between the classifier’s prediction and the
received payoff, c) the fitness F , an estimate of the ac-
curacy of the payoff prediction, and d) the numerosity
num, the number of copies of the classifier in the popu-
lation.

Performance Component. At each time step, a train-
ing example x is sampled. Given x, the system builds a
match set [M], which is formed by all the classifiers in
[P] whose conditions are satisfied by x. If the number of
classes represented in [M] is less than a threshold θmna,
new classifiers are created through the covering opera-
tor. From [M], a class is selected and sent to the environ-
ment. If XCS is in training mode, the class is selected
randomly. Thus, XCS explores the consequences of all
classes for each possible input. Otherwise, when XCS
is under testing, the selected class is that maximizing
the expected payoff from the environment. The chosen
class determines the action set [A], which consists of all
classifiers advocating that class. The action set works as
a niche where the parameter’s update and the genetic
algorithm take place.

Parameters Update. Once the class is sent to the
environment, the environment returns a reward which
is maximum if the proposed class is the same as the
training example, and minimum (usually zero) other-
wise. The reward r is used to update the parameters of
the classifiers in [A]. Thus, the prediction of each clas-
sifier is updated according to: p ← p + β(r − p), where
β (0 < β ≤ 1) is the learning rate. Next, the predic-
tion error: ε ← ε + β(|r − p| − ε). Then, we compute the
accuracy of the classifier as an inverse function of the
error, and finally, we update the fitness of each classi-
fier as F ← F + β(k′ − F ), where k′ is the classifier’s
accuracy relative to the action set. Thus, fitness is an
estimate of the accuracy of the classifier’s prediction rel-
ative to the accuracies of the overlapping classifiers. This
provides sharing among the classifiers belonging to the
same action set.

Search Component. The search component in XCS is
based on a genetic algorithm. The GA triggers with a
frequency fixed by θGA and takes place in the action set.
It selects two parents from the current [A] with probabil-
ity proportional to fitness and copies them. The copies
undergo crossover with probability χ and mutation with
probability µ per allele.

Each offspring is introduced in the population, re-
moving a classifier if the population is full. The deletion
probability of a classifier is proportional to the size of

the action sets where the classifier has participated and
inversely proportional to its fitness [18]. This biases the
search towards highly fit classifiers, and at the same time
balances the classifiers’ allocation in the different action
sets.

3.2 Description of UCS

UCS [3] is a learning classifier system derived from XCS.
It inherits the main features of XCS, but specialize them
for supervised learning tasks. UCS mainly differs from
XCS in two perspectives. Firstly, the learning interac-
tion is adjusted to a supervised learning scheme. UCS
benefits from knowing the class of the input example
since it only explores the correct class. Secondly, the ac-
curacy in UCS is computed as the percentage of correct
predictions of the rule.

In the following, we briefly describe each component
of the system. For further details, the reader is referred
to [3, 24].

Representation. UCS inherits the rule representation
of XCS. Thus, each rule has the form: condition−→class.
Moreover, each rule consists of the following parameters:
a) accuracy acc; b) fitness F ; c) correct set size cs; d)
numerosity num; and e) experience exp. Accuracy and
fitness are measures of the quality of the classifier. The
correct set size is the estimated average size of all the
correct sets where the classifier participates. Numerosity
is the number of copies of the classifier, and experience
is the number of times that a classifier has belonged to
a match set.

Performance Component. In train mode, at each
learning iteration, UCS receives an input example x and
its class c. Then, the system creates the match set [M],
which contains all classifiers in the population [P] whose
condition matches x. From that, the correct set [C] is
formed, which consists of the classifiers in [M] that pre-
dict the correct class. If [C] is empty, the covering oper-
ator is activated, creating a new classifier with a gener-
alized condition matching x, and predicting class c. The
remaining classifiers form the incorrect set ![C].

In test mode, a new input example x is provided,
and UCS must predict the associated class. To do that,
the match set [M] is created. All classifiers in [M] emit a
vote, weighted by their fitness, for the class they predict.
The most-voted class is chosen as the output.

Parameter Updates. Each time a classifier partici-
pates in a match set, its experience, accuracy, and fitness
are updated. Firstly, the experience is increased. Then,
the accuracy is computed as the percentage of correct
classifications:

acc =
#correct classifications

experience
(1)

Thus, accuracy is a cumulative average of correct clas-
sifications over all matches of the classifier. Next, the



4 Albert Orriols-Puig, Ester Bernadó-Mansilla

accuracy of the classifier relative to the action set is com-
puted as follows:

k′ =
acccl · numcl

∑

cli∈[M ] acccli · numcli

(2)

and then, the fitness is updated: F = F + β · (k′ − F ),
where (0 < β ≤ 1) is the learning rate. Finally, each time
the classifier participates in [C], the correct set size cs

is updated. cs is computed as the arithmetic average of
the size of the correct sets where the classifier has taken
part.

Search Component. The discovery component is copied
from XCS, and is applied to the correct set. It selects two
parents from [C] with a probability that depends on the
classifier’s fitness. The two parents are copied, creating
two new children, which are recombined and mutated
with probabilities χ and µ respectively. Finally, each off-
spring is introduced into the population, removing an-
other classifier if the population is full.

3.3 Evolutionary Pressures in LCS

Several studies [33, 3] show experimentally that both
XCS and UCS tend to evolve rulesets which are com-

plete, consistent and minimal representations of the tar-
get concept. This behavior has been supported theo-
retically [6] by the interaction of two types of evolu-
tionary pressures: the accuracy pressure, which moves
the search towards accurate rules, and the generaliza-
tion pressure, which guides the search towards the most
general representations. Briefly summarizing, theoretical
studies show that basing fitness on accuracy results in
a pressure towards the specificity of maximally general
classifiers. Also mutation results in a pressure towards
specificity. The fact that the GA is applied in niches,
while deletion is done over the whole population, tends
to make rules more general. The global interaction of all
these components favors the evolution of compact rule-
sets consisting of accurate and maximally general rules.

4 Facetwise Analysis of Learning Classifier

Systems

Goldberg emphasizes the big importance of the design

decomposition and facetwise analysis for the understand-
ing of complex systems, which permit a more effective

and efficient design to solve bounded difficult problems
quickly, accurately, and reliably [11]. This approach has
been closely followed to understand the impact that class
imbalances cause in the different mechanisms of XCS
and propose new approaches that overcome the detected
drawbacks [22, 23]. Specifically, facetwise models have
been developed that predict (i) the maximum class im-
balance until which XCS would not overgeneralize to-
ward the majority class, and (ii) the minimum popula-
tion size that permits enough diversity of rules of the

minority class to let the genetic pressures take off. In
the following, the theoretical analysis is rewritten to be
valid for both LCSs, and an algorithm is proposed to let
both LCSs self-adapt depending on the imbalance level
detected during learning.

Imbalance bound to prevent overgeneralization.

In [22], a bound on the maximum imbalance ratio al-
lowed in XCS is derived. The imbalance ratio is defined
as the fraction between the number of instances of the
majority class and the minority class. The bound defines
the maximum imbalance ratio with which XCS can deal
without overgeneralizing toward the majority class:

ir ≤
2Rmax

ε0
(3)

where Rmax is the maximum reward that the system can
receive (in classification tasks, Rmax = 1000), and ε0 is
the maximum error that a rule can have to be considered
accurate (usually, ε0 = 1). Without loss of generality,
this bound can be extended for UCS by recognizing that
ε0 = 1 − acc0. If the inequality of equation 3 holds, it
guarantees that neither XCS nor UCS will overgeneralize
toward the majority class. Moreover, the learning rate β

and θGA, which controls the frequency of activation of
the GA, were detected as two critical parameters that
need to be configured properly to satisfy the imbalance
bound.

Population size bound. Next, in [23] a bound was de-
rived on the minimum population size required to guar-
antee that XCS would initially be supplied with enough
rules, and so, the genetic search would pressure toward
the discovery of the minority class. The same bound is
valid for UCS, which can be written as follows:

N = O [n · (1 + ir)] (4)

in which n is the number of classes of the problem and
ir the imbalance ratio. This bound shows up the robust-
ness of XCS and UCS when dealing with imbalances, in-
dicating that the population size only needs to increase
linearly with the imbalance ratio to ensure the discovery
of the minority class.

Online adaptation algorithm. Both bounds were in-
dividually validated using artificial problems. The patch-

quilt integration of them resulted in a theory providing
guidelines on how to set the critical parameters of both
LCSs. For a fixed population size, β and θGA should be
configured according to the imbalance ratio between big
niches and small niches4 that lay closely on the feature
space (irn). Nonetheless, irn is unknown for real-world
problems, and can hardly be estimated before running
LCSs. Thus, we propose an algorithm that estimates

4 Note that, in LCSs terms, a disjunct equals to a niche.
Thus irn reflects the imbalance ratio between big and small
disjuncts.



Evolutionary Rule-Based Systems for Imbalanced Datasets 5

Algorithm 4.1: Pseudocode for the online adap-

tation algorithm.

Algorithm: OnlineAdaptation ( cl is classifier )1

if cl is overgeneral then2

irn :=
expmaj(cl)

expmaj+expmin(cl)3

if ( irn < 2Rmax

ε0
∧ numcl > num[P ]) then4

Adapt β and θGA based on irn5

end6

end7

irn from information that intrinsically resides in over-
general classifiers. Overgeneral classifiers cover several
niches that lay nearby on the feature space. By com-
puting the number of examples covered per class of an
overgeneral classifier, we can estimate the imbalance ra-
tio between these niches. Note that this strategy permits
not only to detect small disjuncts, but also to calculate
an estimate of the imbalance ratio between these small
disjuncts and their neighbors.

The online adaptation algorithm works as follows
(see the pseudocode in Alg. 4.1). After checking that the
classifier is overgeneral, it estimates irn from the num-
ber of instances covered per class (labeled as exp in the
algorithm). Next, if irn satisfies the imbalance bound
(see formula 3), and the classifier is numerous enough
(numcl > num[P ]), β and θGA are updated according to
the formulas presented in [22]. Next section analyzes the
behavior of XCS and UCS with the online adaptation
algorithm on highly imbalanced datasets.

5 LCSs in Artificial Domains

This section explores the competence of XCS and UCS
with online adaptation of parameters to discover cases
that are infrequently sampled. For this purpose, we use
the imbalanced multiplexers, a family of problems of
bounded difficulty that permits to control separately the
concept complexity and the imbalance complexity. The
multiplexer [32] is one of the most used benchmarks in
the LCS field. By using the multiplexer problem, we en-
able replication of studies on standard XCS and allow
comparison with previous results.

5.1 The Imbalanced Multiplexer

The multiplexer is defined for binary strings of size `,
where the first log2 ` bits are the address bits, and the
remaining bits are the position bits. Then, the output is
the value of the position bit referred by the decimal value
of the address bits. For example, in the 6-bit multiplexer
(i.e., ` = 6), f(00 1001) = 1 or f(10 0101) = 0. The
concept complexity of the multiplexer is controlled by
the input length `. To obtain the correct classification
model, learners need to discover the linkages between

the address bits and the position bits, which increase
exponentially with `. For this reason, multiplexers pose
a big challenge to many well-known learners [3], specially
as ` increases.

In the imbalanced multiplexer [22], the imbalance com-
plexity is controlled by undersampling instances of the
class labeled as ’1’. That is, when required, a new input
example is selected randomly. If the example belongs to
the class ’0’, it is given to the system. Otherwise, it is
accepted with a certain probability. In the remainder of
the paper, we use the imbalance ratio ir—that is, the
ratio between the number of instances of class ’0’ (ma-
jority class) and class ’1’ (the minority class)—to refer
to the imbalance complexity.

5.2 Experimentation

In [22], XCS was shown to be sensitive to moderate im-
balance ratios; particularly, XCS could discover the mi-
nority class for imbalance ratios up to ir=32 in the 11-
bit multiplexer. To analyze the improvement introduced
by the online adaptation algorithm, we ran XCS and
UCS5 in the 11-bit and 20-bit multiplexers and imbal-
ance ratios from ir = 1 (completely balanced dataset) to
ir = 256. Populations were sized to N={800, 2000} for
XCS and to N={400, 1000} for UCS in the 11-bit and
the 20-bit multiplexer respectively. As UCS works under
a supervised learning scheme, and so, does not need to
explore all the classes in the feature space, we configured
smaller population sizes for UCS as suggested in [3].

As a metric of performance for imbalanced datasets,
the average accuracy rate is biased toward the majority
class. Instead, we measured the performance with the
proportion of instances of the minority class correctly
classified (TP rate) and the proportion of instances of
the majority class correctly classified (TN rate). Figure
1 shows the product of TP rate and TN rate of XCS
and UCS averaged over 10 runs. Note that the graph
shows the incremental improvement of both systems over
the training iterations, where a training iteration corre-
sponds to sampling a single example of the dataset.

In the 11-bit multiplexer, we note that XCS and UCS
need more learning iterations to achieve 100% perfor-
mance as ir increases (see Figs. 1(a) and 1(c)). Specifi-
cally, the TN rate needs only about 5,000 iterations to
reach 100% in all runs. Thus, all the error is concentrated
on the prediction of the minority class. This is because
minority class instances are sampled less frequently, and
so, accurate rules of the minority class receive a smaller
number of genetic events. Note that the self-adaptive al-
gorithm allows LCSs to discover the minority class for

5 To allow replicability, XCS’s parameters were configured
with the standard values typically used in the literature:
α=0.1, ε0 = 1, ν=5, θGA=25, χ=0.8, µ=0.04, θdel=20, δ=0.1,
θsub=200, P#=0.8. For UCS, the same parameters were used
but: ν=10 and acc0=0.99. See [33, 3] for notation details.



6 Albert Orriols-Puig, Ester Bernadó-Mansilla

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500000  1e+06  1.5e+06  2e+06  2.5e+06

T
P

 R
at

e 
* 

T
N

 R
at

e

Learning Iterations

XCS in the 11-bit Multiplexer

ir=1
ir=8

ir=16
ir=32
ir=64

ir=128
ir=256

(a) XCS in Mux11

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500000  1e+06  1.5e+06  2e+06  2.5e+06

T
P

 R
at

e 
* 

T
N

 R
at

e

Learning Iterations

XCS in the 20-bit Multiplexer

ir=1
ir=8

ir=16
ir=32
ir=64

ir=128
ir=256

(b) XCS in Mux20

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500000  1e+06  1.5e+06  2e+06  2.5e+06

T
P

 R
at

e 
* 

T
N

 R
at

e

Learning Iterations

UCS in the 11-bit Multiplexer

ir=1
ir=8

ir=16
ir=32
ir=64

ir=128
ir=256

(c) UCS in Mux11

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500000  1e+06  1.5e+06  2e+06  2.5e+06

T
P

 R
at

e 
* 

T
N

 R
at

e

Learning Iterations

UCS in the 20-bit Multiplexer

ir=1
ir=8

ir=16
ir=32
ir=64

ir=128
ir=256

(d) UCS in Mux20

Fig. 1 Incremental TP rate of XCS and UCS in the 11-bit and 20-bit multiplexers for imbalance ratios ranging from ir = 1
to ir = 256.

high imbalance ratios, while previous results in [22] in-
dicated that XCS only learnt with ratios up to ir = 32.
Results also illustrate that UCS converges more quickly
than XCS, specially for the highest ir. In fact, as UCS is
specialized for classification tasks, its convergence time
was expected to be lower than XCS’s time.

Figures 1(b) and 1(d) show the behavior of XCS and
UCS on the 20-bit multiplexer. Results show that, with a
higher concept complexity, both LCSs need more learn-
ing iterations to solve an experiment with the same ir

as before. Again, we observe that (i) the convergence
time is higher as ir increases and (ii) UCS needs lower
convergence time than XCS.

6 LCSs in Data Mining

This section analyzes the performance of XCS and UCS
in various real-world imbalanced problems. The under-
standing of LCSs behavior on real-world problems is re-
ally complicated since they may have different sources

of complexity which can be hardly identified; the inter-
action of all these complexities may limit the maximum
performance that can be achieved. To evaluate the com-
petence of XCS and UCS, we compare their performance
to three highly-competent learners. In the following, we
first present the methodology and then, we compare XCS
and UCS with the other learners.

6.1 Methodology

We used a collection of 25 real-world problems with dif-
ferent characteristics and imbalance ratios, which were
constructed as follows. We selected the following twelve
problems: balance-scale, bupa, glass, heart disease, pima

indian diabetes, tao, thyroid disease, waveform, Wiscon-

sin breast cancer database, Wisconsin diagnostic breast

cancer, wine recognition data, and Wisconsin pronostic

breast cancer. All the real-world problems were obtained
from the UCI repository [5], except for tao, which was
selected from a local repository [3]. To force higher im-
balance ratios, we discriminated each pair of classes in



Evolutionary Rule-Based Systems for Imbalanced Datasets 7

Table 1 Description of the datasets properties. The columns describe the dataset identifier (Id.), the original name of the
dataset (Dataset), the number of problem instances (#Ins.), the number of attributes (#At.), the proportion of minority class
instances (%Min.), the proportion of majority class instances (%Maj.), and the imbalance ratio (ir).

Id. Dataset #Ins. #At. %Min. %Maj. ir

bald1 balance-scale disc. 1 625 4 7.84% 92.16% 11.76
bald2 balance-scale disc. 2 625 4 46.08% 53.92% 1.17
bald3 balance-scale disc. 3 625 4 46.08% 53.92% 1.17
bpa bupa 345 6 42.03% 57.97% 1.38
glsd1 glass disc. 1 214 9 4.21% 95.79% 22.75
glsd2 glass disc. 2 214 9 6.07% 93.93% 15.47
glsd3 glass disc. 3 214 9 7.94% 92.06% 11,59
glsd4 glass disc. 4 214 9 13.55% 86.45% 6.38
glsd5 glass disc. 5 214 9 32.71% 67.29% 2.06
glsd6 glass disc. 6 214 9 35.51% 64.49% 1.82
h-s heart-disease 270 13 44.44% 55.56% 1.25
pim pima-inidan 768 8 34.90% 65.10% 1.87
tao tao-grid 1888 2 50.00% 50.00% 1.00
thyd1 thyroid disc. 1 215 5 13.95% 86.05% 6.17
thyd2 thyroid disc. 2 215 5 16.28% 83.72% 5.14
thyd3 thyroid disc. 3 215 5 30.23% 69.77% 2.31
wavd1 waveform disc. 1 5000 40 33.06% 66.94% 2.02
wavd2 waveform disc. 2 5000 40 33.84% 66.16% 1.96
wavd3 waveform disc. 3 5000 40 33.10% 66.90% 2.02
wbcd Wis. breast cancer 699 9 34.48% 65.52% 1.90
wdbc Wis. diag. breast cancer 569 30 37.26% 62.74% 1.68
wined1 wine disc. 1 178 13 26.97% 73.03% 2.71
wined2 wine disc. 2 178 13 33.15% 66.85% 2.02
wined3 wine disc. 3 178 13 39.89% 60.11% 1.51
wpbc wine disc. 4 198 33 23.74% 76.26% 3.21

each dataset, considering each discrimination as a new
problem. Thus,

(

n
2

)

two-class problems were created from
a problem with n classes, resulting in a testbed that
consisted of 25 two-class real-world problems. Table 1
gathers the most relevant features of the problems. Note
that the imbalance ratio between niches irn can be much
higher than the imbalance ratio of the learning dataset
reported in the table.

The performance was measured by the product of
TP rate and TN rate. To have good estimates, we ran
the experiments on a ten-fold cross validation [27]. We
used a multiple comparison Friedman procedure [19, 20]
to test whether all the learning algorithms performed
equivalently on average. Moreover, the performance of
each pair of learning algorithms on each problem was
compared using a Wilcoxon signed-ranks test [31].

Both LCSs were compared to three of the most com-
petent learners: C4.5 [26], SMO [25], and IBk [1]. C4.5 is
a decision tree derived from the ID3 algorithm. SMO is a
support vector machine that implements the Sequential

Minimal Optimization algorithm. IBk is a nearest neigh-
bor algorithm. All these machine learning methods were
run using WEKA [34], and the recommended default pa-
rameters were used. We selected the model for SMO as
follows. We ran SMO with polynomial kernels of order 1,
5, and 10, and with Gaussian kernels. We first discarded
SMO with Gaussian kernels since it achieved 0% per-

formance in the majority of problems as it misclassified
all the instances of the minority class. Then, we ranked
the results obtained with the three polynomial kernels,
and chose the model that maximized the average rank-
ing: SMO with lineal kernels. In this way we avoid using
particular configurations for each problem. We followed
the same process with IBk, and provide the results with
k=5. XCS and UCS were configured as previously spec-
ified, except for N=6400, r0=0.6, and m0=0.1. Finally,
we did not introduce asymmetric cost functions in any
system, although the majority of them permit it. In this
way, we aim at analyzing the intrinsic capabilities of each
method to deal with class imbalances.

6.2 Results

Table 2 summarizes the performance of the different
learners on the 25 datasets. The overall results highlight
which problems are more complex. All learners presented
poor performance in the problems bald1, bpa, glsd1, glsd3,
pim, and wpbc. Examining the measure of performance,
we observed that all learners had a low TP rate, which
indicates that the minority class is not well defined in
these problems. Most of these datasets are highly im-
balanced; so, the imbalance ratio turns up to be an
important factor that hinders the performance of the
tested learners. Nonetheless, the problems bpa and pim



8 Albert Orriols-Puig, Ester Bernadó-Mansilla

Table 2 Comparison of C4.5, SMO, IBk, XCS and UCS on the 25 real-world problems. Each cells depicts the average value
of TP rate * TN rate and the standard deviation. The row labeled Avg gives the performance average (and standard deviation)
of each method over the 25 datasets.

C4.5 SMO IB5 XCS UCS

bald1 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
bald2 69.28 ± 7.68 83.98 ± 7.30 81.16 ± 5.54 71.22 ± 5.02 69.77 ± 8.19
bald3 71.21 ± 5.80 85.69 ± 8.40 82.11 ± 8.67 70.07 ± 7.23 73.65 ± 6.66
bpa 33.50 ± 10.30 0.00 ± 0.00 32.40 ± 9.44 47.22 ± 10.92 47.21 ± 11.22
glsd1 79.60 ± 41.93 0.00 ± 0.00 69.32 ± 48.30 20.00 ± 42.16 59.11 ± 50.87
glsd2 33.95 ± 46.69 15.00 ± 33.75 24.13 ± 35.36 59.40 ± 45.02 74.25 ± 41.89
glsd3 28.78 ± 41.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 19.39 ± 25.17
glsd4 73.36 ± 32.31 80.33 ± 24.33 77.07 ± 24.98 80.33 ± 24.33 83.61 ± 19.53
glsd5 65.35 ± 20.36 9.58 ± 9.42 62.26 ± 21.14 67.82 ± 18.71 64.45 ± 21.46
glsd6 52.03 ± 17.13 0.00 ± 0.00 61.74 ± 18.23 61.08 ± 11.21 57.90 ± 14.20
h-s 63.70 ± 11.02 68.80 ± 8.87 64.40 ± 14.65 60.32 ± 15.59 54.87 ± 13.61
pim 44.96 ± 5.77 48.36 ± 5.60 46.91 ± 4.84 46.06 ± 6.37 47.88 ± 6.60
tao 91.00 ± 2.37 70.57 ± 6.45 94.25 ± 2.10 82.90 ± 5.42 78.79 ± 7.18
thyd1 87.53 ± 16.53 76.67 ± 22.50 76.67 ± 22.50 78.69 ± 22.01 92.32 ± 13.66
thyd2 93.12 ± 13.21 54.17 ± 24.92 77.90 ± 21.40 82.50 ± 24.98 93.12 ± 12.09
thyd3 87.31 ± 13.18 33.81 ± 21.35 81.12 ± 16.16 89.74 ± 11.75 87.97 ± 14.89
wavd1 67.80 ± 3.82 78.65 ± 4.27 72.28 ± 3.97 80.43 ± 2.97 76.35 ± 2.10
wavd2 62.54 ± 3.53 72.35 ± 2.71 67.49 ± 1.75 73.48 ± 2.88 71.50 ± 3.83
wavd3 68.61 ± 2.18 79.61 ± 2.04 74.14 ± 2.86 81.01 ± 3.99 76.62 ± 4.14
wbcd 89.10 ± 4.57 92.72 ± 5.32 92.72 ± 5.36 92.29 ± 5.50 94.11 ± 4.23
wdbc 88.83 ± 4.98 94.27 ± 3.28 93.47 ± 3.64 90.30 ± 4.61 89.67 ± 5.61
wined1 85.58 ± 14.57 98.46 ± 3.24 94.98 ± 8.29 99.23 ± 2.43 99.23 ± 2.43
wined2 91.83 ± 8.50 97.51 ± 5.62 97.50 ± 4.03 99.17 ± 2.64 91.76 ± 10.02
wined3 87.64 ± 11.83 97.14 ± 6.02 87.94 ± 12.53 93.43 ± 7.15 85.36 ± 9.55
wpbc 33.96 ± 11.01 9.37 ± 16.98 28.98 ± 16.49 20.99 ± 16.38 16.97 ± 21.63

Avg 66.02 ± 14.01 53.88 ± 8.90 65.64 ± 12.49 65.91 ± 11.97 68.23 ± 13.23

are almost balanced, so there may be other complexity
factors affecting the learning performance such as small
disjuncts.

The Friedman multiple comparison test did not per-
mit to reject the null hypothesis that all the learning
methods performed the same on average with p = 0.2519.
Consequently, post-hoc tests could not be applied since
no significant differences between the multiple learners
were found [10]. This result is not surprising; in fact, in
general terms, the no-free-lunch theorem [35, 36] justifies
that no learning algorithm can systematically outper-
form the others. However, we are interested in methods
that are robust in a wide range of problems. To analyze
that, we applied statistical pairwise comparisons accord-
ing to a Wilcoxon signed-ranks test at 0.95 significance
level. Table 3 shows the results. The • and ◦ symbols de-
note a significant degradation/improvement of the given
learning algorithm with respect to another in a particu-
lar dataset.

The overall degradation-improvement comparison (see
the row labeled Score) permits to rank the quality of
the five learners. Under this criteria, XCS appears as
the most robust method with a ratio of degradation-
improvement of 8-20, followed closely by IBk and UCS.
Both LCSs show the poorest results with respect to the
other learners in the problems bald2, bald3, and tao,

which have a low imbalance ratio. In [4], it is shown that
the hyperrectangle codification used by XCS and UCS
is not adequate when the boundary between classes in
the learning dataset is curved. This is the case of the tao

problem [4]. We hypothesize that bald2 and bald3 are
also characterized by curved boundaries, which would
explain the degradation in performance of both LCSs.
This hypothesis is also supported by the results obtained
with IBk, which improves XCS and UCS in the three
problems mentioned. IBk is not affected by curved bound-
aries since it decides the output as the majority class of
the k nearest neighbors.

The two last methods in the ranking are C4.5 and
SMO. The surprisingly poor rank of C4.5 is mainly caused
by the results obtained in the problems wavd1, wavd2,
and wavd3, in which C4.5 is outperformed by all the
other learners. These results are not correlated with the
imbalance ratio, so there may be other types of complex-
ity that makes C4.5 perform poorly in these problems.
Finally, SMO is the last method in the rank. It shows a
tendency to overgeneralize toward the majority class in
problems with moderate and high class imbalances such
as glsd1, glsd3, and glsd6, in which the TP rate is zero.
The same behavior is shown in problems with low imbal-
ance ratios such as the bpa problem, which we identified
as a difficult problem perhaps due to small disjuncts.



Evolutionary Rule-Based Systems for Imbalanced Datasets 9

Table 3 Comparison of C4.5, SMO, IBk, XCS and UCS on the 25 real-world problems. For a given problem, the • and
◦ symbols indicate that the learning algorithm of the column performed significantly worse/better than another algorithm
at 0.95 significance level (pairwise Wilcoxon signed-ranks test). Score counts the number of times that a method performed
worse-better, and Scoreir>5 does the same but only for the highest imbalanced problems (ir > 5).

C4.5 SMO IBk XCS UCS

bald1
bald2 •• ◦ ◦ ◦ ◦ ◦ ◦ •• ••
bald3 •• ◦ ◦ ◦ ◦ ◦ ◦ •• ••
bpa • • ◦ • • •• • • ◦ ◦ ◦ ◦ ◦ ◦ ◦
glsd1 ◦◦ • • • ◦ • ◦
glsd2 •• • ◦ ◦◦
glsd3
glsd4
glsd5 ◦ • • •• ◦ ◦ ◦
glsd6 ◦ • • •• ◦ ◦ ◦
h-s ◦ ◦ ••
pim
tao • ◦ ◦◦ • • •• ◦ ◦ ◦◦ • • ◦◦ • • •◦
thyd1
thyd2 ◦ • • •• ◦ ◦ ◦
thyd3 ◦ • • •• ◦ ◦ ◦
wavd1 • • •• ◦◦ • • •◦ ◦ ◦ ◦ • ◦ ◦
wavd2 • • •• ◦◦ • • •◦ ◦◦ ◦◦
wavd3 • • •• ◦◦ • • ◦ ◦ ◦ ◦ •◦
wbcd • • • ◦ ◦ ◦
wdbc • ◦◦ ◦ • •
wined1 • • • ◦ ◦ ◦
wined2
wined3 ◦ ◦ ••
wpbc

Score 26-10 29-18 11-22 8-20 14-18

Scoreir>5 0-3 9-0 1-2 1-2 0-4

However, we can also find significant improvements with
respect to other learners in the problems: bald2, bald3
and wdbc. Thus, these results indicate that SMO per-
forms competitively in a restricted set of problems, but
it is affected by some complexities, among which we may
find the imbalance ratio.

Finally, let’s compare the learners in terms of im-
balance robustness. To do that, we consider the most
imbalanced problems: glsd1, glsd2, bald1, glsd3, glsd4,
thyd1, and thyd2, which have imbalance ratios ranging
from ir=5 to ir=23. In these problems, UCS appears to
be the best learner, with a degradation-improvement ra-
tio of 0-4, followed closely by C4.5. These results agree
with several papers which indicate that C4.5 can deal
with high amounts of class imbalance [15, 2]. IBk and
XCS are the two next methods in the rank. IBk may
suffer from small disjuncts, since minority class regions
are surrounded by many instances of the majority class,
concentrating a high amount of the test error around the
small disjuncts. XCS also appears to be more sensible to
class imbalances than UCS and C4.5. This confirms the
results observed in section 4, which indicate that XCS
is less robust than UCS in problems with the highest
imbalance ratios. Finally, SMO performs poorly in the

most imbalanced datasets. As mentioned above, we tried
other orders of polynomial kernels, as well as a Gaussian
kernel, but no significant improvement was found.

7 Resampling the Training Datasets

Resampling techniques have been said to boost the per-
formance of several learners on imbalanced datasets [9,
15]. They are based on balancing the proportion of in-
stances per class in the training dataset, by either over-
sampling instances of the minority class or undersam-
pling instances of the majority class. In this section, we
aim at analyzing if resampling techniques also improve
the performance of LCSs and which of them are pre-
ferred.

7.1 Methodology and Resampling Techniques

In our analysis, we chose four resampling techniques
which have demonstrated to be highly competitive in
reduced testbeds:

Random oversampling. This is a non-heuristic method
that replicates the instances of the minority class until



10 Albert Orriols-Puig, Ester Bernadó-Mansilla

Table 4 Intra-method ranking for original and rebalanced datasets for C4.5, SMO, IBk, XCS, and UCS. Rows 1st to 5th

indicate the number of times that each resampling technique has been ranked in the correspondent position. The last column
shows the average rank and its standard deviation.

Resamp. Method 1st 2nd 3rd 4th 5th Avg. ± Std.
C

4
.5

original 6 2 5 9 3 3.04 ± 1.87
oversampling 7 4 8 4 2 2.60 ± 1.60
undersampling TL 0 5 7 6 7 3.60 ± 1.20
smote 10 8 3 2 2 2.12 ± 1.54

csmote 2 6 2 4 11 3.64 ± 2.07

S
M

O

original 6 2 2 4 11 3.48 ± 2.73
oversampling 11 11 3 0 0 1.68 ± 0.46

undersampling TL 2 8 9 3 3 2.88 ± 1.23
smote 3 3 8 7 4 3.24 ± 1.46
csmote 3 1 3 11 7 3.72 ± 1.56

IB
k

original 6 6 2 6 5 2.92 ± 2.23
oversampling 4 8 11 1 1 2.48 ± 0.89

undersampling TL 4 2 5 4 10 3.56 ± 2.17
smote 10 4 2 7 2 2.48 ± 2.09

csmote 1 5 5 7 7 3.56 ± 1.45

X
C

S

original 3 5 2 6 9 3.52 ± 2.09
oversampling 7 5 4 1 8 2.92 ± 2.63
undersampling TL 1 8 10 6 0 2.84 ± 0.69
smote 11 3 2 6 3 2.48 ± 2.33

csmote 3 4 7 6 5 3.24 ± 1.62

U
C

S

original 2 4 8 5 6 3.36 ± 1.51
oversampling 6 5 5 7 2 2.76 ± 1.70
undersampling TL 5 4 7 7 2 2.88 ± 1.55
smote 7 11 4 1 2 2.20 ± 1.28

csmote 5 1 1 5 13 3.80 ± 2.48

there is the same proportion of instances per class in the
training dataset. Some authors have suggested that over-
sampling may produce a problem of overfitting, since it
makes exact copies of the minority class. Nevertheless,
this method has shown to perform competitively in many
comparisons [15, 9].

Undersampling based on Tomek Links. This method
consists in eliminating instances of the majority class
that do not belong to any Tomek Link [28] until the
dataset is balanced. A Tomek Link is a pair of instances
(Ii, Ij) that lay on the class boundary.

SMOTE. The Synthetic Minority Over-sampling TEch-

nique [9] is an oversampling method that creates new
minority class instances by interpolating several minor-
ity class examples that lay nearby in the feature space.
It is said that this method avoids overfitting by creating
rather than replying instances of the minority class.

CSMOTE. The Clustered SMOTE [21] is an oversam-
pling method that derives from SMOTE, but introduces
two modifications. First, new instances of the minority
class are generated from minority class examples that
belong to the same cluster. Second, it introduces a clean-
ing phase that removes all instances whose n neighbors
belong to the same class.

We applied each resampling algorithm on the 10 folds
of each dataset, obtaining 100 new problems, and ran

C4.5, SMO, IBk, XCS, and UCS on these datasets. Learn-
ers were configured as specified in section 6.1.

7.2 Results

We analyzed the performance of each resampling tech-
nique and each learner (the complete tables are not shown
for brevity). The multiple comparison Friedman test did
not permit to reject the hypothesis that all resampling
methods performed the same on average. However, sig-
nificant improvements were shown in particular prob-
lems by using a pairwise t-test. To summarize the re-
sults, Table 4 ranks the performance obtained with the
original and the resampled datasets for each learner. For
each classifier, the resampling method that places first
is marked in bold. The last column provides the aver-
age rank and the standard deviation for each resampling
method.

The results show that, in general, resampling the
training datasets yields better performance of the learn-
ers. On average, the best results are achieved with ran-

dom oversampling and SMOTE. The empirical observa-
tions agree with some studies concluding that oversam-
pling is more effective than undersampling in C4.5 [15, 2]
and SMO [15]. The results obtained herein allow us to ex-
tend this conclusion to IBk, XCS, and UCS. We hypothe-
size that undersampling may cause a problem of sparsity
as it removes instances that may be needed for learning.



Evolutionary Rule-Based Systems for Imbalanced Datasets 11

In fact, undersampling is better ranked in the problems
pim, wavd1, wavd2, and wavd3, which have the highest
number of instances per dimension6, and poorly ranked
in the problems with the lowest number of instances per
dimension: wdbc, wined1, wined2, wined3, and wpbc.

The standard deviation of the ranking somehow de-
note the dependency of each resampling method on the
characteristics of the training domain. For C4.5, SMOTE
is the best ranked resampling method with a low devi-
ation. In most of the cases, SMOTE is the first or the
second problem in the ranking. These results indicate
that SMOTE should be used in combination with C4.5
to deal with class imbalances. For SMO and IBk, over-
sampling is the best ranked method and, at the same
time, it shows a very low standard deviation. Conse-
quently, SMO and IBk should be combined with random
oversampling in imbalanced domains. Note that, for IBk,
oversampling and SMOTE have the same average rank.
However, SMOTE has a much higher standard devia-
tion, which indicates that its behavior highly depends
on the domain. For XCS, the best ranked resampling
method, i.e., SMOTE, has one of the highest standard
deviations. Thus, the behavior of this combination de-
pends on the characteristics of the data. In this case, it
should be more adequate to combine XCS with under-
sampling based on Tomek Links, since it has the second
best average rank and a very low standard deviation. For
UCS, the best and the most robust resampling method
is SMOTE.

Finally, let’s note that, in some cases, the best results
are achieved with the original dataset. For example, a de-
tailed inspection (not shown for brevity) revealed that
the performance of many of the learners worsens when
the datasets are resampled. This happens in h-s, tao,
wined1, wined2, and wined3. This indicates that resam-
pling the training instances may introduce other com-
plexities, or even may create new small disjuncts around
the feature space.

8 Summary and Conclusions

This paper showed that evolutionary online rule-based

systems, usually called Learning Classifier Systems, can
successfully deal with the challenges posed by learning
from imbalances, mainly related to the disproportion of
instances per class in the training dataset and to the
need of learners to create small disjuncts (or niches in
LCSs terms) in the knowledge model. Theoretical anal-
yses indicated that XCS and UCS are robust to high
imbalance ratios if some critical parameters are config-
ured according to the ratio of the size between big and
small disjuncts irn. As irn is not known a priori, and can
hardly be estimated, we proposed a self-adaptive method

6 The ratio between the number of instances and the num-
ber of attributes of a problem has been proposed elsewhere
[4] as a measure of sparsity.

that estimates irn online and lets LCSs adapt themselves
so that accurate small disjuncts can be evolved for infre-
quent cases. Results on artificially imbalanced problems
supported the theoretical analyses, demonstrating that
both LCSs can model infrequent cases and classes.

In real-world problems, LCSs were among the best
performers, compared with instance-based learners, in-
duction trees and support-vector machines. Although
the set of real-world problems used in the experiments
did not contain high imbalance ratios, there is uncer-
tainty about whether they contained small disjuncts or
other mixed complexity factors. This is a common prob-
lem when we test the algorithms in real-world problems.
Our proposal as a further work is to study measures that
evaluate the presence of small disjuncts in the feature
space and try to relate the algorithms’ performance to
such complexities. This would probably allow us to un-
derstand in which cases each algorithm is superior and
provide guidelines towards the selection of particular al-
gorithms given a dataset characterization.

Although the learners may be robust to class im-
balances, resampling techniques usually favor better ac-
curacy rates. In general, oversampling techniques were
preferred over undersampling. Nevertheless, none of the
resampling techniques systematically outperformed the
others and, for a particular dataset, the best resampling
method depended on the learner. In fact, resampling
methodologies change the geometry of the dataset. Thus,
to justify such dependencies, we need to seek for the ge-
ometrical characterization of the original dataset, and
analyze the changes introduced by the different resam-
pling techniques. Once we showed that LCSs are highly
competitive methods for dealing with imbalances, our
future work is to continue investigating on the imbal-
ance characterization of real-world datasets, which can
lead us to provide guidelines for resampling and learner
selection.

Acknowledgements The authors are grateful to the three
anonymous reviewers for their comments on earlier darfts of
this paper. The authors thank the support of Enginyeria i
Arquitectura La Salle, Ramon Llull University, as well as the
support of Ministerio de Ciencia y Tecnoloǵıa under project
TIN2005-08386-C05-04, and Generalitat de Catalunya un-
der Grants 2005FI-00252 and 2005SGR-00302.

References

1. D.W. Aha, D.F. Kibler, and M.K. Albert. Instance-
Based Learning Algorithms. Machine Learning, 6(1):37–
66, 1991.

2. G. Batista, R.C. Prati, and M.C. Monrad. A Study
of the Behavior of Several Methods for Balancing Ma-
chine Learning Training Data. SIGKDD Explor. Newsl.,
6(1):20–29, 2004.

3. E. Bernadó-Mansilla and J.M. Garrell. Accuracy-Based
Learning Classifier Systems: Models, Analysis and Ap-
plications to Classification Tasks. Evolutionary Compu-
tation, 11(3):209–238, 2003.



12 Albert Orriols-Puig, Ester Bernadó-Mansilla

4. E. Bernadó-Mansilla and T.K. Ho. Domain of Compe-
tence of XCS Classifier System in Complexity Measure-
ment Space. IEEE-TEC, 9(1):1–23, 2005.

5. C.L Blake and C.J. Merz. UCI Repos-
itory of machine learning databases:
http://www.ics.uc.edu/ mlearn/MLRepository.html.
Univ. of California, 1998.

6. M.V. Butz. Rule-Based Evolutionary Online Learning
Systems: A Principled Approach to LCS Analysis and
Design, volume 109 of Studies in Fuzziness and Soft
Computing. Springer, 2006.

7. Butz, M.V. and Wilson, S.W. An algorithmic description
of XCS. In P.L. Lanzi, W. Stolzmann, and S.W. Wilson,
editors, Advances in Learning Classifier Systems: Pro-
ceedings of the Third International Workshop, volume
1996 of Lecture Notes in Artificial Intelligence, pages
253–272. Springer, 2001.

8. D.R. Carvalho and A.A. Freitas. A Hybrid Decision
Tree/Genetic Algorithm for Coping with the Problem of
Small Disjuncts in Data Mining. In GECCO’00, pages
1061–1068. Morgan Kaufmann, 10-12 2000.

9. N.V. Chawla, K. Bowyer, L. Hall, and W. Kegelmeyer.
SMOTE: Synthetic Minority Over-sampling Technique.
Journal of Artificial Intelligence Research, 16:321–357,
2002.

10. J. Demsar. Statistical Comparisons of Classifiers over
Multiple Data Sets. Journal of Machine Learning Re-
search, 7:1–30, 2006.

11. D.E. Goldberg. The Design of Innovation: Lessons from
and for Competent Genetic Algorithms. Kluwer Aca-
demic Publishers, 1 edition, 2002.

12. J.H. Holland. Adaptation in Natural and Artificial Sys-
tems. The University of Michigan Press, 1975.

13. R.C. Holte, L.E. Acker, and B.W. Porter. Concept
Learning and the Problem of Small Disjuncts. In IJ-
CAI’89, pages 813–818, 1989.

14. N. Japkowicz and S. Stephen. The Class Imbalance Prob-
lem: Significance and Strategies. In IC-AI’00, volume 1,
pages 111–117, 2000.

15. N. Japkowicz and S. Stephen. The Class Imbalance
Problem: A Systematic Study. Intelligent Data Anali-
sis, 6(5):429–450, November 2002.

16. T. Jo and N. Japkowicz. Class imbalances versus small
disjuncts. SIGKDD Explorations, 6(1):40–49, 2004.

17. T. Jo and N. Japkowicz. Class imbalances versus small
disjuncts. SIGKDD Explorations, 6(1):40–49, 2004.

18. T. Kovacs. Deletion Schemes for Classifier Systems. In
GECCO’99, pages 329–336. Morgan Kaufmann, 1999.

19. M. Friedman. The Use of Ranks to Avoid the Assump-
tion of Normality Implicit in the Analysis of Variance.
Journal of the American Statistical Association, 32:675–
701, 1937.

20. M. Friedman. A Comparison of Alternative Tests of
Significance for the Problem of m Rankings. Annals of
Mathematical Statistics, 11:86–92, 1940.

21. A. Orriols-Puig. Facetwise Analysis of Learning Classi-
fier Systems in Imbalanced Domains. Technical report,
Ramon Llull University, 2006.

22. A. Orriols-Puig and E. Bernadó-Mansilla. Bounding
XCS Parameters for Unbalanced Datasets. In GECCO
’06, pages 1561–1568. ACM Press, 2006.

23. A. Orriols-Puig and E. Bernadó-Mansilla. Modeling XCS
in Class Imbalances: Population Size and Parameters’
Settings. In GECCO’07, 2007 (submitted).

24. A. Orriols-Puig and E. Bernadó-Mansilla. A Further
Look at UCS Classifier System. In Advances at the fron-
tier of LCS. Springer, Accepted.

25. J. Platt. Fast Training of Support Vector Machines using
Sequential Minimal Opt. In Adv. in Kernel Methods -
Support Vector Lear. MIT Press, 1998.

26. J.R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers, San Mateo, California,
1995.

27. T.G. Dietterich. Approximate Statistical Tests for Com-
paring Supervised Classification Learning Algorithms.
Neural Comp., 10(7):1895–1924, 1998.

28. I. Tomek. Two Modifications of CNN. IEEE Transac-
tions on Systems, Man and Cybernetics, 6:769–772, 1976.

29. G.M. Weiss. The Effect of Small Disjuncts and Class Dis-
tribution on Decision Tree Learning. PhD thesis, Gradu-
ate School New Brunswick - The State University of New
Jersey, New Brunswick, New Jersey, 2003.

30. G.M. Weiss. Mining with rarity: a unifying framework.
SIGKDD Explorations, 6(1):7–19, 2004.

31. F. Wilcoxon. Individual comparisons by ranking meth-
ods. Biometrics, 1:80–83, 1945.

32. S.W. Wilson. Classifier Fitness Based on Accuracy. Evo-
lutionary Computation, 3(2):149–175, 1995.

33. S.W. Wilson. Generalization in the XCS Classifier Sys-
tem. In 3rd Annual Conf. on Genetic Programming,
pages 665–674. Morgan Kaufmann, 1998.

34. I.H Witten and E. Frank. Data Mining: Practical Ma-
chine Learning Tools and Techniques. Morgan Kauf-
mann, San Francisco, 2nd edition, 2005.

35. D.H. Wolpert. Stacked Generalization. Neural Networks,
5(2):241–259, 1992.

36. D.H. Wolpert. The Lack of A Priori Distinctions Between
Learning Algorithms. Neural Computation, 8(7):1341–
1390, 1996.


