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Abstract. This paper investigates the capabilities of XCS for mining
imbalanced datasets. Initial experiments show that, for moderate and
high class imbalances, XCS tends to evolve a large proportion of over-
general classifiers. Theoretical analyses are developed, deriving an im-
balance bound up to which XCS should be able to differentiate between
accurate and overgeneral classifiers. Some relevant parameters that have
to be properly configured to satisfy the bound for high class imbalances
are detected. Configuration guidelines are provided, and an algorithm
that automatically tunes these XCS’s parameters is presented. Finally,
XCS is tested on a large set of real-world problems, appearing to be
highly competitive to some of the most well-known machine learning
techniques.

1 Introduction

Learning Classifier Systems (LCSs) [13] are complex machine learning methods
that combine reinforcement learning and evolutionary computation techniques
to evolve novel knowledge. Initially designed regarding the animal learning and
cognitive psychology, some LCSs, and specially XCS [32, 33], have been adapted
to solve ambitious machine learning problems, facing new challenges. Among
them, learning from datasets that contain rare objects has been identified as one
of the biggest challenges to many well-known learners in the machine learning
realm. Many examples of real-world domains that contain rare objects can be
found, such as fraudulent credit card transactions [11], learning word pronunci-
ation [12], and detection of oil spills from satellite images [21].

Research on the detection of rare objects has been conducted from two dif-
ferent perspectives. The first perspective, associated mainly to supervised tasks,
focuses on the drawbacks caused by training the learner with datasets that con-
tain different proportion of instances per class. As many learners tend to mini-
mize a global measure of error, they might be biased toward the most numerous
classes in the training dataset [19,20]. The second perspective, associated to
both non-supervised and supervised tasks, is concerned about the distribution
of examples around the feature space. It analyzes the difficulties of learning from



datasets that contain rare cases around the feature space, which cause small dis-
Juncts [17]. Both perspectives are really close, since imbalanced datasets usually
present rare cases. In fact, rare cases or small disjuncts have been addressed as
within-class imbalances [18]. In this paper we analyze the effect of class imbal-
ances as a whole, but also the difficulties induced in learning classifiers systems
due to small disjuncts.

Some studies have analyzed the behavior of LCSs on imbalanced datasets,
and some approaches have been proposed to boost their learning capabilities on
imbalanced data. Holmes addressed this topic in the context of epidemiological
data, enhanced EpiCS [14] with a strategy based on disproportionate reinforce-
ment per class [15], and lately built EpiXCS [16], an XCS-like system derived
from EpiCS. Other studies [22, 23] empirically analyzed the effects of imbalanced
data on UCS [3], a learning classifier system derived from XCS specialized for
classification tasks. Results evidenced that UCS was biased towards the majority
class in highly imbalanced domains, and resampling techniques were presented
as effective methods to alleviate the problem. Not until recently the first analy-
ses of XCS’s performance on imbalanced data have been done [24], showing that
XCS is quite robust to class imbalances if it is properly configured.

The understanding of a complex system as XCS is crucial before applying
it to solve real-world tasks. Aiming at this objective, this paper extends the
study of XCS on imbalanced domains made in [24]. We provide a bound on
the maximum amount of imbalance with which XCS can correctly deal, and we
identify relevant XCS’s parameters that need to be set properly to satisfy this
bound in highly imbalanced datasets. Guidelines on how to tune these param-
eters are provided, and new experiments reveal that an appropriate setting of
XCS’s parameters drastically improves XCS’s performance for high class imbal-
ances. However, configuration guidelines depend on characteristics that may be
unknown for real-world problems. Therefore, we present a method that automat-
ically configures XCS’s parameters, based on information collected during learn-
ing. The conclusions obtained from the analysis of XCS in artificial imbalanced
domains are then applied to XCS so that it can efficiently mine imbalanced data
from real-world datasets. Specifically, the algorithm of XCS’s self-adaptation
gives competitive results compared to learners such as C4.5, which is particu-
larly known for yielding good performance in imbalanced datasets, as well as
SMO and IBk.

The remainder of this chapter is organized as follows. Section 2 briefly in-
troduces XCS for data mining. Next, we test XCS on an artificially imbalanced
domain (Sect. 3). We model classifier’s error, identify XCS’s relevant parameters
and provide guidelines on how to configure them in Sect. 4. Then, XCS is com-
pared to other highly-competent learners on a large set of real-world problems.
Finally, Sect. 7 summarizes, concludes and discusses further work.



2 Description of XCS

XCS is an online accuracy-based LCS that solves a problem by evolving a set
of sub-solutions distributed in niches around the problem space. This section
provides a brief description of XCS restricted to classification tasks. For further
details, the reader is referred to [32, 33]; besides, an algorithmic description can
be found in [10].

2.1 Knowledge Representation

XCS evolves a population of classifiers [P], where each classifier consists of a
production rule of the form condition — action and a set of parameters. The
most important parameters are: (i) the prediction p, which estimates the payoff
that the classifier will receive when the rule is fired and its action is chosen
as the output, (ii) the prediction error e, which estimates the error between
the prediction and the received payoff, (iii) the fitness F', which evaluates the
accuracy of the classifier with respect to other classifiers in the same action set,
and (iv) the numerosity num, which counts the number of copies of the classifier
in the population.

The condition representation was originally represented in the ternary al-
phabet: {0, 1, #}¢, where / is the length of the input instance. The symbol #,
called don’t care, allows to express generalizations in the classifier’s condition.
For real attributes, the input is codified as a set of intervals [I;, u;]*, where I; and
u; represent the lower and upper values that the attribute can take to apply the
rule.

2.2 Performance Component

At each time step ¢, an input instance s; is sampled, and XCS builds the match
set [M], which contains all the classifiers in [P] that match the input instance. If
the classifiers in [M] predict less that 6,,,, different actions, the covering opera-
tor is activated, which creates new classifiers with a condition generalized from
st and an action chosen from the ones not represented in [M] until 6,,,, different
actions are covered. For each action a; in [M], XCS computes the payoff predic-
tion P(s¢,a;) as a fitness weighted average of the prediction of all classifiers in
[M] advocating a;. Then, XCS selects an action to perform. Different selection
regimes can be applied: from a pure-explore regime, in which the action is ran-
domly selected, to a pure-exploit regime, in which the action with the highest
prediction is chosen. Under classification problems, typically, the pure-explore
regime is used during training, while the pure-exploit regime is used when the
system predicts new unknown instances. Finally, XCS creates the action set [A],
consisting of all classifiers in [M] that predict the chosen action.

2.3 Parameter’s Update

The chosen action is sent to the environment, which returns a reward R that
is used by XCS to update the parameters of the classifiers in [A]. First, the



prediction p is adjusted: p = p+3(R—p), where  is the learning rate (0 < § < 1).
Next, the error € is updated: e = € + 3(|R — p| — €). To update the classifier’s
fitness, XCS first computes the accuracy k as follows:

H:{l ife < g (1)

ale/eg)™"  otherwise

where ¢g is the maximum error that a classifier can take to be considered ac-
curate, and « and v are constants that control the rate of decline in accuracy
(0 < a<1andv >0). kis used to compute the relative accuracy k' of the
classifier in [A]: k" = K/} ) K. Finally, the fitness is updated from the relative
accuracy: F' = F+ (k' — F). Note that the fitness is shared among the classifiers
in the same action set since it is calculated from the relative accuracies.

2.4 Discovery Component

In XCS, the genetic algorithm (GA) is applied to the action set with a frequency
fixed by the parameter g 4. It selects two parents from [A] (following either a
proportionate selection scheme [32] or a tournament selection scheme [9]) and
copies them creating two new classifiers, which are crossed and mutated with
probabilities x and p respectively. The resulting offspring are introduced in the
population, applying subsumption if required [33], and two classifiers are deleted
to keep the population size constant.

3 XCS and Class Imbalances

In this section, we investigate how different amounts of class imbalance affect
XCS8. For this purpose, we designed a problem that permits to vary the com-
plexity along the imbalance dimension: the imbalanced multiplezer [24].

3.1 The Imbalanced Multiplexer

The multiplexer [32] is a completely-balanced problem defined for binary strings
of size ¢, where the first log, ¢ bits are the address bits and the remaining bits
are the position bits. The output is the value of the position bit indicated by
the decimal value of the address bits. The imbalanced multiplezer [24] permits
to control the imbalance complexity of the multiplexer by undersampling the
class labeled as '1’. In the remainder of this paper, we use the imbalance ratio—
i.e., the ratio between the number of instances sampled of the majority and the
minority class—to refer to the imbalance complexity.
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Fig. 1. TN rate (a) and TP rate (b) of XCS in the 11-bit multiplexer with imbalance
ratios from ir=1 to ir=>512.

3.2 XCS on the Imbalanced Multiplexer

We ran XCS on the 11-bit multiplexer with the following configuration': N=800,
£5=0.2, 0ga = 25, ¢¢ = 1, a = 0.1, v=>5, x=0.8, u=0.04, 04,,=20, 6=0.1,
0sup=200, Px=0.6. We used roulette wheel selection, two-point crossover, and
niched mutation [10] for the genetic algorithm. Subsumption was applied in the
GA, but not in the action set. Figure 1 shows the percentage of correct classifica-
tions of the majority class (TN rate) and the percentage of correct classifications
of the minority class (TP rate) obtained by XCS with imbalance ratios from ir=1
to ir=>512. Curves are averaged over ten runs. Note that, for ir=1, the same pro-
portion of instances per class is sampled; on the other hand, for ir=512, there
are 512 instances of the majority class sampled for each instance of the minority
class.

Figure 1(a) shows that the TN rate quickly raises to 100% for any imbalance
ratio tested. On the other hand, figure 1(b) illustrates that XCS only achieves
100% TP rate for ir <16. For ir=32, the TP rate is about 95% after 10° it-
erations, reaching 100% after 2 - 10% explore trials (not shown in the graph for
a better visibility). However, for higher imbalance ratios, XCS cannot achieve
100% of TP rate. For ir=64, the TP rate remains below 20%, and increasing the
number of learning iterations does not provide any improvement. For ir > 64,
the system classifies all the inputs as they belonged to the majority class.

To explain the degradation of the TP rate with i¢r, we checked the final
populations for the different imbalance ratios. For the lowest imbalance ratios
(ir <16), the final populations contained few overgeneral classifiers—classifiers
that match training instances of different classes—, all of them with high error.
For ir >16, the numerosity of overgeneral classifiers increased exponentially with
the imbalance ratio. For ir=64, overgeneral rules represented about 15% of the

! For notation details, the reader is referred to [32,33,10].
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Table 1. Most numerous rules evolved in a run of XCS with the 11-bit multiplexer for
ir=128. Cond. in the classifier’s condition, A. the action it predicts, and p, €., F' and
num are the prediction, error, fitness and numerosity of the classifier.

| Cond. |A| P | € | F |num|
#EEEEEE 0 | 1000 [1.2-107%]0.98] 385
spppaas 1 1.2 10747.4 - 107°]0.98] 366

final population; for ir=128 (see Table 1), they represented about 90% of the
population, and for ir=256, all the classifiers in the population were overgeneral.
Moreover, for the highest ir, the error of overgeneral rules was lower than ¢y,
and so, XCS considered these rules as accurate. For example, Table 1 shows that
the error of the most overgeneral rules for ir=128 is practically zero. In the next
section, we theoretically analyze the effect of ir on the classifiers’ error.

4 Modeling Parameter’s Bounds

In this section, we theoretically relate the expected error of overgeneral classifiers
with the imbalance ratio, and derive a bound on ir beyond which XCS will
consider overgeneral classifiers as accurate. To derive the model, we assume that
the imbalance ratio of the training dataset equals the imbalance ratio of the
niches in the solution space (this assumption will be latter removed in section 5).
That is, we assume that instances of the minority class activate starved niches,
and instances of the majority class trigger nourished niches. This assumption
permits us to consider that there is a direct mapping between the imbalance
ratio of the training set and the small disjuncts in the feature space.

4.1 Imbalance Bound

In balanced datasets, overgeneral classifiers will have a high error since they
will cover, approximately, the same proportion of instances per class. Thus, the
evolutionary pressures will discard them as long as more accurate classifiers exist
in the population. However, as ir increases, these overgeneral rules receive less
examples of the minority class, and so, they tend to have a lower error. At a
given imbalance ratio, the error of these overgeneral rules will be less than eg;
thus, they will be considered as accurate. We seek to derive the bound on the
imbalance ratio to guarantee that overgeneral classifiers will be identified as
inaccurate.
According to [8], the prediction p of a classifier can be approximated by:

p=P.(cl) Rmaz + (1 — P(cl)) - Rpnin (2)

where P.(cl) is the probability that a classifier predicts the matching input cor-
rectly, Ry,qz is the maximum reward, and R,,;, the minimum reward given by
the environment. Then, the error of a classifier can be approximated by:

€ =|p — Rumaz| - Pe(cl) + |p — Rpmin| - (1 — Pc(cl)) (3)



For classification problems, R,,;, is usually 0, so that the prediction of a classifier
can be estimated by: p = P.(cl) - Rmas- Substituting p into formula 3, we get
the following prediction error estimate:

€ = 2Rpmaz - (Po(cl) — P.(cl)?) (4)

Now, let’s relate P.(cl) with ir. In average, overgeneral classifiers will match ir
examples of the majority class for each example of the minority class. Assuming
that p is correctly estimated, a classifier would correctly predict the output for
the ir instances of the majority class, and would give an erroneous prediction
for the example of the minority class. Thus, P.(cl) can be approximated as:

ir
P.(cl) = - 5
() = 1= (5)
and its error estimate as:
ir
=2 Rmaa:i. 6
¢ (1+4r)? (6)

An overgeneral classifier will be considered inaccurate as long as:

€> € (7)
Using equation 6, we obtain that:
ir
2- Rmami. 2 8
(1+1r)? ¢ (8)

which can be written as:
—ir2eq + 2ir(Rpmaz — €0) — €0 > 0 (9)

This represents a parabola where € takes values higher than ¢; for ir ranging
between ir; and ir,, where ir; < ir,. We are concerned about the maximum
imbalance ratio up to which XCS would consider overgeneral classifiers as in-
accurate; that is, ir,. Solving equation 9, and assuming that €y << R4z, We
obtain the following expression:

QRTI’L(Z.I
€0

Ty & (10)
That is, the maximum imbalance ratio up to which XCS will be able to detect
overgeneral classifiers depends proportionally on R, and inversely proportion-
ally on €g. Substituting ¢ = 1 and R4, = 1000, the maximum imbalance ratio
is: ir, ~ 2000. Nonetheless, our experiments at ir = 128 showed that the final
populations evolved by XCS consisted mostly of overgeneral classifiers, indicat-
ing that XCS was not able to maintain accurate classifiers. In the following we
analyze the potential causes of these deviations.



4.2 Theoretical and Experimental Bounds: Analysis of the
Deviation

We investigate the potential causes of the deviation between the experiments
and the theory. The theoretical bound shows that XCS should be able to learn
up to an imbalance ratio of 2000. However, the results obtained were far from
this bound.

The theoretical bound is derived from formula 7, where we specify that the
error of the classifier should be higher than e¢y. Thus, we assumed that the error
of the classifiers is well estimated. Since XCS learns incrementally and updates
parameters based on a windowed weighted average, the effect of some rewards
may be forgotten if some examples come very infrequently. In the next section,
we revise the method of error estimation and whether it can suffer from high
imbalance ratios.

XCS’s genetic algorithm is activated on a frequency basis, which may also be
prone to high imbalance ratios. As ir increases, instances of the minority class
are sampled more infrequently; so, starved niches (which are matched by these
instances) are activated more infrequently with respect to nourished niches. This
means that nourished niches tend to receive a higher number of genetic events,
having more offspring which may overtake the population. This effect is uncorre-
lated with the parameter estimation. Even though parameters are well estimated,
XCS’s genetic algorithm may be responsible for the deviation between the ex-
periments and the theoretical bound. Section 4.4 analyses the mechanism of
occurrence-based reproduction and suggests ways to counterbalance the effects.

4.3 Learning Rate and Error Estimates

In XCS, classifier’s parameters are adjusted using the standard Widrow-Hoff
delta rule [31] with learning rate parameter 3, where 0 < 3 <1 (see Sect. 2 for
details). Thus, classifier’s parameters are updated incrementally at learning rate
0; they are expected to be stabilized to their theoretical average values after the
classifier receives a certain number of updates. Nonetheless, in the experiments
with high imbalance ratios, the parameters of overgeneral classifiers did not con-
verge to their theoretical values. Note that, for ir=128 (see Table 1), the pop-
ulation basically consisted of two overgeneral classifiers: (i) cly:###########:0
with P=1000 and € practically 0, and (ii) clo:########4### . 1 with both the error
and the prediction really close to 0. The values of p and € do not correspond to
their theoretical ones, which can be approximated as follows (see formulas 2 and
3):

Pet, = 992.24 Pet, = 7.75 (11)

€, = 15.38 €1, = 15.38 (12)

The difference between the theoretical estimates and the real values taken
in the experiments may be due to the value of the learning rate 8. In fact, 3
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Fig. 2. Evolution of the parameter € of the classifier ###########:0 in the 11-bit
multiplexer at imbalance ratio ir=128: (a) using 8 = 0.2; (b) using 5 = 0.002.

determines the amount of update in the parameter estimates. High values of 3
produce big corrections of the classifier’s parameters. Usually, this allows for a
faster convergence of the classifier’s parameters to their real values. Low values
of 8 would cause small corrections and so a slower convergence; for very small
values, accurate offspring classifiers may loose against overgeneral parents at the
beginning of the run, since their fitness increases slowly. In the reported exper-
iments, we set § = 0.2, which is a typical value used for XCS [32,33,8]. In all
these cases, XCS received a uniform distribution of samples, and so, classifiers of
any class were updated with a similar frequency. In case of high imbalance ratios,
overgeneral classifiers match one instance of the minority class every ir instances
of the majority class. Consequently, high values of § may produce oscillations
on the parameter estimates when the minority class instance is sampled. Small
values of 8 may reduce the oscillations, but then the convergence time will be
increased.

To check if the parameters of overgeneral classifiers oscillated, we monitored
the error of the classifier ###########:0 along a single run of XCS for 5=0.2
and $=0.002. The population was initialized with the two maximum overgen-
eral classifiers, and both covering and GA were switched off. The error of the
classifier was sampled every 1000 iterations. Figure 2 shows the distribution of
the error for =0.2 (Fig. 2(a)) and $=0.002 (Fig. 2(b)). For 8=0.2, the error
of the classifier was almost 0 most of the time, while the theoretical value is
7.75; moreover, there are some peaks in the distribution density, which indicate
that the error momentarily changed when it received an example of the minority
class, but quickly recovered the value of 0. Note that as € ~ 0, it satisfies that
€ < €g, and so, the classifier is considered accurate most of the time. Decreas-
ing (8 to 0.002 smoothes the density curves and the distribution becomes closer
to the theoretical value of the error. Although not shown for brevity, the same
conclusions can be drawn for the classifier’s prediction.
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The experiments herein point out that the deviation caused by the online
update of classifier parameters is significant for high imbalance ratios and high
values of . Thus, we could rewrite formula 7 but considering the deviation with
respect to the theoretical bound as follows:

et o> e (13)

where ¢ is the maximum deviation in the parameters of overgeneral classifiers
caused by the online update mechanism.

We decreased (8 to 0.002 to minimize the effect of the deviations and reran
XCS with the 11-bit multiplexer. We found that the classifier parameters were
better estimated, but the global TP rate was not improved as overgeneral classi-
fiers persisted in the population for higher imbalance ratios. This indicates that
there are more complexities affecting XCS for high class imbalances.

4.4 Occurrence-based Reproduction

The imbalance ratio affects the proportion of reproductive opportunities that
the different classifiers receive. As ir increases, starved niches are activated less
frequently, and so, accurate classifiers that belong to these niches receive a mi-
nor number of genetic events. On the other hand, accurate classifiers that form
nourished miches and overgeneral classifiers covering several input states get a
higher number of genetic events. Thus, there is a disproportion, which increases
with ¢r, on the number of genetic events that classifiers belonging to starved
niches receive with respect to those of overgeneral classifiers and classifiers that
belong to nourished niches. Since reproduction is niche-based, but deletion is
population-based, an excessive disproportion may hinder starved niches from
being evolved, and eventually, accurate classifiers contained in starved niches
may be removed from the population. In this section, we theoretically model the
genetic opportunities of these classifiers, and suggest a method to counterbalance
this disproportion.

For this purpose, we focus on the reproduction opportunities that receive (i)
accurate classifiers belonging to nourished niches, (ii) accurate classifiers belong-
ing to starved niches, and (iii) the most overgeneral classifiers. As the selection
in XCS is niche-based, we first compute the classifier’s probability of belonging
to an action set, which we denote as P,...

Instances of the minority class are sampled with probability 1/(1 + ir). As
XCS chooses the class to explore randomly, the niches activated by these in-
stances (referred as starved niches) are activated with the following probability:

P S (14)

occ : .
starved n-meg 1 + ir

where n is the number of classes, and ms the number of starved niches. Simi-
larly, recognizing that instances of the majority class are sampled with probabil-
ity ir/(1 + ir), the niches activated by these instances (addressed as nourished
niches) have the following probability of occurrence:
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P _ 1 ir (15)

occ i : -
nourished nem, 14 ir

where m,, is the number of nourished niches. Finally, the most overgeneral clas-
sifiers always participate in the match set, and the action set they advocate is
randomly selected with probability 1/n:

1
Pocc = - 16
e (16)

Once an action set is activated, the parameter update procedure is triggered,
and the parameter values are adjusted according to the reward received. Thus,
overgeneral classifiers and classifiers that belong to nourished niches would be
updated more frequently, and so, they would have more reliable estimates. In
the remainder of this analysis we consider that all classifier’s parameters are
accurate.

An action set receives a genetic event if the average time since the last appli-
cation of the GA on this action set is greater than 65 4. If the period of activation
Tyee of a niche is higher than 654, the classifiers that belong to that niche will
receive a genetic event every time the action set is formed; thus, the period of
application of the GA (Tga) will be Tga = Toee. Otherwise, if Thee < Oga, the
period of application of the GA will be: Tga ~ 0ga.

The period of occurrence Ty, of the three types of classifiers is:

Toceararpea = 1 Ms - (1 +1ir) (17)
1+r

Toccnourisnea = T+ My * ir (18)

Toccm,g =n (19)

Assuming that (i) ¢r is high (i.e., ir/(ir + 1) — 1), and (ii) m, - n < 0ga, and
not considering overlapping classifiers, we derive the period of GA application
T a for the three types of rules:

TG A rarpea = 1M - (1 417) (20)
TGAnourished ~ Oga (21)
Tca,,, = bca (22)

Note that the time between genetic events of starved niches increases linearly
with the imbalance ratio and the number of classes. For the other classifiers, Tga
depends only on 65 4. The relation between the number of genetic opportunities
received by classifiers that belong to starved niches with respect to the other
classifiers is:
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T6Auarves o, T0Awarea o (L HT)
I~ =~ . st —————
TGAnourished TGAO’UQ GGA

(23)

If Oga << ir, overgeneral classifiers and classifiers that belong to nourished
niches will receive an increasing amount of genetic opportunities with respect to
classifiers belonging to starved niches, and so, they will have more offspring.

To counterbalance the number of genetic opportunities that the different
niches receive, we require the following condition:

TGA?Lourished = TGAst(”“ued (24)

Using formulas 20 and 21, we obtain that:

QGAzn~ms~(1+ir) (25)
In O—notation, and disregarding the effect of n and my:
9GA = O(Z’I“) (26)

This indicates that 854 should be set according to the imbalance ratio ir to
guarantee that nourished niches and starved niches will receive a similar pro-
portion of genetic events. Also note that, under this condition, the classifiers
belonging to nourished niches and overgeneral classifiers will receive more pa-
rameter’s updates than the classifiers that belong to starved niches, and so, will
have more accurate estimates.

4.5 Guidelines for Parameters Configuration

The above analysis provided insight into the role of some XCS’s parameters and
their influence on learning from imbalanced data. In the following, we derive
some guidelines on how to set these parameters depending on the imbalance
ratio.

First, ¢ and R,,., determine the maximum imbalance ratio up to which
XCS will consider overgeneral classifiers as inaccurate classifiers (see formula 9).
Thus, these parameters set the threshold between negligible noise and imbalance.
Regarding equation 7, if the error of an overgeneral classifier (e > 0) is smaller
than eg, XCS will consider the classifier as accurate. Therefore, the few examples
responsible for the error are considered as noise. Otherwise, if the error of an
overgeneral classifier is higher than ¢;, XCS takes the classifier as inaccurate.
So, the examples that make the classifier erroneous are considered as relevant
examples and the classifier should not overgeneralize them.

XCS updates classifiers’ parameters as a time-weighted average of their val-
ues. The learning rate parameter 5 adjusts the importance of the recent rewards
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in the parameter update mechanism. Low values of § mean that classifiers’ pa-
rameters suffer small corrections every time they are updated. High values of 3
imply big corrections in classifier’s parameters; so, parameter’s estimates reflect
the weighted average of few instances. In this case, we showed that the parame-
ters of overgeneral classifiers can fluctuate, and so, overgeneral classifiers can be
considered accurate during most of the learning time. Our suggestion to avoid
this is to set 8 according to the activation frequency of the most starved niche
(fmin) and the most nourished niche (fy,q;), ensuring that the rewards provided
when sampling instances of the minority class will be reflected in the parameters’
values:

. fmin

fmaj

where k; is an arbitrary constant. Under the initial assumptions of only having
two types of niches, the starved and the nourished niches, the ratio of frequencies
equals the inverse of the imbalance ratio: fin/fmaz = 1/ir. Thus:

B =k (27)

k1
= — 28
=" (28)
Finally, section 4.4 argued that 64 should increase linearly with the imbal-
ance ratio to ensure that nourished and starved niches received a similar number
of genetic events. Generalizing, we write the following equation:

9(;,4 = k‘g AT (29)

where k5 is an arbitrary constant. For ks = 1, all niches will receive, approxi-
mately, the same number genetic events.

We ran the same experiments with the 11-bit multiplexer but setting XCS as
indicated by the configuration guidelines. We only changed the parameters of the
runs that failed: ir={64, 128, 256, 512}. Specifically, we set 8 4={200,400,800,1600}
and $={0.04, 0.02, 0.01, 0.005} for each imbalance ratio respectively. Figure 3
shows the results obtained. It can be observed that XCS solves the 11-bit multi-
plexer up to an imbalance ratio of ir = 256, which supposes a big improvement
with respect to the initial experiments. The theoretical bound derived in Sect.
4.1 indicates that XCS might be able to solve the problem up to ir=2000. We
got closer to this bound with appropriate parameter settings. However, we are
still far from ir=2000. We hypothesize that the gap between the theoretical and
the empirical maximum ér may be due to an insufficient number of classifiers of
the minority class in the initial population. This would prevent XCS to settle the
minority class niches and let them grow. As future work, we will analyze pop-
ulation sizing to guarantee the initial supply of classifiers belonging to starved
niches at extremely high class imbalances.
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Fig. 3. TN rate (a) and TP rate (b) of XCS in the 11-bit multiplexer with imbalance
ratios from ir=1 to ir=512. Parameters are configured according to the guidelines.

5 Online Configuration of XCS to Handle Imbalanced
Problems

The analysis in the last section was done assuming that there were only two types
of niches in the solution space, the nourished niches and the starved niches, and
that they were activated with a frequency directly proportional to the imbalance
ratio. This was the case of the multiplexer problem. Nonetheless, in real-world
problems, niches are unknown before running the system; consequently, niche
frequencies cannot be estimated and may not be related to the imbalance ratio.
In fact, the imbalance ratio reports about the proportion of examples per class,
but does not provide any information about the distribution of the niches in
the solution space. For example, even with a balanced dataset (i.e., ir=1), there
might be starved niches in the feature space.

Thus, we are concerned about the ratio between the frequencies of nour-
ished niches and starved niches that lay closely in the feature space, rather than
about the imbalance ratio of the training dataset. In this context, the guide-
lines proposed in section 4.5 still hold, but now replacing the imbalance ratio
of the training dataset ir by the niche imbalance ratio ir,, defined as the ratio
between the frequencies of the most nourished and the most starved niche. How-
ever, obtaining an accurate estimate of ir, poses a big challenge to XCS, since
the niches that XCS has to evolve and their frequencies are completely unknown
in a real-world problem. Next, we present an approach, addressed as the on-
line adaptation algorithm, that estimates ir,, from information gathered during
XCS’s learning; then, it substitutes this estimate in the formulas presented in
the previous section to adapt XCS’s parameters online.



15

Algorithm 5.1: Pseudocode for the online adaptation algorithm.

1 Algorithm: OnlineAdaptation ( cl is classifier )

2 if cl is overgeneral then

expmaj(cl)
€TPmajt+eTPmin (cl)

3 ’i?”n =

4 if (irn, < %*L”“” A expe > 0ir A nume > nu—m[p]) then
5 Adapt 8 (cl)

6 Adapt 6ga (cl)

7 end

8 end

5.1 Online Adaptation Algorithm

The online adaptation algorithm benefits from the potential information con-
tained in the overgeneral classifiers to estimate the niche imbalance ratio r, of
an unknown problem, and then use this estimate to tune § and 65 4. Overgeneral
classifiers are activated in different niches, which tend to be close in the solution
space. From these overgeneral classifiers, we estimate ir, with the relative im-
balance ratio in the region of the feature space that they cover, by computing
the ratio between the number of instances of each class that the overgeneral
classifier matches.

Algorithm 5.1 shows the pseudocode for the online adaptation algorithm.
After every parameter update, the algorithm is triggered for each classifier ¢l in
the match set. The first condition of the algorithm checks if ¢l is overgeneral. In
this case, ir, is calculated as the number of instances of the majority class with
respect to the number of instances covered by the classifier. Then, the algorithm
checks if ir, is smaller than the maximum imbalance ratio up to which XCS
should be able to distinguish an overgeneral classifier (see formula 10). If the
condition is satisfied, it indicates that the overgeneral rule has a higher error
than what is considered as negligible noise. In this case, if the classifier has
sufficient experience and high numerosity, 3 and 64 are adapted following the
guidelines derived in section 4.5.

0 is adjusted so that the real prediction value of the overgeneral classifier is
close to the theoretical one. To do that, we consider the worst case: we suppose
that the classifier receives one example of the minority class, and then, ir,
examples of the majority class. We compute the error value that the classifier
will have after receiving these ir, + 1 instances with the correspondent 3 value
using the following series:

pirﬁo = Rma:}c . (1 - /6) (30)
V1< S Z."('cl : pir/gi = 6(Rmaz 7pir5i_1) (31)
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If pir,, is far from the theoretical value, we decrease 8 by a proportion ¢ <1
and repeat the same process. Consequently, the algorithm guarantees that, even
in the worst case, the estimate of the classifiers parameters will be close to their
real values.

Finally, the algorithm uses ir,, to tune 654 by applying formula 29:

€TPmaj
€TPmin + €TPmaj

QGA = kg Y k‘g . (32)
where ks fixes the minimum number of minority class examples that the starved
niche has to match before going through a genetic event. This allows to counter-
balance the genetic opportunities between starved and nourished niches. ky = 1
means that the classifiers belonging to starved niches are updated only once
before receiving a genetic event. Higher values of ko allow better parameter es-
timates since these classifiers receive more updates between GA applications. In
the experiments made in this section, we set ko=5.

5.2 Results

Figure 4 shows the results obtained by XCS with online adaptation of param-
eters. The initial configuration reported in section 3 was used. As § and 04
are adapted online, their initial value was set to 8G4=25 and $=0.2. The results
are similar to those shown for XCS configured following the guidelines (see Fig.
3), where XCS could solve the 11-bit multiplexer up to ir=256. With the online
adaptation algorithm, the convergence is a little delayed since XCS needs some
time to realize the existence of overgeneral classifiers, estimate ir,, tune § and
fca, and let the evolutionary search remove overgeneral classifiers and discover
accurate ones.

Let’s note that this approach is essential in real-world problems, since there
is not previous information about niche frequencies. In such a situation, the
online adaptation algorithm introduces a significant improvement in imbalanced
datasets.

6 LCS for Mining Imbalanced Datasets

XCS with online adaptation of parameters has demonstrated to be able to han-
dle high amounts of class imbalance in artificially imbalanced problems. In this
section, we investigate the capabilities of XCS for mining imbalanced data. Thus,
we test XCS on a set of real-world problems with different imbalance ratios, and
compare the system with other well-known machine learning techniques.

6.1 Methodology

We created a testbed consisting of 25 real-world two-class problems with different
characteristics and imbalance ratios as follows. First, the following twelve prob-
lems were chosen: balance-scale, bupa, glass, heart disease, pima indian diabetes,
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Fig. 4. TN rate (a) and TP rate (b) of XCS with online adaptation of parameters in
the 11-bit multiplexer with imbalance ratios from ir=1 to ir=>512.

tao, thyroid disease, waveform, Wisconsin breast cancer database, Wisconsin di-
agnostic breast cancer, wine recognition data, and Wisconsin pronostic breast
cancer. All these problems where obtained from the UCI repository [7], except
from tao, which was selected from a local repository [6]. For datasets with more
than two classes, the discrimination of each pair of classes was considered as an
individual problem. Thus, (g) two-class problems were created from any prob-
lem with n classes (where n > 2), resulting in a testbed that consisted of 25
two-class real-world problems. Table 2 gathers the most relevant features of the

problems.

The performance of XCS was compared to three of the most competent
machine learning techniques: C4.5 [26], SMO [25] and IBk [1]. C4.5, derived
from ID3, is one of the best representative decision trees which has been widely
applied to tackle highly imbalanced problems. SMO is a fast method to train
support vector machines [30] which has been able to handle very large training
datasets [25]; in our experiments we used a linear kernel. IBk [1] is a nearest
neighbor algorithm which decides that the output of a new input instance is the
majority class of its k& nearest neighbors; in the experiments, we set k = 5. All
these machine learning methods were run using WEKA [34].

The metric of performance used in the comparison was the product of the TN
rate and the TP rate, since this metric is not influenced by the imbalance ratio of
the training dataset. To have good estimates of the TN rate and the TP rate, we
ran the experiments on a ten-fold cross-validation [28]. After verifying that the
results satisfied the condition of normality with the Kolmogorov-Smirnov test
[29], the parametric statistical test of repeated measures ANOVA [27] was used
to check if all the learning methods performed the same in average. Moreover,
the performance of each pair of algorithms was compared using a paired Student
t-test [28]. Next section shows the comparison among the four systems.
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Table 2. Description of the datasets properties. The columns describe the dataset iden-
tifier (Id.), the original name of the dataset (Dataset), the number of problem instances
(#Ins.), the number of attributes (#At.), the proportion of minority class instances
(%Min.), the proportion of majority class instances (%Maj.), and the imbalance ratio

(ir).

Id. Dataset #Ins.|#At.| %Min. | %Maj.| ir
baldl |balance-scale disc. 1 625 |4 7.84% 192.16%11.76
bald2 |balance-scale disc. 2 625 |4 46.08%|53.92%| 1.17
bald3 |balance-scale disc. 3 625 |4 46.08%|53.92%| 1.17
bpa  |bupa 345 |6 42.03%|57.97%| 1.38
glsdl |glass disc. 1 214 |9 4.21% (95.79%|22.75
glsd2 |glass disc. 2 214 |9 6.07% (93.93%15.47
glsd3 |glass disc. 3 214 |9 7.94% (92.06%]|11,59
glsd4 |glass disc. / 214 |9 13.55%186.45%| 6.38
glsd5 |glass disc. 5 214 |9 32.71%|67.29%| 2.06
glsd6 |glass disc. 6 214 |9 35.51%|64.49%| 1.82
h-s heart-disease 270 |13 |44.44%|55.56%| 1.25
pim  |pima-inidan 768 |8 34.90%|65.10%| 1.87
tao tao-grid 1888 |2 50.00%150.00%| 1.00
thydl |thyroid disc. 1 215 |5 13.95%|86.05%| 6.17
thyd2 |thyroid disc. 2 215 |5 16.28%|83.72%| 5.14
thyd3 |thyroid disc. 3 215 |5 30.23%|69.77%| 2.31
wavdl |waveform disc. 1 5000 |40 |33.06%|66.94%| 2.02
wavd2 |waveform disc. 2 5000 |40 |33.84%|66.16%| 1.96
wavd3 |waveform disc. 3 5000 |40 |33.10%|66.90%)| 2.02
wbed | Wis. breast cancer 699 |9 34.48%65.52%| 1.90
wdbc | Wis. diag. breast cancer|569 |30 |37.26%|62.74%| 1.68
wined1|wine disc. 1 178 |13 [26.97%|73.03%| 2.71
wined2|wine disc. 2 178 |13 [33.15%|66.85%| 2.02
wined3|wine disc. 3 178 |13 [39.89%(60.11%| 1.51
wpbc |wine disc. 4 198 (33 [23.74%|76.26%| 3.21

6.2 Results

Table 3 compares the performance of the four learners on the 25 datasets. The
repeated-measures ANOVA did not permit to reject the null hypothesis that all
the learners performed the same in average. This result is not surprising; in fact,
the no-free-lunch theorem [35,36] justifies that, if no knowledge about the do-
main is used, no learning algorithm can systematically outperform the others.
However, we are interested in learners that are robust in average. For this pur-
pose, we applied statistical pairwise comparisons (on a significance level of 0.99),
which are shown as follows. The e and o symbols indicate a significant degrada-
tion/improvement of the method with respect to another learner in the specific
dataset. The last row of the table counts the number of times that a method has
significantly degraded/improved the performance of another method.
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Table 3. Comparison of the learning performance of C4.5, SMO, 1Bk, and XCS on the
25 real-world problems testbed. The e and o symbols indicate that the correspondent
learning algorithm performed significantly worst/better on a significance level of 0.99
(pairwise t-test) than another learning algorithm for the concrete problem. The row
Awg. averages the performance of each method over all the 25 datasets, and the row
Score counts the number of times that a method has performed worst-better than
another for a specific problem.

C4.5 SMO IBk XCS
bald1 0,00 0,00 0,00 0,00
bald2 69,28 oo 83,98 oo 81,16 oo 71,22 o0
bald3 71,21 o 85,69 oo 82,11 oo 70,07 oo
bpa 33,50 o 0,00 eee (32,40 oo |47,22 oo
glsd1 79,60 oo | 0,00 e 69,32 o 20,00 «
glsd2 33,95 15,00 24,13 59,40
glsd3 28,78 0,00 0,00 0,00
gls2c/ 73,36 80,33 77,07 80,33
gls2ch 65,35 o 9,58 see (62,26 o 67,82 o
gls2c6 52,03 o 0,00 eee (61,74 o 61,08 o
h-s 63,70 68,30 64,40 60,32
pim 44,96 48,36 46,91 46,06
tao 91,00 eco |70,57 ees (94,25 000 (82,90 e
thyd1 87,53 76,67 76,67 78,69
thyd2 93,12 o 54,17 « 77,90 82,50
thyd3 8731 o (33,81 ees (81,120  [89,74 o
wavdl 67,80 eee |78,65 oo 72,28 e oo (80,43 oo
wavd2 62,54 e e [72,35 oo 67,49 e oo [73,48 oo
wavd3 68,61 ees |79,61 oo |74,14 eeo 81,01 co
wbed 89,10 92,72 92,72 92,29
wdbc 88,83 94,27 o 93,47 90,30 «
winedl 85,58 98,46 94,98 99,23
wined?2 91,83 97,51 97,50 99,17
wined3 87,64 97,14 87,94 93,43
wpbc 33,96 o 9,37 e 28,98 o 20,99
Avg. 66,02 53,88 65,64 60,17
Score 14-10 20-11 7-16 8-12

Several observations can be drawn from the results. The overall degrada-
tion/improvement count shows that XCS is one of the most robust methods,
specially for the most imbalanced datasets. Its performance is only degraded in
eight occasions, the majority of which are concentrated in the problems: bald2,
bald3 and tao. bald2 and bald3 are two of the three datasets obtained from
the discrimination of classes of the balance-scale problem. Both problems have
nearly the same proportion of instances per class (ir = 1). The reason why XCS
is outperformed by SMO and IBk is not explainable, and cannot be caused by
the imbalance ratio; thus, there may be other complexities affecting XCS’s be-
havior. The tao problem is a completely balanced dataset (ir = 1) in which the
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boundary between classes is curved. In [4] it is shown that curved boundaries
pose a challenge in XCS due to its hyperrectangular representation, which tends
to concentrate high proportions of error.

On the other hand, XCS outperforms other methods in twelve occasions;
from them, the datasets for which XCS outperforms more than one learner are:
bpa, wavdl, wavd?2, and wavd3. bpa is a quasi-balanced problem (ir = 1.38),
and wavdl, wavd2, and wavd3 are the three parwise discriminations of classes
of the waveform problem, which present imbalance ratios of 2.02, 1.96, and 2.02
respectively. Besides, the waveform problem has the largest number of instances
(5,000) and attributes (40) in the testbed. Although the difference between XCS
and the other learners cannot be easily explained, these results indicate that
XCS performs really competitively even when the size of the dataset increases.
Let’s also note that these results could be further explained by extracting the
complexity of the training datasets. This approach was followed in [4,5], evi-
dencing a high correlation between some geometrical indicators of the training
datasets and XCS’s performance measured by the test error.

Let’s now compare the learners in terms of imbalance robustness. To do
that, we consider the problems with the highest ir; specifically, we analyze the
performance on problems with ir > 5: baldl, glsd1, glsd2, glsd3, glsd4, thydl,
and thyd2. In all these problems, XCS performs really competitively. XCS is
only outperformed in the problem glsd! by C4.5. In all the other problems, XCS
performs equivalently to IBk and C4.5. SMO presents the worst performance.
It has widely been shown in several works that C4.5 is able to deal with really
imbalanced data [19, 20, 2]. Thus, the comparison indicates that XCS is robust
(comparable to C4.5) for datasets with high disproportions of instances per class.

Finally, it is worth noting that there is not a direct mapping between the
imbalance ratio in the learning dataset and the niche imbalance ratio, although
both measures are related. Thus, even completely balanced datasets could cause
small niches or small disjuncts to occur. As further work, we aim at designing
metrics that, given a dataset, evaluate the presence of small disjuncts. This would
allow to investigate the relationship between the classifiers’ behavior and the
presence of small disjuncts, and provide better understanding of the classifiers’
performance on imbalanced datasets.

7 Summary and Conclusions

This work investigated the behavior of XCS on imbalanced classification prob-
lems. First, we empirically showed that XCS with a standard configuration can
solve the multiplexer problem for moderate class imbalances (ir<32). We iden-
tified that the number of overgeneral rules in the population tends to increase
quickly with the imbalance ratio beyond a certain threshold of imbalance. For
ir > 64, overgeneral rules represented near 100% of the population.

To provide further explanations on this tendency, we theoretically analyzed
how the imbalance ratio affected the error of overgeneral classifiers, deriving a
bound on the imbalance ratio under which XCS should be able to distinguish
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between accurate and overgeneral classifiers. As the theoretical bounds did not
agree with the experimental observations, we analyzed the potential motifs of
discordance. We detected that (i) the learning rate parameter 8 should be prop-
erly configured to ensure that overgeneral classifiers will have accurate estimates
of their parameters, and (ii) the GA (whose application rate is controlled by
0ca) should be applied with a similar frequency to all niches to avoid that the
offspring of classifiers that belong to nourished niches overtake the population.
The analysis resulted in a set of recommendations on how to set 8 and 0G4 de-
pending on the imbalance ratio, and results evidenced a significant improvement
of XCS’s behavior. We further argued the necessity of focusing on the niche im-
balance ratio rather than in the imbalance ratio of the learning dataset to deal
with real-world problems that may present small disjuncts. So, we proposed a
method that estimates the niche imbalance ratio and automatically adjusts 3
and Og 4 from this estimate.

Finally, XCS was compared to C4.5, SMO and IBk on 25 real-world problems.
The overall results showed that, although no learner performed statistically bet-
ter than the others, XCS turned up to be really competitive to the other three
machine learning techniques. The comparative analysis also denoted some dif-
ferences in the performance of the learners that could not be easily explained
by simply looking at the imbalance ratio. In fact, the imbalance ratio in the
training dataset does not directly determines the presence of small disjuncts.
Even completely balanced datasets can present small disjuncts depending on
the distribution of instances around the feature space and the knowledge repre-
sentation used by the learner. As further work, we propose to design metrics that
evaluate the presence of small disjuncts, relating the performance of XCS with
these indicators. Moreover, this information may be used in a corrective way,
resampling the training dataset to diminish the presence of the small disjuncts.
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