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Av. Sos Baynat s/n, E-12071 Castelló de la Plana, Spain
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Abstract. The Nearest Neighbor classifier is one of the most popular supervised
classification methods. It is very simple, intuitive and accurate in a great variety
of real-world applications. Despite its simplicity and effectiveness, practical use
of this rule has been historically limited due to its high storage requirements and
the computational costs involved, as well as the presence of outliers. In order to
overcome these drawbacks, it is possible to employ a suitable prototype selection
scheme, as a way of storage and computing time reduction and it usually provides
some increase in classification accuracy. Nevertheless, in some practical cases
prototype selection may even produce a degradation of the classifier effectiveness.
From an empirical point of view, it is still difficult to know a priori when this
method will provide an appropriate behavior. The present paper tries to predict
how appropriate a prototype selection algorithm will result when applied to a
particular problem, by characterizing data with a set of complexity measures.

1 Introduction

One of the most widely studied non-parametric classification approaches corresponds
to the k-Nearest Neighbor (k-NN) decision rule [3]. Given a set of n previously labeled
instances (training set, TS), the k-NN classifier consists of assigning an input sample to
the class most frequently represented among the k closest instances in the TS, according
to a certain dissimilarity measure. A particular case of this rule is when k = 1, in which
an input sample is assigned to the class indicated by its closest neighbor.

The asymptotic classification error of the k-NN rule (i.e., when n grows to infinity)
tends to the optimal Bayes error rate as k → ∞ and k/n → 0. Moreover, if k = 1, the
error is bounded by approximately twice the Bayes error [3]. The optimal behavior of
this rule in asymptotic classification performance along with a conceptual and imple-
mentational simplicity make it a powerful classification technique capable of dealing
with arbitrarily complex problems, provided that there is a large enough TS available.

Nevertheless, this theoretical requirement of large TS size is also the main problem
using the 1-NN rule because of the seeming necessity of a lot of memory and com-
putational resources. This is why numerous investigations have been concerned with
finding new approaches that are efficient with computations. Within this context, many
fast algorithms to search for the NN have been proposed. Alternatively, some proto-
type selection techniques [1, 4, 6] have been directed to reduce the TS size by selecting
only the most relevant instances among all the available ones, or by generating new
prototypes in locations accurately defined.
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On the other hand, in many practical situations the theoretical accuracy can hardly
be achieved because of certain inherent weaknesses that significantly reduce the effec-
tive applicability of k-NN classifiers in real-world domains. For example, the perfor-
mance of these rules, as with any non-parametric classification approach, is extremely
sensitive to data complexity. In particular, class-overlapping, class-density, and incor-
rectness or imperfections in the TS can affect the behavior of these classifiers. Other
prototype selection methods [5, 10, 13, 14] have been devoted to improve the 1-NN
classification performance by eliminating outliers (i.e., noisy, atypical and mislabeled
instances) from the original TS, and by reducing the possible overlapping between re-
gions from different classes.

Despite the apparent benefits of most prototype selection algorithms, in some do-
mains these techniques might not achieve the expected results due to certain data char-
acteristics. For this reason, it seems interesting to know a priori the conditions under
which the application of a prototype selection scheme can become appropriate. A set
of data complexity measures [7, 8] are used in this paper to predict when a prototype
selection technique leads to an improvement with respect to the plain 1-NN rule.

2 Data Complexity Measures

The behavior of classifiers is strongly dependent on data complexity. Usual theoretical
analysis consists of searching accuracy bounds, most of them supported by impractical
conditions. Meanwhile, empirical analysis is commonly based on weak comparisons of
classifier accuracies on a small number of unexplored data sets. Such studies usually
ignore the particular geometrical descriptions of class distributions to explain classifi-
cation results. Various recent papers [7, 8] have introduced the use of measures to char-
acterize the data complexity and to relate such descriptions to classifier performance.

In [7, 8], authors define some complexity measures for two classes. For our pur-
poses, a generalization of such measures for the n-class problem is accomplished. The
ideal goal is to represent classification problems as points in a space defined by a num-
ber of measures, where clusters can be related to classification performances. Next para-
graphs describe the measures selected for the present study (the same short notation as
in the original paper [7] is here used).

Generalized Fisher’s Discriminant Ratio (F1). The plain version of this well-known
measure computes how separated are two classes according to a specific feature. It com-
pares the difference between class means with the sum of class variances. A possible
generalization for C classes, which also considers all feature dimensions, can be stated
as follows:

F1 =
∑C

i=1 ni · δ(m, mi)
∑C

i=1

∑ni

j=1 δ(xi
j , mi)

(1)

where ni denotes the number of samples in class i, δ is a metric, m is the overall mean,
mi is the mean of class i, and xi

j represents the sample j belonging to class i.

Volume of Overlap Region (F2). The original measure computes, for each feature,
the length of the overlap range normalized by the length of the total range in which
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all values of both classes are distributed. The volume of the overlap region for two
classes is the product of normalized lengths of overlapping ranges for all features. Our
generalization sums this measure for all pairs of classes, that is,

F2 =
∑

(ci,cj)

∏

k

min{max(fk, ci), max(fk, cj)} − max{min(fk, ci), min(fk, cj)}
max{max(fk, ci), max(fk, cj)} − min{min(fk, ci), min(fk, cj)}

(2)
where (ci, cj) goes through all pair of classes, k takes feature index values, while
min(fk, ci) and max(fk, ci) compute the minimum and maximum values of feature
fk in class ci, respectively.

Feature Efficiency (F3). In [7], the feature efficiency is defined as the fraction of points
that can be separated by a particular feature. For a two-class problem, the original mea-
sure takes the maximum feature efficiency. This paper considers the points in the over-
lap range (instead of those separated points as in the original formulation). The measure
value for C classes is the overall fraction of points in some overlap range of any feature
for any pair of classes. Obviously, points in more than one range are counted once. This
measure does not take into account the joint contribution of features.

Non-parametric Separability of Classes (N2, N3). The first measure (N2) is the ratio
of the average distance to intraclass nearest neighbor and the average distance to in-
terclass nearest neighbor. It compares the intraclass dispersion with the interclass sep-
arability. Smaller values suggest more discriminant data. The second measure (N3) is
simply the estimated error rate of the 1-NN rule by the leaving-one-out scheme.

Density Measure (T2). This measure does not characterize the overlapping level, but
contributes to understand the behavior of some classification problems. It describes
the density of spatial distributions of samples by computing the average number of
instances per dimension.

3 Prototype Selection

Prototype Selection (PS) techniques have been proposed as a way of minimizing the
problems related to the k-NN classifier. They consist of selecting an appropriate re-
duced subset of instances and applying the 1-NN rule using only the selected examples.
Two different families of PS methods exist in the literature: editing and condensing
algorithms.

Editing [5, 10, 13–15] eliminates erroneous cases from the original set and “cleans”
possible overlapping between regions from different classes, what usually leads to sig-
nificant improvements in performance. Thus the focus of editing is not on reducing
the set size, but on defining a high quality TS by removing outliers. Nevertheless, as
a by-product these algorithms also obtain some decrease in size and consequently, a
reduction of the computational burden of the 1-NN classifier.

Wilson [14] introduced the first editing proposal. Briefly, this consists of using the
k-NN rule to estimate the class of each instance in the TS, and removing those whose
class label does not agree with that of the majority of its k neighbors. Note that this
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algorithm tries to eliminate mislabeled instances from the TS as well as close border
instances, smoothing the decision boundaries.

On the other hand, condensing [1, 4, 6, 9, 11, 12] aims at selecting a sufficiently
small set of training instances that produces approximately the same performance than
the 1-NN rule using the whole TS. It is to be noted that many condensing schemes
make sense only when the classes are clustered and well-separated, which constitutes
the focus of the editing algorithms.

Hart’s algorithm [6] is the earliest attempt at minimizing the number of stored in-
stances by retaining only a consistent subset of the original TS. A consistent subset, say
S, of a set of instances, T , is some subset that correctly classifies every instance in T
using the 1-NN rule. Although there are usually many consistent subsets, one generally
is interested in the minimal consistent subset (i.e., the subset with the minimum number
of instances) to minimize the cost of storage and computing time. Unfortunately, Hart’s
algorithm cannot guarantee that the resulting subset is minimal in size.

4 Experimental Results and Discussion

As already stated in Sect. 1, in some cases PS algorithms may produce an effect different
from the one theoretically expected, that is, they may even degrade the performance of
the plain 1-NN classifier. A way of characterizing the problems could be by using the
data complexity measures introduced in Sect.2. Thus the experiments reported in this
paper aim at describing the databases in terms of such measures and analyzing the
conditions under which PS methods can perform better than the plain 1-NN rule.

In our experiments, we have included a total number of 17 data sets taken from
the UCI Machine Learning Database Repository (http://www.ics.uci.edu/
˜mlearn) and from the ELENA European Project (http://www.dice.ucl.ac.
be/neural-nets/Research/Projects/ELENA/). The 5-fold cross-valid-
ation error estimate method has been employed for each database: 80% of the avail-
able instances have been used as the TS and the rest of instances for the test set. The
main characteristics of these data sets and their values for the complexity measures
previously described are summarized in Table 1.

For the PS methods, we have tested Wilson’s editing, Hart’s condensing, and the
combining edited and condensed set. In this latter case, we have firstly applied Wilson’s
editing to the original TS in order to remove mislabeled instances and smooth the deci-
sion boundaries, and then Hart’s algorithm has been used over the Wilson’s edited set to
further reduce the number of training examples. After preprocessing the TS by means
of some PS scheme, the 1-NN classifier has been applied to the test set.

Table 2 reports the error rate and the percentage of original training instances re-
tained by each method for each database. Typical settings for Wilson’s editing algorithm
(i.e., number of neighbors) have been tried and the ones leading to the best performance
have been finally included. The databases are sorted by the value of F1. By means of
the data complexity measures, we have tried different orderings which could give us an
indication of the relation between the complexity of a data set and the particular method
applied to it. From all those measures, it seems that F1 is the one that better discrimi-
nates between the cases in which an editing has to be firstly applied and those in which
one could directly employ the plain 1-NN rule.
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Table 1. Experimental data sets: characteristics and complexity measures.

Classes Dim Samples F1 F2 F3 N2 N3 T2

Cancer 2 9 683 1.315 0.319 0.902 0.220 0.950 76

Clouds 2 2 5000 0.245 0.380 0.877 0.019 0.846 2500

Diabetes 2 8 768 0.032 0.252 0.994 0.839 0.679 96

Gauss 2 2 5000 0.000 0.309 0.960 0.060 0.650 2500

German 2 24 1000 0.026 0.664 0.992 0.794 0.664 42

Glass 6 9 214 0.474 0.013 0.963 0.452 0.734 24

Heart 2 13 270 0.041 0.196 0.985 0.838 0.567 21

Liver 2 6 345 0.017 0.073 0.968 0.853 0.623 58

Phoneme 2 5 5404 0.082 0.271 0.878 0.067 0.912 1081

Satimage 6 36 6435 2.060 0.000 0.883 0.215 0.909 179

Segment 7 19 2310 0.938 0.000 0.583 0.072 0.967 122

Sonar 2 60 208 0.029 0.000 0.947 0.544 0.827 3

Texture 11 40 5500 3.614 0.000 0.726 0.119 0.992 138

Vehicle 4 18 846 0.259 0.169 0.968 0.273 0.653 47

Vowel 11 10 528 0.536 0.482 0.962 0.129 0.991 53

Waveform 3 21 4999 0.410 0.007 0.997 0.769 0.780 238

Wine 3 13 178 2.362 0.000 0.315 0.018 0.770 14

As can be seen in Table 2, Wilson’s editing outperforms the 1-NN rule when F1
is under 0.410 (that is, when regions from different classes are strongly overlapped).
Consequently, for a particular problem, one could decide to apply an editing to the
original TS or directly to employ the plain 1-NN classifier according to the value of
F1. For data sets with no (or weak) overlapping (in Table 2, those with F1 > 0.410),
the use of an editing can become even harmful in terms of error rate: it seems that
editing removes some instances that are defining the decision boundary and therefore,
this produces a certain change in the form of such a boundary. Another important result
in Table 2 refers to the percentage of training instances given by Hart’s condensing: in
general, the reductions in TS size for databases with high overlap are lower than those
in the case of data sets with weak overlapping.

From the results included in Table 2, it is possible to distinguish between two situa-
tions. First, for domains in which the classes are strongly overlapped, one has to employ
an editing algorithm in order to obtain a lower error rate (in these cases, benefits in size
reduction and classification time are also obtained). Second, for databases with weak
overlapping (i.e., F1 is high enough), in which error rate given by the 1-NN rule can
be even lower than that achieved with an editing, one should still decide when to ap-
ply a PS scheme (reducing time and storage needs) and when to directly use the 1-NN
classifier without any preprocessing. In many problems, differences in error rate are not
statistically significant (for example, in Satimage database, the error rates for Wilson’s
editing and 1-NN rule are 16.90% and 16.40%, respectively) and in such cases, savings
in memory requirements and classification times can become the key issues for deciding
which method to employ.
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Table 2. 1-NN error rate and percentage of training instances (in brackets), sorted by F1 (values
in italics indicate the lowest error rate for each database).

F1 Wilson Hart Combined 1-NN

Gauss 0.000 30.24 (68.93) 35.86 (54.07) 30.76 (8.08) 35.06 (100.00)

Liver 0.017 32.18 (66.59) 37.68 (59.13) 34.17 (17.46) 34.50 (100.00)

German 0.026 30.60 (68.10) 38.50 (53.45) 30.49 (10.73) 34.69 (100.00)

Sonar 0.029 43.03 (82.04) 50.40 (34.49) 40.42 (17.25) 47.89 (100.00)

Diabetes 0.032 27.21 (71.66) 35.29 (51.47) 27.34 (10.78) 32.68 (100.00)

Heart 0.041 32.61 (58.06) 42.14 (59.54) 35.20 (13.52) 41.83 (100.00)

Phoneme 0.082 26.43 (89.42) 34.07 (21.55) 28.17 (9.28) 29.74 (100.00)

Clouds 0.245 11.52 (88.06) 17.28 (27.25) 11.80 (4.07) 15.34 (100.00)

Vehicle 0.259 36.54 (64.15) 36.76 (53.43) 37.36 (18.65) 35.59 (100.00)

Waveform 0.410 18.96 (82.01) 26.01 (38.96) 21.84 (17.09) 22.04 (100.00)

Glass 0.474 32.37 (70.69) 31.35 (47.01) 32.74 (18.74) 28.60 (100.00)

Vowel 0.536 5.23 (96.69) 4.57 (23.40) 8.51 (21.96) 2.10 (100.00)

Segment 0.938 5.28 (96.09) 5.88 (13.73) 6.88 (9.90) 3.72 (100.00)

Cancer 1.315 4.25 (95.54) 6.43 (11.44) 4.39 (3.00) 4.54 (100.00)

Satimage 2.060 16.90 (91.24) 17.94 (18.96) 18.93 (7.23) 16.40 (100.00)

Wine 2.362 29.57 (68.89) 27.59 (40.97) 28.60 (7.92) 26.95 (100.00)

Texture 3.614 1.22 (98.97) 2.91 (8.01) 2.86 (6.86) 1.04 (100.00)

Fig. 1 illustrates the situation just described, comparing the error rate and the per-
centage of training instances for two databases with a high value of F1. For the Satim-
age database, differences in error rate are not statistically significant but, in terms of
percentage of training instances, the combined approach is clearly the best option: it
stores only 7.23% of the original samples and provides an error rate approximately 2%
higher than the plain 1-NN rule with the whole TS (100% of instances). Results for the
Wine database are similar to those of the Satimage domain, although now differences
in error rate are more important when comparing Wilson’s editing and 1-NN classifier.
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Fig. 1. Comparing error rate and percentage of the original instances retained by each method for
several databases with high F1.
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As a conclusion, for these cases with high F1, one has to decide whether it is more
important to achieve the lowest error rate but without any reduction in storage or to
attain a moderate error rate with important savings in memory requirements (and also,
in classification times).

Despite F1 results in the complexity measure with the highest discrimination power
in the specific framework of PS, it is to be noted that other measures can become espe-
cially useful for other different tasks. For example, F2 and F3 (conveniently adapted)
could be particularly interesting in the case of feature selection because they could be
used as objective functions to pick subsets of relevant features. On the hand, other mea-
sures constitute a complement in the analysis of certain problems. In this sense, T2
can help to understand why the plain 1-NN classifier does not perform well in prob-
lems with weak overlapping. For example, the 1-NN error rate in Wine database, which
corresponds to a problem with almost no overlapping (F1 = 2.362), is high enough
(26.95%); this can be explained by the fact that there exists a very small number of
training instances per dimension (T2 = 14).

5 Concluding Remarks and Further Extensions

The primary goal of this paper has been to analyze the relation between data complexity
and efficiency for the 1-NN classification. More specifically, we have investigated on the
utility of a set of complexity measures as a tool to predict whether or not the application
of some PS algorithm results appropriate in a particular problem.

After testing different data complexity measures, from the experiments carried out
over 17 databases, it seems that F1 can become especially useful to distinguish between
the situations in which a PS technique is clearly needed and those in which a more
extensive study has to be considered. While in the former case the PS approach achieves
the lowest error rate and some savings in memory storage, for the later it is not clear
the significance of gains in error rate and therefore, other measures should be employed
because even the application of a method with a higher error rate could be justified
according to other benefits in computational requirements.

It is worth noting that for those situations in which PS degrades the 1-NN accuracy,
one could still reduce the (high) computing time associated to the plain 1-NN rule by
means of fast search algorithms [2]. However, it is known that fast search algorithms
can lessen the number of computations during classification but they still maintain the
memory requirements.

Future work is mainly addressed to extend the data complexity measures employed
in the same framework of the present paper, trying to better characterize the conditions
for an appropriate use of PS techniques. A larger number of PS algorithms, both from
selection and abstraction perspectives, has also to be tested in order to understand the
relation between data complexity and performance of the 1-NN classifier. Finally, a
more exhaustive study will help to categorize the use of several complexity measures
for different pattern recognition tasks.
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