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1.- Introduction:
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The aim of the study consists on the

analysis of some complexity measures

by means of the generation of artificial 

data sets.

To address this, we normalize the

measures in a [0,1] range, generating

artificial data sets covering that range

and studying graphically the instances

distribution and some classificator

behaviour.



2.- Overlap Complexity Measures

• Bayes error-based parametric and nonparametric approaches, entropy

measures, nonparametric estimation including k nearest neighbor, Parzen

estimation, etc.

• Scatter matrices.

• Information-theory-based approaches.

• Nonparametric methods.

• Overlap between individual attribute values: Fisher’s discriminant, 

volume of overlap region, feature efficiency, etc..

• Measures of separability of classes: Linear Separability, Mixture 

identificability, etc.

•Measures of Geometry, Topology and Density of manyfolds.

•…

S. Singh (2003). Multiresolution Estimates of Clasification Complexity, IEEE Transactions

on Pattern Analysis and Machine Intelligence 25:12, 1534-1539.

T.K. Ho, M. Basu (2002). Complexity Measures of Supervised Classification Problems, IEEE 

Trans. on Pattern Analysis and Mach. Intell. 24:3, 289-300. 

E. Bernadó-Mansilla, T.K. Ho, A. Orriols-Puig (2006). Data Complexity and Evolutionary

Learning: Classifier's Behavior and Domain of Competence. In: 

T.K. Ho, M. Basu (Eds.) Data Complexity in Pattern Recognition, Springer, accepted
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2.1. Fisher’s Discriminant Ratio

Prototype Selection selects the most representative examples to improve

the accuracy of the nearest neighbor classifier.:

Definition: For each feature, the measure f is calculated as:

It is used the maximum  over all the feature dimensions to 

describe a problem.

Cites: [Bernadó et al. 2005] , [Dong et al. 2003] , [Hernandez et 

al. 2005], [Ho et al. 2000], [Ho et al. 2002a], [Ho et al. 2002b],  

[Ho et al. 2006], [Mollineda et al 2005], [Sotoca et al. 2006]

Behaviour: Small values indicate High overlap

Measure: Fisher’s Discriminant Ratio (F1)
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Prototype Selection selects the most representative examples to improve

the accuracy of the nearest neighbor classifier.:

F1=0Measure: Fisher’s Discriminant 

Ratio (F1)

F1≈1.0F1=0.75

F1=0.5F1=0.25

Artificial datasets:

Instances=100, Features=2, 

Classes=2

2.1. Fisher’s Discriminant Ratio
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Prototype Selection selects the most representative examples to improve

the accuracy of the nearest neighbor classifier.:

Classificator Behaviour with

Artificial Datasets:

Instances=100, Features=4, 

Classes=2

Measure: Fisher’s Discriminant Ratio (F1)

2.1. Fisher’s Discriminant Ratio
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Prototype Selection selects the most representative examples to improve

the accuracy of the nearest neighbor classifier.:

Generalization (Multiclass extension):

Considering [Ho et al. 2006]:

• Considering [Mollineda et al 2005], [Sotoca et al 2006]:

They propose a measure of the separability among the classes based in nearest

neighbor distance.

Measure: Fisher’s Discriminant Ratio (F1)

2.1. Fisher’s Discriminant Ratio
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2.2. Volume of Overlap Region

Prototype Selection selects the most representative examples to improve

the accuracy of the nearest neighbor classifier.:

Definition:

.

Cites: [Bernadó et al. 2005] , [Dong et al. 2003] , [Hernandez et 

al. 2005], [Ho et al. 2000], [Ho et al. 2002a], [Ho et al. 2002b],  

[Ho et al. 2006], [Mollineda et al 2005], [Sotoca et al 2006]

Behaviour:  Small value indicate Small overlap

Measure: Volume of Overlap Region (F2)
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Prototype Selection selects the most representative examples to improve

the accuracy of the nearest neighbor classifier.:

F2≈0Measure: Volume of Overlap

Region (F2)

F2=1.0F2=0.75

F2=0.5F2=0.25

Artificial datasets:

Instances=100, Features=2, 

Classes=2

2.2. Volume of Overlap Region
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Prototype Selection selects the most representative examples to improve

the accuracy of the nearest neighbor classifier.:

Classificator Behaviour with

Artificial Datasets:

Instances=100, Features=4, 

Classes=2

Measure: Volume of Overlap Region (F2)

2.2. Volume of Overlap Region



Workshop Knowlegde Extraction based on EAs (15-16 May, 2008)

Prototype Selection selects the most representative examples to improve

the accuracy of the nearest neighbor classifier.:

Generalization (Multiclass extension):

• Considering [Ho et al. 2006], [Mollineda et al 2005], [Sotoca

et al 2006]:

Being Vi the hyperrectangular region spanned by the ith class. 

Measure: Volume of Overlap Region (F2)

2.2. Volume of Overlap Region
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2.3. Feature Efficiency

Prototype Selection selects the most representative examples to improve

the accuracy of the nearest neighbor classifier.:

Definition:

The efficiency of each feature is the fraction of all remaining 

points separable by that feature. It is used the maximum feature

efficiency to represent the contribution of the feature most 

usefull.

Cites: [Bernadó et al. 2005] , [Dong et al. 2003] , [Hernandez et 

al. 2005], [Ho et al. 2000], [Ho et al. 2002a], [Ho et al. 2002b],  

[Ho et al. 2006], [Mollineda et al 2005], [Sotoca et al 2006]

Behaviour: Small values indicate High overlap

Measure: Feature Efficiency (F3)



Workshop Knowlegde Extraction based on EAs (15-16 May, 2008)

Prototype Selection selects the most representative examples to improve

the accuracy of the nearest neighbor classifier.:

F2=0Measure: Feature Efficiency (F3)

F2=1.0F2=0.75

F2=0.5F2=0.25

Artificial datasets:

Instances=100, Features=2, 

Classes=2

2.3. Feature Efficiency
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Prototype Selection selects the most representative examples to improve

the accuracy of the nearest neighbor classifier.:

Classificator Behaviour with

Artificial Datasets:

Instances=100, Features=4, 

Classes=2

Measure: Feature Efficiency (F3)

2.3. Feature Efficiency
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Prototype Selection selects the most representative examples to improve

the accuracy of the nearest neighbor classifier.:

Generalization (Multiclass extension):

• Considering [Ho et al. 2006], [Mollineda et al 2005], [Sotoca

et al 2006]:

“The measure value for C classes is the overall fraction of points in some overlap 

range of any feature for any pair of classes. Points in more than one range is 

counted once.”

Measure: Feature Efficiency (F3)

2.3. Feature Efficiency



• The graphical instance distribution helps to

understand the effect of the measures variation in 

instances distribution.

• SVM seems to be very sensible to overlapping.

• C4.5, when F3 is higher, is the classifier which offers

the most interesting behaviour.

• It would be needed a more complex environment (with

higher number of instances, features and classes) for the

artificial data sets to analyze the rest of the classifiers. 
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3.- Conclusions



• Increase the environment (complexity) of the artificial 

data sets.

• Increase the number of measures considered.

• Extend the measures and their analysis to multiclass

context.
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4.- Future Works.
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