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{sotoca,mollined,sanchez}@uji.es

Abstract

It is widely accepted that the empirical behavior of classifiers strongly depends on available data. For a given
problem, it is rather difficult to guess which classifier will provide the best performance or to set a proper
expectation on classification performance. Traditional experimental studies consist of presenting accuracy
of a set of classifiers on a small number of problems, without analyzing why a classifier outperforms other
classification algorithms. Recently, some researchers have tried to characterize data complexity and relate it
to classifier performance. In this paper, we present a general meta-learning framework based on a number of
data complexity measures. We also discuss the applicability of this method to several problems in pattern
analysis.
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1 Introduction

Pattern classification is a growing field with appli-
cations in very different areas such as speech and
handwriting recognition, computer vision, image
analysis, marketing, data mining, medical sci-
ence, and information retrieval, to name a few.

In brief, pattern classification constitutes a sub-
discipline of Pattern Recognition devoted to ex-
tracting relevant information from data by identi-
fying meaningful patterns. A pattern can be rep-
resented by an ordered set of n variables as the
single vector x = {x1, x2, . . . , xn}. Each pattern
belongs to one of C possible classes or categories,
denoted as ykc. Thus we have x ∈ X ⊆ Rn as the
input pattern space and y ∈ Y = {y1, y2, . . . , yc}
as the output class space. Therefore, pattern clas-
sification can be regarded as a function d : X →
Y , which assigns an output class label ykc to each

input pattern x ∈ X.

The main problem of pattern classification refers
to the capability of the learned classifier to gen-
eralize, that is, correctly classify unseen patterns.
This problem is very hard to put in a theoreti-
cal setting and most common approaches are to
a large extent heuristic in nature.

Typically, classification rules are established from
randomly selected training instances from each
class and are applied to test samples to evaluate
their classification accuracy. In such a situation,
performance of each classifier is closely related to
the characteristics of the data. Consequently, an
analysis of data characteristics appears to be an
essential tool for selecting the appropriate classi-
fication algorithm in a particular problem.

Only few works relating the performance of clas-
sifiers to data characteristics have been carried
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out up to now [1, 7, 9, 13]. The general idea
consists of predicting the applicability and per-
formance of a classifier based upon certain data
characteristics. To this end, one could employ
a set of data complexity measures, usually con-
cerning statistical, geometrical and information
theoretic descriptions.

In this paper, we review a number of data mea-
sures existing in the literature and discuss how
they can be utilized as a meta-learning method
in the domain of pattern classification. Meta-
learning can be loosely defined as learning of
meta-knowledge about learned knowledge. In our
work, we concentrate on learning from data com-
plexity measures and how to employ them in var-
ious pattern classification problems.

We conclude that the meta-analysis of data char-
acteristics could become especially useful when
working with very large databases (for instance,
in data and web mining applications). In this
context, one could estimate the utility of a classi-
fier for a particular problem by simply computing
a number of complexity measures on the training
data, instead of experimenting with it.

From now on, the rest of the present paper is or-
ganized as follows. Section 2 described several
measures of data complexity. Section 3 discusses
a number of practical problems where the meta-
learning method can be employed. Finally, Sec-
tion 4 provides the main conclusions and future
directions of research.

2 Data complexity measures

As already mentioned, the behavior of classifiers
is strongly dependent on data complexity. Usual
theoretical analysis consists of searching accuracy
bounds, most of them supported by impractical
conditions. Meanwhile, empirical analysis is com-
monly based on weak comparisons of classifier ac-
curacies on a small number of unexplored data
sets.

Such studies usually ignore the particular statis-
tical and geometrical descriptions of class distri-
butions to explain classification results. Various
recent papers [1, 6, 11, 13] have introduced the use
of measures to characterize the data complexity
and to relate such descriptions to classifier per-
formance.

Most of the data measures discussed in this pa-

per are defined only for two-class discrimination,
although in many cases it is possible to generalize
them for the C-class problem. Next sections de-
scribe a number of measures selected from various
papers.

A natural measure of a problem difficulty (or
complexity) is the error rate associated to a given
classifier. However, it can result important to em-
ploy other measures that are less dependent on
the classifier chosen. Moreover, these alternative
measures could be useful as a guide to select a
particular classifier for a given problem.

2.1 Measures of overlap

These measures mainly focus on the effectiveness
of a single feature dimension in separating the
classes. They examine the range and spread of
values in the data set with respect to each feature,
and check for overlaps among different classes.

2.1.1 Fisher’s discriminant ratio (F1)

The plain version of this well-known measure
computes how separated are two classes according
to a specific feature.

F1 =
(m1 −m2)

2

σ2
1 + σ2

2

(1)

where m1, m2, σ2
1 , and σ2

1 are the means of the
two classes and their variances, respectively.

A possible generalization for C classes, which also
considers all feature dimensions, can be stated as
follows [10]:

F1gen =
∑C

i=1 ni · δ(m,mi)∑C
i=1

∑ni

j=1 δ(xi
j ,mi)

(2)

where ni denotes the number of samples in class i,
δ is a metric (generally, the Euclidean distance),
m is the overall mean, mi is the mean of class i,
and xi

j represents the sample j belonging to class
i.
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2.1.2 Volume of overlap region (F2)

This measure computes, for each feature fk, the
length of the overlap range normalized by the
length of the total range in which all values of
both classes are distributed. Then the volume of
the overlap region for two classes is obtained as
the product of normalized lengths of overlapping
ranges for all features.

F2 =
∏

k

minmaxk −maxmink

maxmaxk −minmink
(3)

where k = 1, . . . , d for a d-dimensional problem,
and

minmaxk = min{max(fk, c1),max(fk, c2)}
maxmink = max{min(fk, c1),min(fk, c2)}
maxmaxk = max{max(fk, c1), max(fk, c2)}
minmink = min{min(fk, c1), min(fk, c2)}

A very simple generalization of F2 for the C-class
problem can be obtained by summing the plain
measure for all possible pairs of classes [10]:

F2gen =
∑

(ci,cj)

∏

k

minmaxk −maxmink

maxmaxk −minmink
(4)

where (ci, cj) goes through all pairs of classes,
k = 1, . . . , d, and

minmaxk = min{max(fk, ci), max(fk, cj)}
maxmink = max{min(fk, ci), min(fk, cj)}
maxmaxk = max{max(fk, ci),max(fk, cj)}
minmink = min{min(fk, ci), min(fk, cj)}

2.1.3 Feature efficiency (F3)

In high dimensional problems, it is important
to know how the discriminatory information is
distributed across the features. In this context,
it has to be used a measure of efficiency of in-
dividual features that describes how much each
feature contributes to the separation of the two
classes [4].

We can use a procedure that progressively re-
moves unambiguous points falling outside the
overlapping region in each dimension. The effi-
ciency of a feature is defined as the fraction of all

remaining points that can be separated by that
feature. For a two-class problem, the maximum
feature efficiency (that is, the largest fraction of
points distinguishable by using only one feature)
is taken as a measure of overlap.

The generalization for C classes can be defined
as the overall fraction of points in some overlap
range of any feature for any pair of classes. Obvi-
ously, points in more than one range are counted
once.

2.2 Measures of class separability

These measures evaluate to what extent two
classes are separable by examining the existence
and shape of the class boundary.

2.2.1 Probabilistic distance measures

The Bayes error is supposed to be theoretically
the best estimate to describe class separability.
However, it is difficult to use in practice because
of its computational complexity and it is often
empirically rather than analytically derived. In
these situations, a number of statistical proba-
bility distances such as Bhattacharya, Chernoff,
Mahalanobis, Matusita, etc. provide upper and
lower bounds for the error as a special case for a
two-class problem [11].

2.2.2 Linear separability (L1, L2)

The linear separability is the maximum proba-
bility of correct classification when discriminat-
ing the pattern distribution with hyperplanes. In
two-class problems, it represents the probability
of overlapping if each class is distributed in a con-
vex region.

Linear classifiers can be obtained by a linear pro-
gramming formulation proposed by Smith [12]
that minimizes the sum of distances of error
points to the separating hyperplane (subtracting
a constant margin).

minimize att
subject to Ztw + t ≥ b

t ≥ 0

where a, b are arbitrary constant vectors, w is
the weight vector, t is an error vector, and Z is
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a matrix where each column z is defined on an
input vector x and its class c (with value c1 or
c2) as follows:

z = +x if c = c1

z = −x if c = c2

The value of the objective function is used in [6]
as a class separability measure (L1). It is zero for
a linearly separable problem. It is to be noted
that this measure can be heavily affected by the
presence of outliers in the data set.

On the other hand, a second measure (L2) simply
corresponds to the error rate of such a linear clas-
sifier (that defined for L1) on the original training
set.

2.2.3 Fraction of points on boundary (N1)

Friedman and Rafsky [3] proposed a test on
whether two samples are from the same distri-
bution. It is thus useful for deciding whether the
points labelled as two different classes form sep-
arable distributions. This method is based on
the construction of a Minimum Spanning Tree
(MST), connecting all points in the data set to
their nearest neighbors. Then it counts the num-
ber of points connected to the opposite class by
an edge in the MST. These points are considered
to be close to the class boundary.

N1 is computed as the fraction of such points on
boundary over the total number of points in the
data set.

2.2.4 Non-parametric separability of
classes (N2, N3)

The first measure (N2) [6] is the ratio of the av-
erage distance to intraclass nearest neighbor and
the average distance to interclass nearest neigh-
bor. It compares the intraclass dispersion with
the interclass separability. Smaller values suggest
more discriminant data.

Let N=
1 (xi) and N 6=

1 (xi) be the intra-class near-
est neighbor and the inter-class nearest neighbor
of a given example (xi, ωi), respectively. Then,
N2 can be computed as follows:

N2 =
∑n

i=1 δ(N=
1 (xi), xi)∑n

i=1 δ(N 6=
1 (xi), xi)

(5)

The proximity of points in opposite classes af-
fects the error rate of a nearest neighbor classifier.
Thus, N3 simply corresponds to the estimated er-
ror rate of the nearest neighbor decision rule by
the leaving-one-out method.

2.3 Measures of geometry and den-
sity

These measures are intended to describe the ge-
ometry or the shapes of the manifolds spanned by
each class.

2.3.1 ε-Neighborhoods (T1)

This measure counts the number of balls needed
to cover each class, being each ball centered at a
training point and grown to the maximal size (in
units of ε) before it reached a point from another
class [6]. Redundant balls lying completely in the
interior of other balls are removed. This count is
then normalized by the total number of points.

This provides an interior description rather than a
boundary description as given by the MST-based
measures (see Section 2.2.3).

2.3.2 Average number of points per di-
mension (T2)

It has to be noted that this measure contributes
to understand the behavior of some classification
problems. Thus T2 describes the density of spa-
tial distributions of samples by computing the
number of instances in the data set over the num-
ber of feature dimensions.

T2 =
n

d
(6)

where n is the number of points and d is the di-
mensionality of the feature space.
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2.3.3 Density (D1)

This density measure can defined as the average
number of samples per unit of volume where all
points are distributed [10]. This volume is the
product of the lengths of all feature ranges where
values are spanned across all classes.

Note that D1 presents two extreme cases when a
moderate number of points is described by a (rel-
ative high) number of features which either varies
from 0 to 1, or takes values greater than 1.

2.3.4 Volume of local neighborhood (D2)

This measure represents the average volume oc-
cupied by the k nearest neighbors of each training
instance. Let Nk(xi) be the set of the k nearest
neighbors of a given example (xi, ωi), then the
volume of this can be defined as follows:

Vi =
d∏

h=1

(max(fh,Nk(xi))−min(fh,Nk(xi)))

(7)

where max(fh,Nk(xi)) and min(fh,Nk(xi)) rep-
resent the maximum and minimum values of fea-
ture fh among the k nearest neighbors of instance
xi.

From this, the volume of local neighborhood can
be expressed as the average value of Vi for the n
training instances.

D2 =
1
n

n∑

i=1

Vi (8)

2.3.5 Class density in overlap region (D3)

The aim of this measure is to determine the den-
sity of each class in the overlap regions. In gen-
eral, overlap regions contain the most critical
cases for the classification task and accordingly
give rise to most classifier errors. Taking into
account this, in the present paper we propose a
new measure of class density in overlap regions,
namely D3, which is based on the well-known
Wilson’s editing [15].

D3 can be measured by counting, for each class,
the number of points lying in the region of some

different class. To this end, we first find the k
nearest neighbors of each example (xi, ωi). Then
if a majority of these k neighbors belong to a class
different from ωi, we can consider that (xi, ωi) lies
in an overlap region. Note that the higher the
value of D3 for a given class, the lower the num-
ber of examples from such a class in the overlap
region.

2.3.6 Nonlinearity (L3, N4)

Hoekstra and Duin [8] proposed a measure for the
nonlinearity of a classifier with respect to a given
data set. Given a training set, this method first
generates a test by linear interpolation between
randomly drawn pairs of points belonging to the
same class. Then, the error rate of the classifier
on such a test set is measured.

In [6], both the nonlinearity of the linear classi-
fier (L3) and that of the nearest neighbor classifier
(N4) are considered.

2.4 Statistical measures

In Statlog project, several classification tech-
niques were compared over 22 data sets. These
sets were described in terms of various statistics,
trying to predict the applicability of a classifier
based on certain data characteristics. (Statlog is
an acronym for an ESPRIT project (1990-1993)
involved in comparative testing of statistical and
logical machine learning algorithms).

Among others, the following descriptive and mul-
tivariate statistics were used to summarize the
data sets in the Statlog project: total number of
instances in the whole data set, number of train-
ing patterns, number of patterns used for test,
number of features, number of binary attributes,
number of classes, mean absolute correlation co-
efficients between two features, mean skewness
of features, mean kurtosis of features, entropy of
classes, average entropy of discrete features, and
mutual information of class and feature.

All these and many other descriptive and statis-
tical measures could be still applied to data char-
acterization as a tool for predicting the most ap-
propriate classifier on a particular problem, al-
though the reliability of the predictions can be
rather questionable.
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3 Meta-learning from data
complexity measures

The following sections discuss some possible ap-
plications of data complexity measures in the gen-
eral framework of pattern classification. We re-
view several recent works in which those measures
have been employed with different aims.

3.1 Meta-analysis of classifiers

In the last years, several researchers [1, 2, 5, 13,
14] have attempted to perform a meta analysis of
classification algorithms. The aim is that given
a data set with known characteristics, one can
derive a number of meta-rules for providing prac-
tical guidelines in efficient classifier selection.

For instance, Sohn [13] describes a total of 19 data
characteristics and performs a regression analysis
between the error rate of eleven classifiers (in-
cluding statistical, machine learning and neural
networks) and those data measures.

Bernardó and Ho [1] firstly define a space of nine
data complexity measures and compute the com-
plexity measures for each problem using all avail-
able data points. Then they look for regions
in the complexity space where each classifier is
significantly better than the others, and regions
where multiple classification methods score simi-
larly. In their empirical study, they evaluate six
classifiers.

3.2 Prototype selection

Prototype selection consists of selecting an appro-
priate reduced subset of patterns from the origi-
nal training set and applying the nearest neigh-
bor rule using only the selected examples. Two
different families of prototype selection methods
exist in the literature: editing and condensing al-
gorithms.

While editing approaches eliminate erroneous
patterns from the original set and ”clean” pos-
sible overlapping between regions from different
classes (note that these usually leads to signif-
icant improvements in performance), condensing
aims at selecting a sufficiently small set of training
patterns that produces approximately the same
performance than the nearest neighbor rule using

the whole training set.

Singh [11] employs several data complexity mea-
sures to remove outliers from a training set and
also points out that another utility would be to
help reduce the data set size without compromis-
ing on the test performance of classifiers. More
specifically, those patterns that are found deep in-
side class boundaries could be removed from the
training set since they are least likely to help in
classification of test samples.

On the other hand, Mollineda et al. [10] investi-
gate on the utility of a set of complexity measures
as a tool to predict whether or not the application
of some prototype selection (editing and/or con-
densing) algorithm could result appropriate in a
particular problem. They test different data com-
plexity measures using 17 databases and derive a
number of practical situations under which pro-
totype selection is suited and in this case, which
is the algorithm most appropriate.

3.3 Feature selection

Attribute or feature selection consists of picking,
out of all attributes potentially available for the
classification algorithm, a subset of features rel-
evant for the target task. One important mo-
tivation for feature selection is to minimize the
error rate. Indeed, the existence of many irrel-
evant/redundant attributes in a given data set
may ”confuse” the classifier, leading to a high er-
ror rate.

There are two major approaches to feature se-
lection, namely the wrapper and the filter ap-
proaches. In the wrapper approach, the data
set is divided into two subsets: the training sub-
set and the evaluation subset. Then a heuris-
tic search is done in the space of subsets of at-
tributes. In this search, the quality of a subset of
attributes is computed in two steps. Firstly, the
classifier itself is trained on the training subset
by using only the subset of attributes being eval-
uated. Secondly, the error rate of the discovered
rules on the evaluation subset is measured and it
is directly used as a measure of the quality of the
feature subset being evaluated.

In contrast, in the filter approach the quality
of a given subset of attributes is evaluated by
some method that does not employ the target
classification algorithm. Typical functions used
in the filter approach include distance measures,
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consistency measures, dependency measures, and
information-theoretic measures.

Most of the measures defined in Section 2 (espe-
cially those related to class separability) can be
employed in a filter approach as an effective opti-
mization criterion to obtain the best feature sub-
set. For example, Singh [11] conducts an empiri-
cal study to demonstrate that the employment of
a neighborhood separability measure constitutes
a suitable criterion for optimization in feature se-
lection for a face recognition problem.

4 Concluding remarks

This paper provides a general meta-learning
framework for pattern classification problems,
and it is based on the employment of a number of
data complexity measures found in the literature
and discusses three important application fields
belonging to the domains of pattern classification
and learning.

The measures here described correspond to four
categories: measures of overlap, measures of class
separability, measures of geometry and density,
and statistical measures. However, other mea-
sures could be still applied to characterize data
complexity.

We point out three application areas where those
measures have already been successfully em-
ployed: meta analysis of classifiers, prototype se-
lection, and feature selection. Alternative utilities
can be devised in other domains. In this sense,
data complexity measures could be useful for clas-
sifier selection in a context of classifier fusion. In
fact, this constitutes one of the most important
direction for our future research.

In the context of pattern classification and learn-
ing, we think that data complexity measures can
be especially relevant for applying to very large
data sets (for example, in web and data mining
problems). Suppose we have a very large train-
ing data set and a number of classifiers. We have
to choose the most appropriate classifier for the
problem in hand. To this end, one could test
all the classifiers on the (large) training data set
and then select the one with the highest accu-
racy. However a better alternative (in the sense
of less computing time and independence of the
particular problem) would consist of describing
the problem in terms of data complexity and then

pick up the most suitable classifier according to
the particular characteristics of the problem.
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like to thank the anonymous Reviewers for their
valuable and constructive remarks.

References
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