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Abstract

In the last years, there has been a growing interest for the experimental
analysis in the field of evolutionary algorithms. It is noticeable due to the
existence of numerous papers which analyze and propose different types
of problems, such as the basis for experimental comparisons of algorithms,
proposals of different methodologies in comparison or proposals of use of
different statistical techniques in algorithms’ comparison.

In this paper, we focus our study on the use of statistical techniques in
the analysis of evolutionary algorithms’ behaviour over optimization prob-
lems. A study about the required conditions for statistical analysis of the
results is presented by using some models of evolutionary algorithms for
real-coding optimization. This study is conducted in two ways: single-
problem analysis and multiple-problem analysis. The results obtained
state that a parametric statistical analysis could not be appropriate spe-
cially when we deal with multiple-problem results. In multiple-problem
analysis, we propose the use of non-parametric statistical tests given that
they are less restrictive than parametric ones and they can be used over
small size samples of results. As a case study, we analyze the published
results for the algorithms presented in the CEC’2005 Special Session on
Real Parameter Optimization by using non-parametric test procedures.

Keywords Statistical analysis of experiments, evolutionary algorithms,
parametric tests, non-parametric tests.

Introduction

The “No free lunch” theorem (Wolpert and Macready, 1997) demonstrates that
it is not possible to find one algorithm being better in behaviour for any prob-
lem. On the other hand, we know that we can work with different degrees of
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knowledge about the problem which we expect to solve, and that it is not the
same to work without knowledge about the problem (hypothesis of the “no free
lunch” theorem) than to work with partial knowledge about the problem, knowl-
edge that allows us to design algorithms with specific characteristics which can
make them more suitable for the solution of the problem.

Once situated in this field, the partial knowledge of the problem and the
necessity of having disposals of algorithms for its solution, the question about
deciding when an algorithm is better than another one is suggested. In the
case of the use of evolutionary algorithms, the latter may be done attending to
the efficiency and / or effectiveness criteria. When theoretical results are not
available in order to allow the comparison of the behaviour of the algorithms,
we have to focus on the analysis of empirical results.

In the last years, there has been a growing interest in the analysis of experi-
ments in the field of evolutionary algorithms. The work of Hooker is pioneer in
this line and it shows an interesting study on what we must do and not do when
we suggest the analysis of the behaviour of a metaheuristic about a problem
(Hooker, 1995).

In relation to the analysis of experiments, we can find three types of works:
the study and design of test problems, the statistical analysis of experiments
and experimental design.

• Different authors have focused their interest in the design of test prob-
lems which could be appropriate to do a comparative study among the
algorithms. Focusing our attention to continuous optimization problems,
which will be used in this paper, we can point out the pioneer papers of
Whitley and co-authors for the design of complex test functions for con-
tinuous optimization (Whitley et al., 1995, 1996), and the recent works of
Gallagher and Yuan (2006); Yuan and Gallagher (2003). In the same way,
we can find papers that present test cases for different types of problems.

• Centred on the statistical analysis of the results, if we analyze the pub-
lished papers in specialized journals, we find that the majority of the
articles make a comparison of results based on average values of a set of
executions over a concrete case. In proportion, a little set of works use
statistical procedures in order to compare results, although their use is
recently growing and it is being suggested as a need for many reviewers.
When we find statistical studies, they are usually based on the average
and variance by using parametric tests (ANOVA, t-test, etc...) (Czarn et
al., 2004; Ozcelik and Erzurumlu, 2006; Rojas et al., 2002). Recently, non-
parametric statistical procedures have been considered for being used in
analysis of results (Garćıa et al., 2007; Moreno-Pérez, Campos-Rodŕıguez
and Laguna, 2007). A similar situation can be found in the machine learn-
ing community (Demšar, 2006).

• The experimental design consists of a set of techniques which comprise
methodologies for adjusting the parameters of the algorithms depending
on the settings used and results obtained (Bartz-Beielstein, 2006; Kramer,
2007). In our study, we are not interested in this topic; we assume that
the algorithms in a comparison have obtained the best possible results,
depending on an optimal adjustment of their parameters in each problem.
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We are interested in the use of statistical techniques for the analysis of the
behaviour of the evolutionary algorithms over optimization problems, analyzing
the use of the parametric statistical tests and the non-parametric ones (Sheskin,
2003; Zar, 1999). We will analyze the required conditions for the usage of the
parametric tests, and we will carry out an analysis of results by using non-
parametric tests.

The study of this paper will be organized into two parts. The first one, we
will denoted it by single-problem analysis, corresponds to the study of the re-
quired conditions of a safe use of parametric statistical procedures when compar-
ing the algorithms over a single problem. The second one, denoted by multiple-
problem analysis, will suppose the study of the same required conditions when
considering a comparison of algorithms over more than one problems simulta-
neously.

The single-problem analysis is usually found in specialized literature (Bartz-
Beielstein, 2006; Ortiz-Boyer, Hervás-Mart́ınez and Garćıa-Pedrajas, 2007). Al-
though the required conditions for using parametric statistics are usually not
fulfilled, as we will see in this paper, a parametric statistical study could obtain
similar conclusions to a non-parametric one. However, in the multiple-problem
analysis, due to the dissimilarities in the results obtained and the small size of
the sample to be analyzed, a parametric test may reach erroneous conclusions.
In recent papers, authors start using single-problem and multiple-problem anal-
ysis simultaneously (Ortiz-Boyer, Hervás-Mart́ınez and Garćıa-Pedrajas, 2007).

Non-parametric tests can be used for comparing algorithms whose results
represent average values for each problem, in spite of the inexistence of relation-
ships among them. Given that the non-parametric tests do not require explicit
conditions for being conducted, it is recommendable that the sample of results
is obtained following the same criterion, that is, computing the same aggrega-
tion (average, mode, etc.) over the same number of runs for each algorithm
and problem. They are used for analyzing the results of the CEC’2005 Special
session on real parameter optimization (Suganthan et al., 2005) over all the
test problems, in which average results of the algorithms for each function are
published. We will show significant statistical differences among the algorithms
compared in the CEC’2005 Special Session on Real Parameter Optimization,
supporting the conclusions obtained in this session.

In order to do that, the paper is organized as follows. In Section 1, we de-
scribe the setting of the CEC’2005 Special Session: algorithms, tests functions
and parameters . Section 2 shows the study on the required conditions for safe
use of parametric tests, considering single-problem and multiple-problem anal-
ysis. We analyze the published results of the CEC’2005 Special session on real
parameter optimization by using non-parametric tests in Section 3. Section 4
points out some considerations on the use of non-parametric tests. The con-
clusions of the paper are presented in Section 5. An introduction to statistics
and a complete description of the non-parametric tests procedures are given in
Appendix, Section A. The published average results of the CEC’2005 Special
Session are shown in Appendix, Section B.
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1 Preliminaries: Settings of the CEC’2005 Spe-
cial Session

In this section we will briefly describe the algorithms compared, the test func-
tions, and the characteristics of the experimentation in the CEC’2005 Special
Session.

1.1 Evolutionary Algorithms

In this section we enumerate the eleven algorithms which were presented in the
CEC’2005 Special Session. For more details on the description and parameters
used for each one, please refer to the respective contributions. The algorithms
are: BLX-GL50 (Garćıa-Mart́ınez and Lozano, 2005), BLX-MA (Molina, Her-
rera and Lozano, 2005), CoEVO (Poš́ık, 2005), DE (Rônkkônen, Kukkonen and
Price, 2005), DMS-L-PSO (Liang and Suganthan, 2005), EDA (Yuan and Gal-
lagher, 2005), G-CMA-ES (Auger and Hansen, 2005a), K-PCX (Sinha, Tiwari
and Deb, 2005), L-CMA-ES (Auger and Hansen, 2005b), L-SaDE (Qin and
Suganthan, 2005), SPC-PNX (Ballester et al., 2005).

1.2 Test Functions

In the following we present the set of test functions designed for the Special
Session on Real Parameter Optimization organized in the 2005 IEEE Congress
on Evolutionary Computation (CEC 2005) (Suganthan et al., 2005).

It is possible to consult in Suganthan et al. (2005) the complete description
of the functions, furthermore in the link the source code is included. The set of
test functions is composed of the following functions:

• 5 Unimodals functions

– Sphere function displaced.

– Schwefel’s problem 1.2 displaced.

– Elliptical function rotated widely conditioned.

– Schwefel’s problem 1.2 displaced with noise in the fitness.

– Schwefel’s problem 2.6 with global optimum in the frontier.

• 20 Multimodals functions

– 7 basic functions

∗ Rosenbrock function displaced.
∗ Griewank function displaced and rotated without frontiers.
∗ Ackley function displaced and rotated with the global optimum

in the frontier.
∗ Rastrigin function displaced.
∗ Rastrigin function displaced and rotated.
∗ Weierstrass function displaced and rotated.
∗ Schwefel’s problem 2.13.
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– 2 expanded functions.

– 11 hybrid functions. Each one of them have been defined through
compositions of 10 out of the 14 previous functions (different in each
case).

All functions have been displaced in order to ensure that their optima can
never be found in the centre of the search space. In two functions, in addition,
the optima can not be found within the initialization range, and the domain of
search is not limited (the optimum is out of the range of initialization).

1.3 Characteristics of the experimentation

The experiments were done following the instructions indicated in the document
associated to the competition. The main characteristics are:

• Each algorithm is run 25 times for each test function, and the average of
error of the best individual of the population is computed.

• We will use the study with dimension D = 10 and the algorithms do
100000 evaluations of the fitness function.

In the mentioned competition, experiments with dimension D = 30 and
D = 50 have also been done.

• Each run stops either when the error obtained is less than 10−8, or when
the maximal number of evaluations is achieved.

2 Study of the Required Conditions for the Safe
Use of Parametric Tests

In this section, we will describe and analyze the conditions that must be satisfied
for the safe usage of parametric tests ( Subsection 2.1). For doing it, we collect
the overall set of results obtained by the algorithms BLX-MA and BLX-GL50
in the 25 functions considering dimension D = 10. With them, we will firstly
analyze the indicated conditions over the complete sample of results for each
function, in a single-problem analysis (see Subsection 2.2). Finally, we will
consider the average results for each function to composite a sample of results
for each one of the two algorithms. With these two samples we will check again
the required conditions for the safe use of parametric test in a multiple-problem
scheme (see Subsection 2.3).

2.1 Conditions for the safe use of parametric tests

In Sheskin (2003), the distinction between parametric and non-parametric tests
is based on the level of measure represented by the data which will be analyzed.
In this way, a parametric test uses data composed by real values.

The latter does not imply that when we always dispose of this type of data,
we should use a parametric test. There are other initial assumptions for a safe
usage of parametric tests. The non fulfillment of these conditions might cause
a statistical analysis to lose credibility.
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In order to use the parametric tests, it is necessary to check the following
conditions (Sheskin, 2003; Zar, 1999):

• Independence: In statistics, two events are independent when the fact that
one occurs does not modify the probability of the other one occurring.

• Normality: An observation is normal when its behaviour follows a normal
or Gauss distribution with a certain value of average µ and variance σ. A
normality test applied over a sample can indicate the presence or absence
of this condition in observed data. We will use three normality tests:

– Kolmogorov-Smirnov: It compares the accumulated distribution of
observed data with the accumulated distribution expected from a
Gaussian distribution, obtaining the p-value based on both discrep-
ancies.

– Shapiro-Wilk: It analyzes the observed data to compute the level of
symmetry and kurtosis (shape of the curve) in order to compute the
difference with respect to a Gaussian distribution afterwards, obtain-
ing the p-value from the sum of the squares of these discrepancies.

– D’Agostino-Pearson: It first computes the skewness and kurtosis to
quantify how far from Gaussian the distribution is in terms of asym-
metry and shape. It then calculates how far each of these values
differs from the value expected with a Gaussian distribution, and
computes a single p-value from the sum of these discrepancies.

• Heteroscedasticity: This property indicates the existence of a violation of
the hypothesis of equality of variances. Levene’s test is used for check-
ing whether or not k samples present this homogeneity of variances (ho-
moscedasticity). When observed data does not fulfil the normality con-
dition, this test’s result is more reliable than Bartlett’s test (Zar, 1999),
which checks the same property.

In our case, it is obvious the independence of the events given that they are
independent runs of the algorithm with randomly generated initial seeds. In
the following, we will carry out the normality analysis by using Kolmogorov-
Smirnov, Shapiro-Wilk and D’Agostino-Pearson tests on single-problem and
multiple-problem analysis, and heteroscedasticity analysis by means of Levene’s
test.

2.2 On the study of the required conditions over single-
problem analysis

With the samples of results obtained from running 25 times the algorithms
BLX-GL50 and BLX-MA for each function, we can apply statistical tests for de-
termining whether they check or not the normality and homoscedasticity prop-
erties. We have seen before that the independence condition is easily satisfied
in this type of experiments. The number of runs may be low for carrying out
statistical analysis, but it was a requirement in the CEC’2005 Special Session.

All the tests used in this section will obtain the p-value associated, which
represents the dissimilarity of the sample of results with respect to the normal
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shape. Hence, a low p-value points out a non-normal distribution. In this
study, we will consider a level of significance α = 0.05, so a p-value greater than
α indicates that the condition of normality is fulfilled. All the computations
have been performed by the statistical software package SPSS.

Table 1 shows the results where the symbol “*” indicates that the normality
is not satisfied and the p-value in brackets. Table 2 shows the results by ap-
plying the test of normality of Shapiro-Wilk and Table 3 displays the results of
D’Agostino-Pearson test.

Table 1: Test of Normality of Kolmogorov-Smirnov
f1 f2 f3 f4 f5 f6 f7 f8 f9

BLX-GL50 (.20) * (.04) * (.00) (.14) * (.00) * (.00) * (.04) (.20) * (.00)
BLX-MA * (.01) * (.00) * (.01) * (.00) * (.00) (.16) (.20) * (.00) * (.00)

f10 f11 f12 f13 f14 f15 f16 f17 f18
BLX-GL50 (.10) (.20) * (.00) (.20) (.20) * (.00) * (.00) (.20) * (.00)
BLX-MA (.20) * (.00) * (.00) (.20) * (.02) * (.00) (.20) (.20) * (.00)

f19 f20 f21 f22 f23 f24 f25
BLX-GL50 * (.00) * (.00) * (.00) * (.00) * (.00) * (.00) * (.00)
BLX-MA * (.00) * (.00) * (.00) * (.00) * (.00) * (.00) * (.02)

Table 2: Test of Normality of Shapiro-Wilk
f1 f2 f3 f4 f5 f6 f7 f8 f9

BLX-GL50 * (.03) (.06) * (.00) * (.03) * (.00) * (.00) * (.01) (.23) * (.00)
BLX-MA * (.00) * (.00) * (.01) * (.00) * (.00) (.05) (.27) * (.03) * (.00)

f10 f11 f12 f13 f14 f15 f16 f17 f18
BLX-GL50 (.07) (.25) * (.00) (.39) (.41) * (.00) * (.00) (.12) * (.00)
BLX-MA (.31) * (.00) * (.00) (.56) * (.01) * (.00) (.25) (.72) * (.00)

f19 f20 f21 f22 f23 f24 f25
BLX-GL50 * (.00) * (.00) * (.00) * (.00) * (.00) * (.00) * (.00)
BLX-MA * (.00) * (.00) * (.00) * (.00) * (.00) * (.00) * (.02)

Table 3: Test of Normality of D’Agostino-Pearson
f1 f2 f3 f4 f5 f6 f7 f8 f9

BLX-GL50 (.10) (.06) * (.00) (.24) * (.00) * (.00) (.28) (.21) * (.00)
BLX-MA * (.00) * (.00) (.22) * (.00) * (.00) * (.00) (.19) (.12) * (.00)

f10 f11 f12 f13 f14 f15 f16 f17 f18
BLX-GL50 (.17) (.19) * (.00) (.79) (.47) * (.00) * (.00) (.07) * (.03)
BLX-MA (.89) * (.00) * (.03) (.38) (.16) * (.00) (.21) (.54) * (.04)

f19 f20 f21 f22 f23 f24 f25
BLX-GL50 (.05) (.05) (.06) * (.01) * (.00) * (.00) (.11)
BLX-MA * (.00) * (.00) (.25) * (.00) * (.00) * (.00) (.20)

In addition to this general study, we show the sample distribution in three
cases, with the objective of illustrating representative cases in which the nor-
mality tests obtain different results.

From Figure 1 to Figure 3, different examples of graphical representations
of histograms and Q-Q graphics are shown. A histogram represents a statisti-
cal variable by using bars, so that the area of each bar is proportional to the
frequency of the represented values. A Q-Q graphic represents a confrontation
between the quartiles from data observed and those from the normal distribu-
tions.

In Figure 1 we can observe a general case in which the property of abnor-
mality is clearly presented. On the contrary, Figure 2 is the illustration of a
sample whose distribution follows a normal shape, and the three normality tests
employed verified this fact. Finally, Figure 3 shows a special case where the sim-
ilarity between both distributions, the sample of results and the normal one, is
not confirmed by all normality tests. In this case, a normality test could work
better than another, depending on types of data, number of ties or number of
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results collected. Due to this fact, we have employed three well-known normality
tests for studying the normality condition. The choice of the most appropriate
normality test depending on the problem is out of the scope of this paper.
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Figure 1: Example of non-normal distribution: Function f20 and BLX-GL50
algorithm: Histogram and Q-Q Graphic.
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Figure 2: Example of normal distribution: Function f10 and BLX-MA algo-
rithm: Histogram and Q-Q Graphic.

With respect to the study of homoscedasticity property, Table 4 shows the
results by applying Levene’s test, where the symbol “*” indicates that the vari-
ances of the distributions of the different algorithms for a certain function are not
homogeneities (we reject the null hypothesis at a level of significance α = 0.05).

Table 4: Test of Heteroscedasticity of Levene (based on means)
f1 f2 f3 f4 f5 f6 f7 f8 f9

LEVENE (.07) (.07) * (.00) * (.04) * (.00) * (.00) * (.00) (.41) * (.00)

f10 f11 f12 f13 f14 f15 f16 f17 f18
LEVENE (.99) * (.00) (.98) (.18) (.87) * (.00) * (.00) (.24) (.21)

f19 f20 f21 f22 f23 f24 f25
LEVENE * (.01) * (.00) * (.01) (.47) (.28) * (.00) * (.00)

Clearly, in both cases, the non fulfillment of the normality and homoscedas-
ticity conditions is perfectible. In most functions, the normality condition is not
verified in a single-problem analysis. The homoscedasticity is also dependent of
the number of algorithms studied, because it checks the relationship among the

8



 

F21
1200.000001000.00000800.00000600.00000400.00000

F
re

q
u

en
cy

20

15

10

5

0

Histogram

for Algorithm= BLX-MA

Mean =771.27332�
Std. Dev. =211.53848�

N =25

 

Observed Value
1,2001,000800600400200

E
xp

ec
te

d
 N

o
rm

al

2

1

0

-1

-2

Normal Q-Q Plot of F21

for Algorithm= BLX-MA

Figure 3: Example of a special case: Function f21 and BLX-MA algorithm:
Histogram and Q-Q Graphic.

variances of all population samples. Even though in this case we only analyze
this condition on results for two algorithms, the condition is also not fulfilled in
many cases.

A researcher may think that the non fulfillment of these conditions is not
crucial for obtaining adequate results. By using the same samples of results, we
will show an example in which some results offered by a parametric test, the
paired t-test, do not agree with the ones obtained through a non-parametric test,
Wilcoxon’s test. Table 5 presents the difference of average error rates, in each
function, between the algorithms BLX-GL50 and BLX-MA (if it is negative,
the best performed algorithm is BLX-GL50 ), and the p-value obtained by the
paired t-test and Wilcoxon test.

As we can see, the p-values obtained by paired t-test are very similar to
the ones obtained by Wilcoxon test. However, in three cases, they are quite
different. We enumerate them:

• In function f4, Wilcoxon test considers that both algorithms behave dif-
ferent, whereas paired t-test does not. This example perfectly fits with a
non-practical case. The difference of error rates is less than 10−7, and in
practical sense, this has no significant effect.

• In function f15, the situation is opposite to the previous one. The paired
t-test obtains a significant difference in favour of BLX-MA. Is this result
reliable? As the normality condition is not verified in the results of f15
(see Tables 1, 2, 3), the results obtained by Wilcoxon test are theoretically
more reliable.

• Finally, in function f22, although Wilcoxon test obtains a p-value greater
than the level of significance α = 0.05, both p-values are again very dif-
ferent.

In 3 of the 25 functions, there are observable differences in the application
of paired t-test and Wilcoxon test. Moreover, in these 3 functions, the required
conditions for the safe usage of parametric statistics are not verified. In prin-
ciple, we could suggest the usage of the non-parametric test of Wilcoxon in
single-problem analysis. This is one alternative, but there exist other ways for
ensuring that the results obtained are valid for parametric statistical analysis.
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Table 5: Difference of error rates and p-values for paired t-test and Wilcoxon
test in single-problem analysis

Function Difference t-test Wilcoxon
f1 0 - -
f2 0 - -
f3 -47129 0 0
f4 −1.9 · 10−8 0.281 0
f5 -0.0212 0.011 0
f6 -1.489618 0 0
f7 -0.1853 0 0
f8 0.2 0.686 0.716
f9 0.716 0 0
f10 -0.668086 0 0
f11 -2.223405 0.028 0.037
f12 332.7 0.802 0.51
f13 -0.024 0.058 0.058
f14 0.142023 0.827 0.882
f15 130 0.01 0.061
f16 -8.5 0 0
f17 -18 0 0
f18 -383 0 0
f19 -314 0 0.001
f20 -354 0 0
f21 -33 0.178 0.298
f22 88 0.545 0.074
f23 -288 0 0
f24 -24 0.043 0.046
f25 8 0.558 0.459
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• Obtaining new results is not very difficult in single-problem analysis. We
only have to run the algorithms again to get larger samples of results.
The Central Limit Theorem confirms that the sum of many identically
distributed random variables tends to a normal distribution. Neverthe-
less, the number of runs carried out must not be very high, because any
statistical test has a negative effect size. If the sample of results is too
large, a statistical test could detect insignificant differences as significant.

For controlling the size effect, we can use the Cohen’s index d′

d′ =
t√
n

where t is the t-test statistics and n is the number of results collected. If d′

is near to 0.5, then the differences are significant. A value of d′ lower than
0.25 indicates insignificant differences and the statistical analysis may not
be taken into account.

• The application of transformations for obtaining normal distributions,
such as logarithm, square root, reciprocal and power transformations (Pa-
tel and Read, 1982).

• In some situations, skip outliers, but this technique must be used with
great care.

These alternatives could solve the normality condition, but the homoscedas-
ticity condition may result difficult to solve. Some parametric tests, such as
ANOVA, are very influenced by the homoscedasticity condition.

2.3 On the study of the required conditions over multiple-
problem analysis

When tackling a multiple-problem analysis, the data to be used is an aggregation
of results obtained from individual algorithms’ runs. In this aggregation, there
must be only a result representing a problem or function. This result could be
obtained through averaging results for all runs or something similar, but the
procedure followed must be the same for each function; i.e., in this paper we
have used the average of the 25 runs of an algorithm in each function. The size of
the sample of results to be analyzed, for each algorithm, is equal to the number
of problems. In this way, a multiple-problem analysis allows us to compare two
or more algorithms over a set of problems simultaneously.

We can use the results published in the CEC’2005 Special Session to perform
a multiple-problem analysis. Indeed, we will follow the same procedure as the
previous subsection. We will analyze the required conditions for the safe usage
of parametric tests over the sample of results obtained by averaging the error
rate on each function.

Table 6 shows the p-values of the normality tests over the sample results
obtained by BLX-GL50 and BLX-MA. Figures 4 and 5 represent the histograms
and Q-Q plots for such samples.

Obviously, the normality condition is not satisfied because the sample of
results is composed by 25 average error rates computed in 25 different problems.
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Table 6: Normality tests over multiple-problem analysis
Algorithm Kolmogorov-Smirnov Shapiro-Wilk D’Agostino-Pearson
BLX-GL50 * (.00) * (.00) (.10)
BLX-MA * (.00) * (.00) * (.00)
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Figure 4: BLX-GL50 algorithm: Histogram and Q-Q Graphic.
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We compare the behaviour of the two algorithms by means of pairwise statistical
tests:

• The p-value obtained with a paired t-test is p = 0.318. The paired t-test
does not consider the existence of difference in performance between the
algorithms.

• The p-value obtained with Wilcoxon test is p = 0.089. The Wilcoxon t-test
does neither consider the existence of difference in performance between
the algorithms, but it considerably reduces the minimal level of significance
for detecting differences. If the level of significance considered were α =
0.10, Wilcoxon’s test would confirm that BLX-GL50 is better than BLX-
MA.

Average results for these two algorithms indicate this behaviour, BLX-GL50
usually performs better than BLX-MA (see Table 13 in Appendix B), but a
paired t-test cannot appreciate this fact. In multiple-problem analysis it is not
possible to enlarge the sample of results, unless new functions / problems were
added. Applying transformations or skipping outliers cannot be used either,
because we would be changing results for certain problems and not for other
problems.

These facts may induce us to using non-parametric statistics for analyzing
the results in multiple-problems. Non-parametric statistics do not need prior
assumptions related to the sample of data for being analyzed and, in the example
shown in this section, we have seen that they could obtain reliable results.

3 A Case Study: On the Use of Non-parametric
Statistics for Comparing the Results of the
CEC’2005 Special Session in Real Parameter
Optimization

In this section, we study the results obtained in the CEC’2005 Special Session in
Real Parameter Optimization as a case study on the use of the non-parametric
tests. As we have mentioned, we will focus on the dimension D = 10.

We will divide the set of functions into two subgroups, according to the
suggestion given in Hansen (2005) about their degrees of difficulty.

• The first group is composed by the unimodal functions (from f1 to f5), in
which all participant algorithms in the CEC’2005 competition normally
achieve the optimum, and the multimodal functions (from f6 to f14), in
which at least one run of a participant algorithm achieves the optimum.

• The second group contains the remaining functions, from the function
f15 to f25. In these functions, no participant algorithm has achieved the
optimum.

This division is carried out with the objective of showing the differences in
the statistical analysis considering distinct numbers of functions, which is an
essential factor that influences over the study. It also allows us to compare the
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behaviour of the algorithms when they tackle the most complicated functions.
Indeed, we could also study the group of functions f1-f14, but we do not include
it in order not to enlarge the content of the paper. Hence, the results offered
by the algorithms that take part in the CEC’2005 Special Session are analyzed
independently for all functions (from f1 to f25) and the difficult functions (from
f15 to f25).

As we have done before, we have considered using, as performance mea-
sure, the error rate obtained for each algorithm. This case corresponds to a
multiple-problem analysis, so the employment of non-parametric statistical tests
is preferable to a parametric one, as we have seen in the previous section. Table
13 in Appendix B summarizes the official results obtained in the competition
organized by functions and algorithms.

Values included in Table 13 allow us to carry out a rigorous statistical study
in order to check whether the results of the algorithms are rather significant for
considering them different in terms of quality on approximation of continuous
functions. Our study will be focused on the algorithm that had the lowest
average error rate in the comparison, G-CMA-ES (Hansen, 2005). We will
study the behaviour of this algorithm with respect to the remaining ones, and
we will determine if the results it offers are better than the ones offered by the
rest of algorithms, computing the p-values on each comparison.

Table 7 shows the result of applying Friedman’s and Iman-Davenport’s tests
in order to see whether there are global differences in the results. Given that the
p-values of Friedman and Iman-Davenport are lower than the level of significance
considered α = 0.05, there are significant differences among the observed results
in the functions of the first and second group. Attending to these results, a
post-hoc statistical analysis could help up to detect concrete differences among
algorithms.

Table 7: Results of the Friedman and Iman-Davenport Tests (α = 0.05)
Friedman Value p-value Iman-Davenport Value p-value

Value in χ2 Value in FF

f15-f25 26.942 18.307 0.0027 3.244 1.930 0.0011
All 41.985 18.307 < 0.0001 4.844 1.875 < 0.0001

First of all, we will employ Bonferroni-Dunn’s test to detect significant dif-
ferences for the control algorithm G-CMA-ES. Table 8 summarizes the ranking
obtained by Friedman’s test and the critical difference of Bonferroni-Dunn’s pro-
cedure. Figures 6 and 7 display graphical representations (including the rankings
obtained for each algorithm) for the two groups of functions. In a Bonferroni-
Dunn’s graphic the difference among rankings obtained for each algorithm is
illustrated. In them, we can draw a horizontal cut line which represents the
threshold for the best performing algorithm, that one with the lowest ranking
bar, in order to consider it better than other algorithm. A cut line is drawn
for each level of significance considered in the study at height equal to the sum
of the ranking of the control algorithm and the corresponding Critical Differ-
ence computed by the Bonferroni-Dunn method (see Section A.3 in Appendix).
Those bars which exceed this line are the associated to an algorithm with worse
performance than the control algorithm.

The application of Bonferroni-Dunn’s test informs us of the following signif-
icant differences with G-CMA-ES as control algorithm:
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Table 8: Rankings obtained through Friedman’s test and critical difference of
Bonferroni-Dunn’s procedure

Algorithm Ranking (f15-f25) Ranking (f1-f25)
BLX-GL50 5.227 5.3
BLX-MA 7.681 7.14
CoEVO 9.000 6.44

DE 4.955 5.66
DMS-L-PSO 5.409 5.02

EDA 6.318 6.74
G-CMA-ES 3.045 3.34

K-PCX 7.545 6.8
L-CMA-ES 6.545 6.22

L-SaDE 4.956 4.92
SPC-PNX 5.318 6.42

Crit. Diff. α = 0.05 3.970 2.633
Crit. Diff. α = 0.10 3.643 2.417
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Figure 6: Bonferroni-Dunn’s graphic corresponding to the results for f15-f25.

15



5.3 7.14 8.44 5.66 5.02 6.74 3.34 6.8 6.22 4.92 6.42
0

1

2

3

4

5

6

7

8

9

BLX-
GL50

BLX-MA COEVO DE DMS-L-
PSO

EDA G-CMA-
ES

K-PCX L-CMA-
ES

L-SADE SPC-PNX

A
ve

ra
ge

 R
an

k

Control Algorithm: G-CMA-ES

Bonferroni-Dunn's Test CD=2.633 α=0.05

CD=2.417 α=0.10

Figure 7: Bonferroni-Dunn’s graphic corresponding to the results for f1-f25.

• f15-f25 : G-CMA-ES is better than CoEVO and BLX-MA and K-PCX
with α = 0.05 and α = 0.10 (3/10 algorithms).

• f1-f25 : It outperforms CoEVO, BLX-MA, K-PCX, EDA, SPC-PNX and
L-CMA-ES with α = 0.05 and α = 0.10 (6/10 algorithms). Although G-
CMA-ES obtains the lowest error and ranking rates, Bonferroni-Dunn’s
test is not able to distinguish it as better than all the remaining algorithms.

In the same way as the previous section, we will apply more powerful proce-
dures, such as Holm’s and Hochbergs’s (they are described in Section A.3), for
comparing the control algorithm with the rest of algorithms. The results are
shown by computing p-values for each comparison. Tables 9 and 10 show the
p-value obtained for Bonferroni-Dunn’s, Holm’s and Hochberg’s procedures con-
sidering both groups of functions. The procedure used to compute the p-values
in explained in Appendix (Section A.3).

Table 9: p-values on functions f15-f25 (G-CMA-ES is the control algorithm)
G-CMA-ES vs. z unadjusted p Bonferroni-Dunn p Holm p Hochberg p

CoEVO 4.21050 2.54807 · 10−5 2.54807 · 10−4 2.54807 · 10−4 2.54807 · 10−4

BLX-MA 3.27840 0.00104 0.0104 0.00936 0.00936
k-PCX 3.18198 0.00146 0.0146 0.01168 0.01168

L-CMA-ES 2.47487 0.01333 0.1333 0.09331 0.09331
EDA 2.31417 0.02066 0.2066 0.12396 0.12396

DMS-L-PSO 1.67134 0.09465 0.9465 0.47325 0.17704
SPC-NPX 1.60706 0.10804 1.0 0.47325 0.17704
BLX-GL50 1.54278 0.12288 1.0 0.47325 0.17704

DE 1.34993 0.17704 1.0 0.47325 0.17704
L-SaDE 1.34993 0.17704 1.0 0.47325 0.17704

Holm’s and Hochberg’s procedures allow us to point out the following dif-
ferences, considering G-CMA-ES as control algorithm:

• f15-f25 : G-CMA-ES is better than CoEVO, BLX-MA and K-PCX with
α = 0.05 (3/10 algorithms) and is better than L-CMA-ES with α = 0.10
(4/10 algorithms). Here, Holm’s and Hochberg’s procedures coincide and

16



Table 10: p-values on functions f1-f25 (G-CMA-ES is the control algorithm)
G-CMA-ES vs. z unadjusted p Bonferroni-Dunn p Holm p Hochberg p

CoEVO 5.43662 5.43013 · 10−8 5.43013 · 10−7 5.43013 · 10−7 5.43013 · 10−7

BLX-MA 4.05081 5.10399 · 10−5 5.10399 · 10−4 4.59359 · 10−4 4.59359 · 10−4

K-PCX 3.68837 2.25693 · 10−4 0.002257 0.001806 0.001806

EDA 3.62441 2.89619 · 10−4 0.0028961 0.002027 0.002027
SPC-PNX 3.28329 0.00103 0.0103 0.00618 0.00618
L-CMA-ES 3.07009 0.00214 0.0214 0.0107 0.0107

DE 2.47313 0.01339 0.1339 0.05356 0.05356
BLX-GL50 2.08947 0.03667 0.3667 0.11 0.09213

DMS-L-PSO 1.79089 0.07331 0.7331 0.14662 0.09213
L-SaDE 1.68429 0.09213 0.9213 0.14662 0.09213

Table 11: Wilcoxon Test considering functions f15-f25
G-CMA-ES vs. R+ R− p-value

BLX-GL50 62.5 3.5 0.009
BLX-MA 60.0 6.0 0.016
CoEVO 60.0 6.0 0.016

DE 56.5 9.5 0.028
DMS-L-PSO 47.0 19.0 0.213

EDA 60.5 5.5 0.013
K-PCX 60.0 6.0 0.016

L-CMA-ES 58.0 8.0 0.026
L-SaDE 47.5 18.5 0.203

SPC-PNX 63.5 2.5 0.007

Table 12: Wilcoxon Test considering functions f1-f25
G-CMA-ES vs. R+ R− p-value

BLX-GL50 289.5 35.5 0.001
BLX-MA 295.5 29.5 0.001
CoEVO 301.0 24.0 0.000

DE 262.5 62.5 0.009
DMS-L-PSO 199.0 126.0 0.357

EDA 284.5 40.5 0.001
K-PCX 269.0 56.0 0.004

L-CMA-ES 273.0 52.0 0.003
L-SaDE 209.0 116.0 0.259

SPC-PNX 305.5 19.5 0.000
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they reject an extra hypothesis considering α = 0.10, with regards to
Bonferroni-Dunn’s.

• f1-f25 : Based on Holm’s procedure, it outperforms CoEVO, BLX-MA, K-
PCX, EDA, SPC-PNX and L-CMA-ES with α = 0.05 (6/10 algorithms)
and it also outperforms DE with α = 0.10 (7/10 algorithms). It rejects
equal number of hypotheses as Bonferroni-Dunn does by considering α =
0.05. It also rejects an extra hypothesis than Bonferroni-Dunn when α =
0.10.

• Hochberg’s procedure behaves the same as Holm’s when we establish
α = 0.05. However, with a α = 0.10, it obtains a different result. All
the p-values in the comparison are lower than 0.10, so all the hypotheses
associated with them are rejected (10/10 algorithms). In fact, Hochberg’s
procedure confirms that G-CMA-ES is the best algorithm in the compe-
tition considering all functions on the whole.

In the following, we present a study in which the G-CMA-ES algorithm will
be compared with the rest of them by means of pairwise comparisons. In this
study we will use the Wilcoxon test (see Section A.2 in Appendix).

Until now, we have used procedures for performing multiple comparisons
in order to check the behaviour of the algorithms. Attending to Hochberg’s
procedure results, this process could not be necessary, but we include it for
stressing the differences between using multiple comparisons procedures instead
of pairwise comparisons. Tables 11 and 12 summarize the results of applying
Wilcoxon test. They display the sum of rankings obtained in each comparison
and the p-value associated.

Wilcoxon’s test performs individual comparisons between two algorithms
(pairwise comparisons). The p-value in a pairwise comparison is independent
from another one. If we try to extract a conclusion involving more than one
pairwise comparison in a Wilcoxon’s analysis, we will obtain an accumulated
error coming from the combination of pairwise comparisons. In statistical terms,
we are losing the control on the Family Wise Error Rate (FWER), defined as
the probability of making one or more false discoveries among all the hypotheses
when performing multiple pairwise tests. The true statistical signification for
combining pairwise comparisons is given by:

p = P (Reject H0|H0 true) =
= 1− P (Accept H0|H0 true) =

= 1− P (Accept Ak = Ai, i = 1, . . . , k − 1|H0 true) =
= 1−∏k−1

i=1 P (Accept Ak = Ai|H0 true) =
= 1−∏k−1

i=1 [1− P (Reject Ak = Ai|H0 true)] =
= 1−∏k−1

i=1 (1− pHi)

(1)

Observing Table 11, the statement: “The G-CMA-ES algorithm outper-
forms the BLX-GL50, BLX-MA, CoEVO, DE, EDA, K-PCX, L-CMA-ES and
SPC-PNX algorithms with a level of significance α = 0.05” could not be correct
until we cannot check controlling the FWER. The G-CMA-ES algorithm really
outperforms these eight algorithms considering independent pairwise compar-
isons due to the fact that the p-values are below α = 0.05. On the other hand,
note that two algorithms were not included. If we include them within the
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multiple comparison, the p-value obtained is p = 0.4505 in f15-f25 group and
p = 0.5325 considering all functions. In such cases, it is not possible to declare
that “G-CMA-ES algorithm obtains a significantly better performance than the
remaining algorithms”, due to the fact that the p-values achieved are too high.

From expression 1, and Tables 11 and 12, we can deduce that G-CMA-ES
is better than the eight algorithms enumerated before with a p-value of

p = 1− ((1− 0.009) · (1− 0.016) · (1− 0.016) · (1− 0.028) · (1− 0.013)·
·(1− 0.016) · (1− 0.026) · (1− 0.007)) = 0.123906

for the group of functions f15-f25 and

p = 1− ((1− 0.001) · (1− 0.001) · (1− 0.000) · (1− 0.009) · (1− 0.001)·
·(1− 0.004) · (1− 0.003) · (1− 0.000)) = 0.018874

considering all functions. Hence, the previous statement has been definitively
confirmed only when considering all functions in the comparison.

The procedures designed for performing multiple comparisons control the
FWER in their definition. By using the example considered in this section,
in which we have used the G-CMA-ES algorithm as control, we can easily
reflect the relationship among the power of all the testing procedures used.
In increasing order of power and considering all functions in the study, the
procedures can be order in the following way: Bonferroni-Dunn (p = 0.9213),
Wilcoxon’s test (when it is used in multiple comparisons) (p = 0.5325), Holm
(p = 0.1466) and Hochberg (p = 0.0921).

Finally, we must point out that the statistical procedures used in this paper
indicate that the best algorithm is G-CMA-ES. Although in Hansen (2005), the
categorization of the functions depending on their degree of difficulty is different
than the used in this paper (we have joined the unimodal and soluble multimodal
functions in one group), the G-CMA-ES algorithm has been stressed as the
algorithm with best behaviour considering error rate. Therefore and to sum up,
in this paper the conclusions drawn in Hansen (2005) have been statistically
supported.

4 Some Considerations on the Use of Non-Parametric
Tests

Taking into consideration all the results, tables and figures on the application
of the non-parametric tests shown in this paper, we can suggest some aspects
and details about the use of non-parametric statistical techniques:

• A multiple comparison of various algorithms must be carried out first by
using a statistical method for testing the differences among the related
samples means, that is, the results obtained by each algorithm. Once
this test rejects the hypothesis of equivalence of means, the detection
of the concrete differences among the algorithms can be done with the
application of post-hoc statistical procedures, which are methods used for
comparing a control algorithm with two or more algorithms.

• Holm’s procedure can always be considered better than Bonferroni-Dunn’s
one, because it appropriately controls the FWER and it is more powerful
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than the Bonferroni-Dunn’s. We strongly recommend the use of Holm’s
method in a rigorous comparison. Nevertheless, the results offered by the
Bonferroni-Dunn’s test are suitable to be visualized in graphical represen-
tations.

• Hochberg’s procedure is more powerful than Holm’s. The differences re-
ported between it and Holm’s procedure are in practice rather small, but
in this paper, we have shown a case in which Hochberg’s method obtains
lower p-values than Holm’s (see Table 10). We recommend the use of this
test together with Holm’s method.

• Although Wilcoxon’s test and the remaining post-hoc tests for multiple
comparisons belong to the non-parametric statistical tests, they operate in
a different way. The main difference lies in the computation of the ranking.
Wilcoxon’s test computes a ranking based on differences between functions
independently, whereas Friedman and derivative procedures compute the
ranking between algorithms.

• In relation to the sample size (number of functions when performing
Wilcoxon’s or Friedman’s tests in multiple-problem analysis), there are
two main aspects to be determined. Firstly, the minimum sample consid-
ered acceptable for each test needs to be stipulated. There is no established
agreement about this specification. Statisticians have studied the mini-
mum sample size when a certain power of the statistical test is expected
(Noether, 1987; Morse, 1999). In our case, the employment of a, as large
as possible, sample size is preferable, because the power of the statisti-
cal tests (defined as the probability that the test will reject a false null
hypothesis) will increase. Moreover, in a multiple-problem analysis, the
increasing of the sample size depends on the availability of new functions
(which should be well-known in real-parameter optimization field). Sec-
ondly, we have to study how the results are expected to vary if there was
a larger sample size available. In all statistical tests used for comparing
two or more samples, the increasing of the sample size benefits the power
of the test. In the following items, we will state that Wilcoxon’s test is
less influenced by this factor than Friedman’s test. Finally, as a rule of
thumb, the number of functions (N) in a study should be N = a ·k, where
k is the number of algorithms to be compared and a ≥ 2.

• Taking into account the previous observation and knowing the operations
performed by the non-parametric tests, we can deduce that Wilcoxon’s
test is influenced by the number of functions used. On the other hand,
both the number of algorithms and functions are crucial when we refer to
the multiple comparisons tests (such as Friedman’s test), given that all
the critical values depend on the value of N (see expressions in Section
A.3 in Appendix). However, the increasing / decreasing of the number
of functions rarely affects in the computation of the ranking. In these
procedures, the number of functions used is an important factor to be
considered when we want to control the FWER.

• An appropriate number of algorithms in contrast with an appropriate
number of functions are needed to be used in order to employ each type
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of test. The number of algorithms used in multiple comparisons proce-
dures must be lower than the number of functions. In the study of the
CEC’2005 Special Session, we can appreciate the effect of the number of
functions used whereas the number of algorithms stays constant. See, for
instance, the p-value obtained when considering the f15-f25 group and all
functions. In the latter case, p-values obtained are always lower than in
the first one, for each testing procedure. In general, p-values are lower
agreeing with the increasing of the number of functions used in multiple
comparison procedures; therefore, the differences among the algorithms
are more detectable.

• The previous statement may not be true in Wilcoxon’s test. The influence
of the number of functions used is more noticeable in multiple compar-
isons procedures than in Wilcoxon’s test. For example, the final p-value
computed for Wilcoxon’s test in group f15-f25 is lower than in the group
f1-f25 (see previous section).

5 Conclusions

In this paper we have studied the use of statistical techniques in the analysis of
the behaviour of evolutionary algorithms in optimization problems, analyzing
the use of the parametric and non-parametric statistical tests.

We have distinguished two types of analysis. The first one, called single-
problem analysis, is that in which the results are analyzed for each function /
problem independently. The second one, called multiple-problem analysis, is
that in which the results are analyzed by considering all the problems studied
simultaneously.

In single-problem analysis, we have seen that the required conditions for a
safe usage of parametric statistics are usually not satisfied. Nevertheless, the
results obtained are quite similar between a parametric and non-parametric
analysis. Also, there are procedures for transforming or adapting sample results
for being used by parametric statistical tests.

We encourage the use of non-parametric tests when we want to analyze re-
sults obtained by evolutionary algorithms for continuous optimization problems
in multiple-problem analysis, due to the fact that the initial conditions that
guarantee the reliability of the parametric tests are not satisfied. In this case,
the results come from different problems and it is not possible to analyze the
results by means of parametric statistics.

With respect to the use of non-parametric tests, we have shown how to use
Friedman, Iman-Davenport, Bonferroni-Dunn, Holm, Hochberg, and Wilcoxon’s
tests; which on the whole, are a good tool for the analysis of the algorithms.
We have employed these procedures to carry out a comparison on the CEC’2005
special session on real parameter optimization by using the results published for
each algorithm.
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J.A. Moreno-Pérez, C. Campos-Rodŕıguez and M. Laguna. (2007). ”On the
Comparison of Metaheuristics through Non-Parametric Statistical Tech-
niques,” In Proceedings of the Spanish Congress on Metaheuristics, Evolu-
tionary and Bioinspired Algorithms (MAEB’2007), 286–293. (in Spanish).

D.T. Morse. (1999). ”Minsize2: a Computer Program for Determining Effect
Size and Minimum Sample Size for Statistical Significance for Univariate,
Multivariate, and Nonparametric Tests,” Educational and Psychological Mea-
surement 59(3), 518-531.

G.E. Noether. (1987). ”Sample Size Determination for Some Common Non-
parametric Tests,” Journal of the American Statistical Association 82(398),
645-647.

D. Ortiz-Boyer, C. Hervás-Mart́ınez and N. Garćıa-Pedrajas. (2007). ”Improv-
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A Introduction to Inferential Statistical Tests

This section is dedicated to introduce the necessary issues to understand the sta-
tistical terms used in this paper. Moreover, a description of the non-parametric
tests is given in order to use them in further research. In order to distinguish a
non-parametric test from a parametric one, we must check the type of data used
by the test. A non-parametric test is that which uses nominal or ordinal data.
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This fact does not force it to be used only for these types of data. It is possible
to transform the data from real values to ranking based data. In such way, a
non-parametric test can be applied over classical data of parametric test when
they do not verify the required conditions imposed by the test. As a general
rule, a non-parametric test is less restrictive than a parametric one, although it
is less robust than a parametric when data are well conditioned.

A.1 Hypothesis Testing and P-Values

In inferential statistics, sample data are primarily employed in two ways to draw
inferences about one or more populations. One of them is the hypothesis testing.

The most basic concept in hypothesis testing is a hypothesis. It can be de-
fined as a prediction about a single population or about the relationship between
two or more populations. Hypothesis testing is a procedure in which sample data
are employed to evaluate a hypothesis. There is a distinction between research
hypothesis and statistical hypothesis. The first is a general statement of what
a researcher predicts. In order to evaluate a research hypothesis, it is restated
within the framework of two statistical hypotheses. They are the null hypothe-
sis, represented by the notation H0, and the alternative hypothesis, represented
by the notation H1.

The null hypothesis is statement of no effect or no difference. Since the
statement of the research hypothesis generally predicts the presence of a differ-
ence with respect to whatever is being studied, the null hypothesis will generally
be a hypothesis that the researcher expects to be rejected. The alternative hy-
pothesis represents a statistical statement indicating the presence of an effect
or a difference. In this case, the researcher generally expects the alternative
hypothesis to be supported.

An alternative hypothesis can be nondirectional (two-tailed hypothesis) and
directional (one-tailed hypothesis). The first type does not make a prediction in
a specific direction; i.e. H1 : µ 6= 100. The latter implies a choice of one of the
following directional alternative hypothesis; i.e. H1 : µ > 100 or H1 : µ < 100.

Upon collecting the data for a study, the next step in the hypothesis testing
procedure is to evaluate the data through use of the appropriate inferential
statistical test. An inferential statistical test yields a test statistic. The latter
value is interpreted by employing special tables that contain information with
regard to the expected distribution of the test statistic. Such tables contain
extreme values of the test statistic (referred to as critical values) that are highly
unlikely to occur if the null hypothesis is true. Such tables allow a researcher
to determine whether or not the results of a study is statistically significant.

The conventional hypothesis testing model employed in inferential statistics
assumes that prior to conducting a study, a researcher stipulates whether a
directional or nondirectional alternative hypothesis is employed, as well as at
what level of significance is represented the null hypothesis to be evaluated. The
probability value which identifies the level of significance is represented by α.

When one employs the term significance in the context of scientific research,
it is instructive to make a distinction between statistical significance and prac-
tical significance. Statistical significance only implies that the outcome of a
study is highly unlikely to have occurred as a result of chance, but it does no
necessarily suggest that any difference or effect detected in a set of data is of
any practical value. For example, no-one would normally care if algorithm A
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solves the sphere function to within 10−10 of error of the global optimum and
algorithm B solves it within 10−15. Between them, statistical significance could
be found, but in practical sense, this difference is not significant.

Instead of stipulating a priori a level of significance α, one could calculate the
smallest level of significance that results in the rejection of the null hypothesis.
This is the definition of p-value, which is an useful and interesting datum for
many consumers of statistical analysis. A p-value provides information about
whether a statistical hypothesis test is significant or not, and it also indicates
something about ”how significant” the result is: The smaller the p-value, the
stronger the evidence against the null hypothesis. Most important, it does this
without committing to a particular level of significance.

The most common way for obtaining the p-value associated to a hypothesis
is by means of normal approximations, that is, once computed the statistic
associated to a statistical test or procedure, we can use a specific expression or
algorithm for obtaining a z value, which corresponds to a normal distribution
statistics. Then, by using normal distribution tables, we could obtain the p-
value associated with z.

A.2 The Wilcoxon Matched-Pairs Signed-Ranks Test

Wilcoxon’s test is used for answering this question: do two samples represent two
different populations? It is a non-parametric procedure employed in a hypothesis
testing situation involving a design with two samples. It is the analogous of
the paired t-test in non-parametrical statistical procedures; therefore, it is a
pairwise test that aims to detect significant differences between the behavior of
two algorithms.

The null hypothesis for Wilcoxon’s test is H0 : θD = 0; in the underlying
populations represented by the two samples of results, the median of the differ-
ence scores equals zero. The alternative hypothesis is H1 : θD 6= 0, but also can
be used H1 : θD > 0 or H1 : θD < 0 as directional hypothesis.

In the following, we describe the tests computations. Let di be the difference
between the performance scores of the two algorithms on i -th out of N functions.
The differences are ranked according to their absolute values; average ranks are
assigned in case of ties. Let R+ be the sum of ranks for the functions on which
the second algorithm outperformed the first, and R− the sum of ranks for the
opposite. Ranks of di = 0 are split evenly among the sums; if there is an odd
number of them, one is ignored:

R+ =
∑

di>0

rank(di) +
1
2

∑

di=0

rank(di)

R− =
∑

di<0

rank(di) +
1
2

∑

di=0

rank(di)

Let T be the smallest of the sums, T = min(R+, R−). If T is less than
or equal to the value of the distribution of Wilcoxon for N degrees of freedom
(Table B.12 in Zar (1999)), the null hypothesis of equality of means is rejected.

The obtaining of the p-value associated to a comparison is performed by
means of the normal approximation for the Wilcoxon T statistic (Section VI,
Test 18 in Sheskin (2003)). Furthermore, the computation of the p-value for
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this test is usually included in well-known statistical software packages (SPSS,
SAS, R, etc.).

A.3 The Friedman Two-Way Analysis of Variance by Ranks

Friedman’s test is used for answering this question: In a set of k samples (where
k ≥ 2), do at least two of the samples represent populations with different
median values? It is a non-parametric procedure employed in a hypothesis test-
ing situation involving a design with two or more samples. It is the analogous
of the repeated-measures ANOVA in non-parametrical statistical procedures;
therefore, it is a multiple comparison test that aims to detect significant differ-
ences between the behavior of two or more algorithms.

The null hypothesis for Friedman’s test is H0 : θ1 = θ2 = ... = θk; the median
of the population i represents the median of the population j, i 6= j, 1 ≤ i ≤
k, 1 ≤ j ≤ k. The alternative hypothesis is H1 : Not H0, so it is non-directional.

In the following, we describe the tests computations. It computes the ranking
of the observed results for algorithm (rj for the algorithm j with k algorithms)
for each function, assigning to the best of them the ranking 1, and to the worst
the ranking k. Under the null hypothesis, formed from supposing that the
results of the algorithms are equivalent and, therefore, their rankings are also
similar, the Friedman’s statistic

χ2
F =

12N

k(k + 1)


∑

j

R2
j −

k(k + 1)2

4


 ,

is distributed according to χ2
F with k − 1 degrees of freedom, being Rj =

1
N

∑
i rj

i , and N the number of functions. The critical values for the Friedman’s
statistic coincide with the established in the χ2 distribution when N > 10 and
k > 5. In a contrary case, the exact values can be seen in Sheskin (2003); Zar
(1999).

Iman and Davenport (1980) proposed a derivation from the Friedman’s
statistic given that this last metric produces a conservative undesirably effect.
The proposed statistic is

FF =
(N − 1)χ2

F

N(k − 1)− χ2
F

,

and it is distributed according to a F distribution with k−1 and (k−1)(N−1)
degrees of freedom.

Computation of the p-values given a χ2 or FF statistic can be done by using
the algorithms in Abramowitz (1974). Also, most of the statistical software
packages include it.

The rejection of the null hypothesis in both tests described above does not
involve the detection of the existing differences among the algorithms com-
pared. They only inform us about the presence of differences among all samples
of results compared. In order to conducting pairwise comparisons within the
framework of multiple comparisons, we can proceed with a post-hoc procedure.
In this case, a control algorithm (maybe a proposal to be compared) is usually
chosen. Then, the post-hoc procedures proceed to compare the control algo-
rithm with the remain k − 1 algorithms. In the following, we describe three
post-hoc procedures:
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• Bonferroni-Dunn’s procedure (Zar, 1999): it is similar to Dunnet’s test
for ANOVA designs. The performance of two algorithms is significantly
different if the corresponding average of rankings is at least as great as its
critical difference (CD).

CD = qα

√
k(k + 1)

6N
.

The value of qα is the critical value of Q′ for a multiple non-parametric
comparison with a control (Table B.16 in Zar (1999)).

• Holm (1979) procedure : for contrasting the procedure of Bonferroni-
Dunn, we dispose of a procedure that sequentially checks the hypotheses
ordered according to their significance. We will denote the p-values or-
dered by p1, p2, ..., in the way that p1 ≤ p2 ≤ ... ≤ pk−1. Holm’s method
compares each pi with α/(k−i) starting from the most significant p-value.
If p1 is below than α/(k−1), the corresponding hypothesis is rejected and
it leaves us to compare p2 with α/(k − 2). If the second hypothesis is
rejected, we continue with the process. As soon as a certain hypothesis
can not be rejected, all the remaining hypotheses are maintained as sup-
ported. The statistic for comparing the i algorithm with the j algorithm
is:

z = (Ri −Rj)/

√
k(k + 1)

6N
.

The value of z is used for finding the corresponding probability from the
table of the normal distribution (p-value), which is compared with the
corresponding value of α.
Holm’s method is more powerful than Bonferroni-Dunn’s and it does no
additional assumptions about the hypotheses checked.

• Hochberg (1988) procedure : It is a step-up procedure that works in the
opposite direction to Holm’s method, comparing the largest p-value with
α, the next largest with α/2 and so forth until it encounters a hypothesis
it can reject. All hypotheses with smaller p values are then rejected as
well. Hochberg’s method is more powerful than Holm’s (Shaffer, 1995).

When a p-value is within a multiple comparison it reflects the probability
error of a certain comparison, but it does not take into account the remaining
comparisons belonging to the family. One way to solve this problem is to report
Adjusted P-Values (APVs) which take into account that multiple tests are con-
ducted. An APV can be directly taken as the p-value of a hypothesis belonging
to a comparison of multiple algorithms.

In the following, we will explain how to compute the APVs for the three
post-hoc procedures described above, following the indications given in Wright
(1992).

• Bonferroni APVi: min{v; 1}, where v = (k − 1)pi.

• Holm APVi: min{v; 1}, where v = max{(k − j)pj : 1 ≤ j ≤ i}.
• Hochberg APVi: max{(k − j)pj : (k − 1) ≥ j ≥ i}.
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