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ABSTRACT

Genetic-Based Machine Learning Systems (GBML) are com-
parable in accuracy with other learning methods. However,
efficiency is a significant drawback. This paper presents a
new representation for continuous attributes motivated by
our previous work in large-scale Bioinformatics datasets,
where we can observe that, very often, a very small frac-
tion of the attributes of a domain are expressed at the same
time in a rule. Automatically discovering these few key at-
tributes and only keeping track of them contributes to a sub-
stantial speed up by avoiding useless match operations with
irrelevant attributes, while potentially leading to a better
learning process. The representation we propose has been
tested within the BioHEL GBML system, and our experi-
ments show that this representation has competent learning
performance and reduces considerably the system run-time,
up to 2-3 times faster than the state-of-the-art in fast GBML
representations for datasets with hundreds of attributes.
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1 The attribute list knowledge representation

Our rule representation instead of coding all the domain
attributes only keeps a list of the expressed ones, and we
add (specialize) or remove (generalize) attributes from this
list with a given probability. In this way, match operations
only evaluate a subset of attributes (ignoring all the non-
expressed attributes), possibly avoiding hundreds of irrel-
evant computations. Moreover, as the representation only
holds relevant attributes the exploration operators will al-
ways recombine/mutate data that matters, potentially lead-
ing to a better learning process too.
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Figure 1: Example of a rule in the attribute list
knowledge representation with four expressed at-
tributes: 1, 3, 4, and 7. [, = lower bound of at-
tribute n, u,= upper bound of attribute n, c1=Class
1 of the domain
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Each rule will be represented by four elements, as shown in
figure 1: (1) an integer containing the number of expressed
attributes, (2) a vector specifying which attributes are ex-
pressed, (3) a vector specifying, for each expressed attribute,
the lower and upper bound of its associated interval and (4)
the class associated to the rule. Thus, semantically a rule
specifies an hyperrectangle in the search space.

In initialization, a parameter specifies the expected value
of number of expressed attributes, following [3]. A probabil-
ity of expressing an attribute is derived from it and a subset
of attributes is added to the list of expressed ones given this
probability. An interval ranging from 25% to 75% of the
domain width is initialized for each expresseed attributes.
Intervals are seeded from sampled training examples. The
crossover operator acts as a one-point crossover, but taking
into account that different parents may have different lists
of expressed attributes, making sure to maintain semantical
correctness. Mutation acts as in a standard GBML system.
Two operators are added to the GA cycle after mutation
to add attributes to the list of expressed attribute (special-
ize operator) or remove attributes from the list (generalize
operator) to the individuals of the offspring population. In
case of applying the specialize operator, a randomly initial-
ized interval is generated for the attribute chosen to be ex-
pressed. An individual-wise probability is used to decide the
application of these two operators across the population.
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2 Experiments on small datasets

The first step to experimentally validate this representation
is to determine whether this representation is able to learn
properly when compared to state-of-the-art GBML meth-
ods. To do so, we have compared our representation against



Table 1: Results of the experiments on the bioinformatics datasets

Prob. of Generalize and Specialize in Att. List KR
Dataset Result NAX 0.05 0.10 0.10 0.20 075
Acc. 72.4+1.0 73.3+0.8 73.4+0.9 73.3£0.8 73.3£0.8 73.2£0.7
ss #rules 268.7113.6 290.9£10.4 | 281.6£10.3 | 271.4£10.3 263.4£7.8 253.319.1
#exp. att. 13.1£3.0 14.6£3.2 14.4£3.2 14.1£3.2 13.7£3.2 13.4£3.2
run-time (h) 16.1£0.9 6.41+0.4 6.01+0.6 5.910.6 5.710.4 5.61+0.4
Acc. 80.9+0.4 81.1+0.4 81.1£0.4 81.1+0.4 81.04+0.4 81.0+£0.4
CN #rules 263.2+12.6 284.7+£12.5 | 275.1£13.3 | 265.5+£13.4 | 255.5£11.2 | 245.1£11.8
#exp. att. 14.3£2.9 16.3+3.0 16.1£3.1 15.7£3.1 15.2+3.1 14.8£3.1
run-time (h) 45.7+2.5 30.9+2.1 29.8+2.3 28.9£2.3 28.1+1.8 26.7£2.0

another recent efficiency-oriented representation, taken from
the NAX system [3]. This representation uses vectorial SSE
instructions to boost the efficiency of the match operations.
Semantically both representations evolve identical types of
rule. The representations are evaluated within the frame-
work of BioHEL [1, 2], a recent GBML system. We have
used a set of 16 small-size datasets with continuous at-
tributes from the well-known UCI repository for this first
stage of experiments. We also performed a sensitivity anal-
ysis of the probability of applying the generalize and spe-
cialize operators, testing five different probabilities in the
5%-25% range. These two operators have to identify the
relevant attributes for a rule, so their correct functioning is
crucial for the success of the representation.

The results of these experiments indicate that (1) our rep-
resentation obtains similar accuracy to the NAX represen-
tation, according to a Friedman statistical tests for multiple
comparisons. (2) the sensitivity analysis indicated that the
different probabilities evaluated gave similar accuracy re-
sults (3) in relation to run-time, the NAX representation was
faster than our representation in the datasets with smallest
number of attributes, and our representation became faster
and faster with increasing number of attributes. Figure 2
plots the speedup of our representation (with 25% of proba-
bility of generalize/specialize) over NAX against the number
of attributes of the domain. We have fitted a small speedup
model using R of the kind speedup = a- /N where N is the
number of attributes of the domain.

Figure 2: Speedup of our representation over NAX
plotted against number of attributes
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3 Experiments on large datasets

We have used two of our large-scale bioinformatics datasets
to evaluate the full potential of the representation. The two
datasets belong to the protein structure prediction (PSP)
family of problem [4]. The first dataset, called Secondary
Structure (SS) prediction has 83823 instances and 300 at-

tributes. The second dataset, called Coordination Number
(CN) prediction has 257560 instances and 180 attributes.
Table 1 shows, for each of these two datasets the obtained
accuracy, average rule-set size, average number of expressed
attributes per rule and run-time (reported in hours)®.

As we expected, this representation is able to explore bet-
ter the search space because it only needs to recombine rel-
evant attributes. This happens specially in the SS dataset,
where the representation manages to obtain an accuracy 1%
higher than the NAX representation. In the CN dataset
our representation also obtains higher accuracy, although
the difference is minor. Higher probabilities of generalize
and specialize obtain more run-time reduction and generate
more compact solutions with smaller rule sets and expressed
attributes per rule. In the SS dataset we have managed to
reduce the average run-time from more than 16 hours to
less than 6 hours. Our representation is almost three times
faster than NAX. On the CN dataset our representation is
up to 1.7 times faster than NAX. The run time of our rep-
resentation is up to 19 hours shorter.

4 Conclusions

Our representation is able to learn equal or better than other
recent GBML alternatives, and it manages to substantially
reduce the training time for large datasets with hundreds of
attributes. Thus, we can say that the objectives that we had
for designing this representation have been fulfilled.
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!Experiments were run on Opteron processors running at
2.2GHz, Linux operating system and the C++ implementa-
tion of BioHEL.



