Memetic Pittsburgh Learning
Classifier Systems

Jaume Bacardit
School of Computer Science
School of Biosciences
University of Nottingham

jaume.bacardit@nottingham.ac.uk

Multi-disciplinary Centre
for Integrative Biology

Outline

" |ntroduction
" Framework: GAssist LCS

= Development of MPLCS
= | ocal Search operators
» [ntegration of LS in Gassist

= Results
= Conclusions & further work

Introduction |

= For the last 10-15 years different families
of approaches have been developed in the
EC community for the principled and
systematic improvement of how to explore
the search space

* Memetic Algorithms [Krasnogor & Smith, 03]

= Estimation of Distribution Algorithms
[Larranaga & Lozano, 02]

Introduction ||

= Beside some old precedents [Grefenstette,
91], this line of research is much more
recent in the LCS field

= And mainly, EDA approaches have been
employed
= |n Michigan LCS [Butz. 04]

= |[n Pittsburgh LCS [Llora et al. 05, Llora et al.
06]

Introduction |l

= Why the Memetic Approach is good for
Pittsburgh LCS?

= Pittsburgh LCS apply supervised learning approach

= We know exactly which part of the solution (rule set)
are performing well and which parts are performing
bad

= Also, the traditional Pittsburgh representation is
semantically quite rich, providing a large volume of
supervision information

= All this performance information can be used to
heuristically fine tune the solutions

Introduction IV

= |n recent work [Bacardit & Krasnogor, 06]
we integrated a local search operator into
the crossover stage of the GAssist
[Bacardit, 04] Pittsburgh LCS

= This operator takes the rules from multiple
parents (N=2) and heuristically selects a
subset of them to generate a single
offspring with maximum training accuracy

= That operator only recombined rules, it did
not improve them

Introduction V

= |n this work [accepted with revisions] our
objective are

= To develop some rule-wise local search mechanism to
complement the rule set-wise previous operator

= To study different policies to integrate these operators
into GAssist

= To exhaustively and rigorously evaluate all these
combinations of operators and policies
= We name the new system that integrates all
these LS mechanisms into GAssist “Memetic
Pittsburgh Learning Classifier System (MPLCS)”

Framework: GAssist LCS

GAssist is a descendant of GABIL [De Jong &
Spears, 93]

It implements a near-standard generational GA

Each individual is a complete (and variable
ength) solution to the classification problem

~itness function is based on the MDL principle
Rissanen, /78] to balance accuracy and
complexity of each rule set

Framework: GAssist LCS

= Representation for nominal attributes (from
GABIL)

= Predicate (CNF) — Class

= “If (attribute 1 takes values A or C) and (attribute 2
takes values A or B) and ... and (attribute n takes

value D) then predict class C”

* The rules can be mapped into a binary string
1100/0010|1001|1

= Size of rule: sum of the cardinalities of each attributre
(binary) + 1 integer value for the class

Framework: GAssist LCS

= Match process

* |ndividuals are interpreted as a decision list [Rivest,
87]. an ordered rule set

= Conflict resolution will choose always the first rule of
the chromosome that matches the example

= At the end of the rule set there is an static and explicit
default rule

» The class of the default rule will not be used by the
other classes, reducing the search space

Framework: GAssist LCS

= Costly evaluation process if dataset is big

= Computational cost is alleviated by using a

windowing mechanism called ILAS
0 Ex/n 2'Ex/n 3'Ex/n Ex

Training set

Iterations [I]lmm

0

= This mechanism also introduces some
generalization pressure

Development of MPLCS: Local Search
operators

= Rule set-wise (RSW) local search

= Rule-wise operators

Rule Cleaning (RC) local search
Rule Splitting (RS) local search
Rule Generalizing (RG) local search

Development of MPLCS: Local Search
operators

= RSW

= Motivation: try to make sure that we
construct the most appropriate offspring
from good candidate rules

= High level procedure
1. We choose N parents
2. We evaluate all rules with all examples

3. We select the best subset of rules (and the
correct order) to generate a new offspring

Development of MPLCS: Local Search
operators

= RSW: Rule subset selection (RSS) heuristic

= We start with an empty rule set (predicting the
default rule)

= For each candidate rule

= We find the top-most position inside the rule set where
this rule helps the rule set maximizing accuracy

= |f rule contributes to improve rule set accuracy it is
inserted
= After testing all candidate rules, final rule set is
pruned
= Of rules that do not contribute anymore to accuracy
= Too specific rules

Development of MPLCS: Local Search
operators

= Rule-wise local search operators

» The supervised learning process of a
GAssist+GABIL representation gives us a
huge amount of performance information

= We can use this information to
deterministically tune the rules we have

Development of MPLCS: Local
Search operators

Give the following rule:

And the following examples:
Rule missclassifies 3 & 6

We can count, for each condition
the number of wrong and right
examples

If condition 3 of att 1 is set to 0,
rule will not misclassify

Development of MPLCS: Local Search
operators

= Rule cleaning local search

1. Find activated condition with most wrongly
classified examples and no correct ones

2. Set to 0 the corresponding bit

Development of MPLCS: Local Search
operators

= Rule splitting

» Motivation: sometimes it is very difficult to find
a predicate that classifies always wrong

= We tentatively try to split the rule by some of
the attributes to determine if we can clean any

of the two splitted rules

= Rule 1100/0010|1001|1 is splitted as:
= 1000|/0010(1001|1
= 0100|0010|1001|1

Development of MPLCS: Local Search
operators

Rule generalization

= Prior operators only were dropping conditions for
the false positive examples

= We still need to cover the false negatives

1. Find examples not matched by prior rules

2. Find the currently disabled condition that
1. Does not classify any negative examples

2. Classifies more positive examples than the other
candidates

3. If that condition is found, set corresponding bit to 1

Development of MPLCS: Integration of
LS in GAssist

= Two policies of integration:
* Probabilistic (P) policy

= Operators are applied to the whole population,
given some probability

= [n RSW, this happens in the crossover stage,
some probability choses between this operator
and the classic one

= Rule-wise operators are applied to the
offspring population after mutation with an
individual-wise probability

Development of MPLCS: Integration of
LS in GAssist

= Two policies of integration:
= Elitist (E) policy

= Operators are applied only to the best(s)
individual(s) of the population at the end of the

GA cycle

= RSW: Select the N best individuals of
populations and generate a new offspring from
them

" Rule-wise operators: applied to the best
individual of the population

Development of MPLCS: Integration of
LS in GAssist

GAssist wit
GAssist wit

GAssist wit
RS+R

= Rule-wise
after RSS

A suffix (P)

application.

n rule-wise operators: MPLCS-R
n RSW: MPLCS-RS

n both kind of operators: MPLCS-

operators are applied inside RSW, just

or (E) specifies policy of
Eg. MPLCS-RS+R(P)

A suffix :RC+RS+RG specifies the
combination of rule-wise operators. EgQ.
MPLCS-R(E):RC+RG

Experimental setup

= First stage of experiments

= We have performed a large-scale set of experiments
to determine the behaviour and performance of all
these operators

» Experiments used only the MX20 datasets: our aim
was to evaluate the scalability of these operators,
which is critical for the Proteins datasets

» Tested in total 75 combination of
operators/probabilities/policies of application

» |[LAS windowing is set up to very mild settings, to
prevent interactions with the LS operators

Experimental setup

= Second stage
= This time using aggressive settings of ILAS

» Only tested the most promising MPLCS
variants identified in the previous stage

» Testing more datasets
= KkDNF dataset
= MX37 and MX70

= Noisy MX20. Class was randomly flipped with
probablllty 5% - 25%

Experimental setup

What is a good performance measure?
= |terations until 100% accuracy

= Example evaluations until 100% accuracy
= Run-time until 100% accuracy

From the results of these experiments, and until

we develop a better measure, run-time is the
most insightful measure

GAssist was run without fixed number of
iterations: only until achieving 100% accuracy

Test were run in Opteron processors @2.2Ghz

First stage of experiments

= Performance of MPLCS-RS
= On this huge dataset this operator alone

Is actually worse than GAssist!!

Basic
MPLCS-RS(P)
MPLCS-RS(E)_5p
MPLCS-RS(E)_10p
MPLCS-RS(E)_15p

Itur,
T0+99.11

1032. 401188 .87
1035.30+176.22
1132.40+121.38

#Rules

19.2+4.4
17.01+0.0

Run-time(s)
7950.3+£792.1
A44T7H8.7T+6775.6
19127.44+4842.1
31459.5+6912.6
49356.1£7659.9

First stage of experiments

= Performance of
MPLCS-RS

* MPLCS-RS(P)

s only effective RS
in early ol
iterations

= | ocal search
schedulers

First stage of experiments

= MPLCS-RS+R(P)

= Best results are obtained when combining all
rule-wise LS operators

Run-time(s)

| 1073.70£99.11 7950.3+£792.1

MPLCS-RS+R(P):RC | 323.30+81.83 20791.44+5080.3
MPLCS-RS+R(P):RS | 648.404+413.90 65040.0+41849.0
MPLCS-RS+R(P):RG | 385.70£70.00 32441.2+6324.4
MPLCS-RS+R(P):RC+RS || 13.00£3.38 1861.24295.2
MPLCS-RS+R(P):RCTRG || 34.30£13.35 2873.1£1002.7
MPLCS-RS+R(P):RS+RG || 6.70£1.10 1399.44128.2
MPLCS-RS+R(P):RC+RS+RG| 4.40+0.49 1028.5+94.0

First stage of experiments

= Global comparison
Iter. #Rules tun-time(s)
709911 23.1x2.9 7950.3£792.1
1243.04204.5
7264.5+909.8
: 21.8+7. 19127 4£4842 1
MPLCS-RSH+R(E) || 93.70+34.35 5201.5+£1900.1
MPLCS-RS+R(P)| 4.40%0.49 1028.5+94.0

= (MPLCSRS+R(P), MPLCS-R(P)) = (Basic, MPLCS-
RS+R(E), MPLCS-R(E)) > MPLCS-RS

= Best configuration is 7.73 faster than GAssist

Second stage of experiments

= MX20 using 200 strata of ILAS

#Rules Run-time(s)
30.0+2.9 152.3+67.5

[7.551.2
= MPLCS is 25.84 times faster than GAssist

"= The LS operators interact well with ILAS

= So far so good....

= However, the results on the new datasets will
show the excessive exploitation power of MPLCS-
RS+R(P)

Results on the KDNF dataset

T e

MPLCS-R(P)
MPLCS-RS+R(P)

Accuracy

800 1000 1200 1400 1600 1800
Time (s)

Bocuracy

Results on the N

Easic canliguralion

MPLCE-RP) configuration

1.95 s
3.5 a8
.89 ; . 0ss .
78 a3
[Hird.IIIIIIIIIII.IIIIIII-- :; TIllIIII.l..l...llll
- | -
-
a7 . 3 o -
|] | |
.55 . ass n
]
.]
35 s
] . . L] .
E-z-gncr:.-:- :W'Eclm_u-:
10% of notss 100 al noEe
058 - 15% of noisa - el 17% of noiss
L R 20% of noise u 2% of noig
2% ofnoise m 2¥s ol oise m
0.5 [
4 200 400 [a] = na] 1020 a 204 LlHH [:{HH 8d1d gl
Timals
MPLCERE. B configuration
[1
|]
GAssist
i
185 - 4
18 -
; a7s ¢ auuEuEEEEEEEEEEE
= qunn®
o
]
07 | L
f]
an B
"
al
[
. .
- 5% of rise
+ 08 10% of noisa
15% of noisa
L] 20% of roise
% 2% olmise =
355
a]) 1000 1500 20010

Preparation for MX37 and MX70

These datasets have 237 and 270 instances,
respectively

Impossible to hold the whole dataset in memory

Implemented them as a virtual dataset, with a
generation function (as in XCS)

ILAS in each generation uses a random sample
(with replacement) of the dataset

Sample was tuned to be as small as possible
(while still letting the system learn) (<2000 inst)

This tuning makes GAssist be quite
“Incremental”

Results on the MX37

37 bits multiplexer

Basic
MPLCS-R(P) -——x---
MPLCS-RS+R(P) *

o
w

Accuracy

400 500 600 700 800 900
Time (s)

Results on the MX70

70 bits multiplexer

L b T i L N
Basic

MPLCS-R(P)
MPLCS-RS+R(P)

Accuracy

800 900

Comparison with XCS(BOA)

= XCS and XCS(BOA) have reported results
for all the tested datasets

= But before comparing, what metric do we

use?

= Each GA iteration of GAssist (with ILAS)
uses n=|T|/#strata examples.

= | earning steps = n - #iterations until
convergence

Comparison with XCS(BOA)

Dataset Hinstances per iteration | #learning steps
20 bits multiplexer 5243 124259
37 bits multiplexer 1373 254190
70 bits multiplexer 1574 1167751
noisy 20 bits multiplexer - 5% noise 5243 1830856
noisy 20 bits multiplexer - 10% noise 5243 3307809
noisy 20 bits multiplexer - 15% noise 5243 4007225
noisy 20 bits multiplexer - 20% noise 5243 4489057
noisy 20 bits multiplexer - 25% noise 5243 4834046
kDNF 5243 2584275

= There are almost no actual figures of XCS performance,
only plots, so comparison is only approximate

= Usually XCS performed better. Only in MX37 and MX70
(with extreme tuning of ILAS) performance of MPLCS is
quite comparable

= 200000 vs. 254191 and 900000 vs. 1167751

Conclusions and further work

= Development of MPLCS
= Following the design principles of Competent MA
= Studying various kinds of operators
» Studying various policies of application

= | arge scale experiments

= Best results when proper equilibrium between the
various rule-wise operators

= RSW, while performing well on “small” datasets,
shows excessive exploitation power in the cases
when the good rules have not been discovered yet

» Operators interact well with [LAS

Conclusions & further work

= Further work

» Test these operators on other datasets
(hierarchical decomposable datasets)

= Overcome the limitations of the RSW operator

» [ntegrate these operators in other flavours of
LCS/GBML

= Adapt operators to real datasets and
continuous attributes

» Study other design issues of MA

