
Experimental Evaluation of Discretization
Schemes for Rule Induction

Jesus Aguilar–Ruiz1, Jaume Bacardit2, and Federico Divina3

1 Dept. of Computer Science, University of Seville, Seville, Spain
aguilar@lsi.us.es

2 Intelligent Systems Research Group, Universitat Ramon Llull, Barcelona, Spain
jbacardit@salleURL.edu

3 Dept. of Computer Science, Vrije Universiteit, Amsterdam, The Netherlands
F.Divina@few.vu.nl

Abstract. This paper proposes an experimental evaluation of various
discretization schemes in three different evolutionary systems for induc-
tive concept learning. The various discretization methods are used in
order to obtain a number of discretization intervals, which represent the
basis for the methods adopted by the systems for dealing with numeri-
cal values. Basically, for each rule and attribute, one or many intervals
are evolved, by means of ad–hoc operators. These operators, depending
on the system, can add/subtract intervals found by a discretization me-
thod to/from the intervals described by the rule, or split/merge these
intervals. In this way the discretization intervals are evolved along with
the rules. The aim of this experimental evaluation is to determine for
an evolutionary–based system the discretization method that allows the
system to obtain the best results. Moreover we want to verify if there
is a discretization scheme that can be considered as generally good for
evolutionary–based systems. If such a discretization method exists, it
could be adopted by all the systems for inductive concept learning using
a similar strategy for dealing with numerical values. Otherwise, it would
be interesting to extract relationships between the performance of a sy-
stem and the discretizer used.

1 Introduction

The task of learning a target concept in a given representation language, from
a set of positive and negative realizations of that concept (examples) and some
background knowledge, is called inductive concept learning (ICL). Real life lear-
ning tasks are often described by nominal as well as continuous, real-valued,
attributes. However, most inductive learning systems treat all attributes as no-
minal, hence cannot exploit the linear order of real values. This limitation may
have a negative effect not only on the execution speed but also on the learning
capabilities of such systems.

In order to overcome these drawbacks, continuous-valued attributes are trans-
formed into nominal ones by splitting the range of the attribute values in a finite
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number of intervals. The so found intervals are then used for treating continuous-
valued attributes as nominal. Alternatively, the intervals can be determined du-
ring the learning process. This process, called discretization, is supervised when
it uses the class labels of examples, and unsupervised otherwise. Discretization
can be applied prior or during the learning process (global and local discretiza-
tion, respectively), and can either discretize one attribute at a time (univariate
discretization) or take into account attribute interdependencies (multivariate
discretization) [1].

Researchers in the Machine Learning community have introduced many di-
scretization algorithms. An overview of various types of discretization algorithms
can be found, e.g., in [2]. Most of these algorithms perform an iterative greedy
heuristic search in the space of candidate discretizations, using different types
of scoring functions for evaluating a discretization.

In [3,4,5,6] various multivariate local discretization methods are introduced
and embedded into systems for rules induction. The idea behind the methods
is similar. A number of basic discretization intervals are used in order to evolve
the best discretization for each rule. A discretization interval for an attribute in
a rule is formed by the union of a number of basic discretization intervals.

In this paper we want to experimentally evaluate the effect of using different
basic discretization intervals. In order to do this we use a multivariate discretiza-
tion method inside three evolutionary rule induction systems: HIDER* [5], ECL
[7] and GAssist [4]. All these systems take as input a set of discretization inter-
vals, and adapt them during the learning process, by means of ad–hoc genetic
operators.

The paper is structured in the following way. In Section 2 we give a brief de-
scription of the discretization methods used for finding the basic discretization
interavals. Section 3 contains the experimental evaluation of the various discre-
tization methods. First an overview of the rules induction systems is given, then
the experiment settings are described and the results of the experiments are
presented and discussed. Section 4 summarizes important conclusions and the
future work. Finally, in Section 5 some related work is presented.

2 Discretization Methods

All the systems used in this paper treat numerical values locally. Starting from
a set of basic discretization intervals the systems evolve the discretization inter-
vals for each rule. At this end some operators are used, which can merge the
basic discretization intervals. Thus, at the end of the evolution the discretiza-
tion intervals present in the evolved rule are the union of n basic discretization
intervals, where n ≥ 1.

The basic discretization intervals are the results of the application of a di-
scretization scheme. In this paper we used the following discretization method
for finding the basic discretization intervals:

1. The method used by ID3 [8], as no pruned version of the Fayyad & Irani’s
algorithm (which is described below). The values of each continuous attribute
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A are sorted in increasing order. The midpoints of two successive values of
A occuring in examples with different classes are considered as potential cut
points. The cut points are then found by recursively choosing the potential
cut points that minimizes the entropy, until all the intervals determined in
this way contains values relative to examples of the same class;

2. USD [9] divides the continuous attributes in a finite number of intervals with
maximum goodness, so that the average-goodness of the final set of intervals
will be the highest. The main process is divided in two different parts: first, it
calculates the initial intervals by means of projections, which will be refined
later, depending on the goodnesses obtained after carrying out two possible
actions: to join or not adjacent intervals. The main features of the algorithm
are: it is deterministic, does not need any user–parameter and its complexity
is subquadratic;

3. Fayyad & Irani’s algorithm [10]. This supervised recursive algorithm uses
the class information entropy of candidate intervals to select the boundaries
of the bins for discretization. Given a set S of instances, an attribute p, and
a partition bound t, the class information entropy of the partition induced
by t is given by: E(p, t, S) = Entropy(S1)

|S1|
|S| + Entropy(S2)

|S2|
|S| where S1

is the set of instances whose values of p are in the first half of the partition
and S2 the set of instances whose values of p are in the second half of the
partition. Moreover |S| denotes the number of elements of S and Entropy
is defined as: Entropy(S) = −p+ · log2(p+) − p− · log2(p−) with p+ and p−
the proportion of positive and negative examples in S respectively.
For a given attribute p the boundary t which minimizes E(p, t, S) is selected
as a binary discretization boundary. The method is then applied recursively
to both the partitions induced by the selected boundary t∗ until a stopping
criterion is satisfied. The MDL principle [11] is used to define the stopping
criterion;

4. Random discretizer. In this paper we have considered using a random di-
scretizer as a baseline for the tests. This discretizer selects, for each test,
a random subset of all the midpoints between the values in the attribute
domain;

5. Equal interval width method. In this method the continuous values are sim-
ply divided into n equal sized bins, where n is a parameter. In this paper we
consider values of n equal to 5, 10, 15, 20;

6. Equal frequency method. In this method the continuous values are divided
into n bins, each bin containing the same number of values. Thus, the regions
of the attribute domain with more density of values have more intervals.
Again, n is a parameter, considering for this paper the values 5, 10, 15, 20;

3 Experimental Evaluation

In this section we first give a brief description of the three rule induction sy-
stems used in the experiments. The results of the experiments are then presented
and discussed. We have omitted the results from equal–width5, equal–width15,
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equal–freq5 and equal–freq15 because they are very similar to those described
in Table 2 with equal–width10, equal–width20, equal–freq10 and equal–freq20,
respectively.

3.1 Rule Induction Systems

ECL [7] is a hybrid evolutionary algorithm for ICL. The systems evolves rules
by means of the repeated application of selection, mutation and optimization.
The mutation operators applied do not act randomly, but consider a number of
mutation possibilities, and apply the one yielding the best improvement in the
fitness of the individual. The optimization phase consists in a repeated applica-
tion of mutation operators until the fitness of the individual does not worsen, or
until a maximum number of optimization steps has been reached. In the former
case the last mutation applied is retracted.

Numerical values are handled by means of inequalities, which describes di-
scretization intervals. Inequalities can be initialized to a given discretization
interval, e.g., found with the application of the Fayyad & Irani’s algorithm. ECL
can modify inequalities using class information, however for allowing a fair com-
parison with the other systems, this feature is not used here. Instead, inequalities
are modified during the learning process, by mutation operators that can add or
subtract a basic discretization interval to the interval described by an inequality.

HIDER* [12] is a tool that produces a hierarchical set of rules. When a new
example is going to be classified, the set of rules is sequentially evaluated accor-
ding to the hierarchy, so if the example does not fulfil a rule, the next one in the
hierarchy order is evaluated. This process is repeated until the example matches
every condition of a rule and then it is classified with the class that such rule
establishes. An important feature of HIDER* is its encoding method [5]: each
attribute is encoded with only one gene, reducing considerably the length of
the individuals, and therefore the search space size, making the algorithm faster
while maintaining its prediction accuracy.

GAssist [4] is a Pittsburgh Genetic–Based Machine Learning system descen-
dant of GABIL [13]. It evolves individuals that are ordered variable–length rule
sets. The control of the bloat effect is performed by a combination of a rule
deletion operator and hierarchical selection [14]. The knowledge representation
for real–valued attributes is called Adaptive Discretization Intervals rule repre-
sentation (ADI ) [4]. This representation uses the semantics of the GABIL rules
(Conjuntive Normal Form predicates), but using non–static intervals formed
by joining several neighbour discretization intervals. These intervals can evolve
through the learning process splitting or merging among them. The represen-
tation can also combine several discretizations at the same time, allowing the
system to choose the correct discretizer for each attribute. This feature will not
be used in this paper, to allow a fair comparison with the other two rule induction
systems tested.
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The three evolutionary approaches used in this paper are different in the way
they look for solutions within the search space. GAssist encodes variable–length
individuals, which will represent a whole set of decision rules. ECL and HIDER
encode single rules, i.e. each individual is one decision rule. However, ECL finds
the entire decision rule set at the final generation, whereas HIDER finds a single
rule at the end of the evolutionary process. Therefore, HIDER needs to be run
several times, until all the examples are covered by any decision rule, following
a sequential covering methodology.

An example of these diffences on encoding is shown in Figure 1. We have
selected a simple rule set composed by only two rules from Wisconsin dataset.
The genetic representation of this rule set is illustrated for each system. The
cutpoints have been obtained with ID3.

Attributes in GAssist rules codify the full attribute domain as one or many
intervals. Each interval is formed by a subset of consecutive basic discretization
intervals. The semantical definition of the rule is formed by the intervals with
value 1. HIDER encodes every attribute with only one natural number, as it is
described in [5]. Every possible interval defined by two cutpoints is associated
to a natural number, so genetic operators are designed to handle this method
efficiently. ECL uses a high level representation, where a rule is represented as
a list of predicates, variables, constants and inequalities.

3.2 Experiments Settings

Table 1 shows the features of the datasets used in the experiments. These data-
sets were taken from the UCI Machine Learning repository [15]. We have chosen
these datasets because they contain only numerical attributes, and no nominal
attributes. For this reason they represent a good testing for the discretization
schemes.

In the experiments a 10–fold cross–validation is used. Each dataset is divided
in ten disjoint sets of approximately similar size; one of these sets is used as test
set, and the union of the remaining nine forms the training set.

For the random discretization method, we have run the 10–fold cross–va-
lidation 15 times with different random seeds. Therefore, 7 datasets, with 8

Table 1. Features of the datasets used in the experiments. For each dataset the number
of examples and the number of continuous attributes is given.

Code Name Examples (+,-) Continuous
ION ionosphere 351 (225,126) 34
LIV liver 345 (145,200) 6
PIM pima-indians 768 (500,268) 8
SON sonar 208 (97,111) 59
WD wdbc 569 (212,357) 30
WIS wisconsin 699 (458,241) 10
WP wpbc 198 (47,151) 33
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1 0 1 1 00
Attribute 1 Attribute 2 Attribute 9 Class

0
1

1 1
Attribute 1 Attribute 2 Attribute 9

1
1

Rule 1

Rule 2

6.5 4.5 7.5 9.5

Cut points for AT1: {1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5}
Cut points for AT2: {1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5}
Cut points for AT9: {1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 9.5}

GAssist

5 4 7 0Rule 1a

5 56 7 0Rule 1b

7 8 7 1Rule 2

HIDER*

Rule 1: If AT1<6.5 and (AT2<4.5 or (7.5<AT2<9.5)) and ... and AT9 is irrelevant --> class is 0
Rule 2: Else --> class is 1 DEFAULT RULE

Rule intervals (containing one or many discretization intervals)

Basic discretization intervals

Rule 1 ECL
class_0,X attribute_1,X,Y attribute_2,X,Z Y<6.5 Z<4.5

class_0,X attribute_1,X,Y attribute_2,X,Z Y<6.5 7.5<Z<9.5

Fig. 1. Example from Wisconsin dataset. Each system encodes rule sets differently.

discretization methods (one of them 15 times) and using 10–fold cross–valida-
tion means 1540 runs for each system.

Each system uses its usual configuration settings, defined in previous work
[4,5,6]. Common values of the population size, generations, etc. are not suitable
in this case because we are testing systems with diverse structure (One GA run
generating a complete rule set vs. sequential GA runs learning one rule at a
time). As a consequence, the search space size for each system can vary, and this
leads to each system needing a specific set of parameters.

3.3 Results

We here report the results obtained by the three systems on each dataset for all
the discretization schemes. We also report the average performance achieved by
each discretization schemes, as a way of summarizing the results.

Table 2 reports the results obtained by ECL, GAssist and HIDER*, res-
pectively. For each dataset, the average accuracy and the average number of
rules are reported for each discretization method used for obtaining the basic
discretization intervals, including standard deviations.
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Table 2. Average accuracies (Acc.) and average number of rules contained in the solu-
tion (# rules) obained by each sistems on the datasets with the different discretization
methods. Best and worst results are highlighted. EW stands for equal width, EF stands
for equal frequency.

ID System ID3 USD Fayyad Rand EW10 EW20 EF10 EF20
Acc. 88.1±4.4 74.4±4.9 87.4±3.1 69.8±4.0 71.6±4.5 73.3±5.0 72.6±4.3 71.2±5.4ECL

# rules 12.5±1.5 15.5±0.7 9.8±1.3 14.7±1.7 18.2±1.8 15.5±5.7 12.6±1.7 12.5±1.8

ION GAssist
Acc. 90.4±5.0 90.7±4.9 93.3±4.3 90.2±5.1 92.3±4.1 92.5±3.7 90.0±4.8 89.5±4.5

# rules 3.4±1.2 3.5±1.3 2.3±0.7 4.2±1.5 2.9±1.0 2.7±0.9 4.0±1.4 4.0±1.4

HIDER*
Acc. 74.3±7.7 74.9±7.2 89.5±5.6 70.1±3.6 58.4±11.560.0±12.9 86.7±5.2 83.8±3.1

# rules 33.2±1.9 32.3±2.5 2.0±0.0 5.6±2.8 1.0±0.0 1.1±0.3 10.1±3.4 22.0±2.6

Acc. 61.5±5.0 66.6±4.5 63.2±4.5 57.9±4.9 58.3±4.5 59.4±4.8 57.1±4.4 59.2±3.4ECL
# rules 13.5±1.7 11.3±1.3 1.3±0.7 12.0±1.5 7.9±1.8 8.6±1.7 9.3±1.8 12.7±1.3

LIV GAssist
Acc. 65.5±7.8 65.0±7.6 59.5±6.2 64.5±8.6 63.7±7.7 63.7±8.3 64.3±7.9 65.3±7.9

# rules 9.1±2.0 8.7±1.9 2.9±1.4 8.2±1.9 7.7±1.8 8.0±1.7 8.8±2.0 9.3±2.2

HIDER*
Acc. 58.3±6.5 65.2±3.9 61.2±5.1 51.9±4.5 59.4±6.9 58.6±7.5 60.6±7.1 62.4±5.8

# rules 3.9±0.5 4.3±0.6 1.8±0.8 4.1±0.7 3.0±0.0 3.0±0.0 5.0±0.6 4.4±0.8

Acc. 71.4±1.9 69.7±4.2 68.3±2.3 60.9±4.5 63.2±2.6 62.4±1.9 63.9±1.5 61.7±3.9ECL
# rules 75.5±5.2 20.9±2.1 2.2±0.6 72.5±7.5 25.0±1.6 24.1±1.0 21.5±3.4 37.7±7.3

PIM GAssist
Acc. 73.9±3.9 73.7±4.0 72.5±4.6 73.6±4.4 73.6±4.3 73.8±4.7 73.6±4.0 74.3±3.8

# rules 5.4±0.8 5.3±0.7 5.1±0.5 5.2±0.6 5.3±0.8 5.2±0.6 5.5±1.1 5.3±0.8

HIDER*
Acc. 74.2±1.874.2±4.1 72.8±2.8 71.7±2.6 73.3±3.6 73.7±3.0 74.1±3.1 72.4±4.0

# rules 5.8±0.6 4.9±0.5 2.7±1.2 4.2±0.8 4.1±0.8 3.8±0.7 4.2±0.6 4.4±1.1

Acc. 64.4±5.1 72.0±6.9 76.4±2.1 63.1±4.8 69.3±5.9 66.4±5.1 72.4±4.0 68.3±4.2ECL
# rules 30.0±3.6 17.9±5.8 3.2±0.6 29.1±8.8 9.9±3.6 14.8±4.1 13.6±4.7 21.4±7.4

SON GAssist
Acc. 73.3±9.8 73.4±9.1 74.5±9.4 73.1±10.2 74.3±10.1 74.8±8.8 72.8±9.6 72.4±9.8

# rules 8.8±2.1 8.9±2.1 6.4±0.7 8.7±2.1 8.3±1.7 8.6±2.0 9.3±2.0 9.7±2.1

HIDER*
Acc. 68.8±4.7 68.7±6.6 72.6±6.5 66.4±4.4 62.4±11.4 64.8±8.6 66.9±12.6 64.7±10.2

# rules 30.9±3.0 24.4±3.1 4.4±1.3 16.5±3.9 11.6±1.9 14.6±0.9 60.3±5.3 63.2±3.4

Acc. 91.4±4.3 93.3±4.1 94.2±3.1 88.2±4.8 91.2±3.6 89.3±5.3 89.9±5.7 90.0±4.3ECL
# rules 15.5±5.7 22.7±2.8 5.6±2.0 24.5±13.6 6.2±2.1 7.4±2.8 7.0±2.4 9.3±4.1

WD GAssist
Acc. 94.2±3.1 93.9±3.1 94.0±3.1 93.7±3.5 93.6±3.2 94.0±3.2 94.2±3.1 94.0±3.1

# rules 4.0±1.1 3.9±1.1 3.7±0.8 4.2±1.3 3.5±0.8 3.6±0.8 4.0±1.0 4.1±1.2

HIDER*
Acc. 85.6±5.9 92.8±6.1 93.5±1.5 88.8±2.5 91.3±3.5 89.6±4.9 90.7±3.2 88.3±5.0

# rules 22.3±2.1 16.8±1.0 3.9±0.7 14.3±1.5 4.9±0.5 5.5±0.5 7.9±1.3 11.2±1.2

Acc. 94.7±2.2 95.6±2.4 93.4±2.2 94.7±2.4 94.6±2.6 95.0±2.6 93.8±2.7 93.3±3.0ECL
# rules 13.7±2.1 3.3±0.8 6.1±1.3 5.6±1.6 11.4±2.3 14.5±2.1 11.3±2.8 11.2±2.7

WIS GAssist
Acc. 95.4±2.4 96.0±2.2 95.1±2.5 95.1±2.5 95.8±2.3 95.9±2.2 95.7±2.2 95.8±2.0

# rules 2.5±0.7 2.2±0.5 3.3±0.5 2.6±0.6 2.3±0.6 2.4±0.6 2.7±0.7 2.5±0.6

HIDER*
Acc. 96.4±2.3 96.6±1.8 95.8±2.4 93.4±2.0 96.3±2.1 96.4±2.0 96.4±1.6 95.4±2.1

# rules 3.7±0.6 2.0±0.0 4.0±0.0 2.5±0.8 3.5±0.8 3.7±0.6 3.7±0.6 3.9±1.1

Acc. 76.9±3.5 74.5±3.6 76.4±3.7 74.2±5.1 72.9±4.0 72.8±4.2 70.2±5.4 76.5±5.8ECL
# rules 21.6±2.1 20.6±1.7 2.2±0.6 21.3±0.9 15.5±2.3 20.2±2.3 19.6±1.1 20.3±2.1

WP GAssist
Acc. 72.7±7.4 72.8±8.6 74.0±3.5 74.2±7.4 75.7±6.7 75.3±7.3 75.2±7.2 74.5±7.6

# rules 5.5±1.6 5.4±1.4 2.0±0.2 5.2±1.3 3.8±1.4 3.6±1.3 4.5±2.3 5.0±2.0

HIDER*
Acc. 69.2 ±6.574.9±2.8 72.9±3.1 62.2±7.1 74.3±3.6 73.8±9.8 68.0±8.3 67.7±7.8

# rules 18.0±1.4 14.8±2.1 14.6±1.8 13.5±1.5 3.6±1.1 5.2±1.0 11.2±1.2 16.2±2.1

3.4 Analysis of Results

The aim of this analysis is to show if there is one or a group of discretization
methods that present better performance than the others for evolutionary–based
learning systems. It is important to note that the output of each discretization
method is handled as a set of boundary points to define conditions over attributes
in the decision rules provided by the evolutionary approaches. Those outputs will
define the search space. The quality of solutions generated by the evolutionary
systems will depend on how many and how good are those boundary points,
and how well the evolutionary systems are able to join discretization intervals
by means of genetic operators.
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From Table 2, it can be noticed that ECL is sensitive to the discretization
method used for obtaining the basic discretization intervals, thus the difference
in the quality of the solutions depends strongly on the discretization method
used.

ECL obtained the worst results when the random discretizer is used for deter-
mining the basic discretization intervals. This is due to the mutation operators
used for modifying discretization intervals inside rules. In fact, these operators
can add or subtract only one basic discretization interval at a time to the inter-
vals the operators are applied to. In this way, if the number of basic discretization
intervals is high, like in the case of the random discretizator, it is likely that the
individuals are evolved very slowly. This is because only a little change in the di-
scretization intervals can be applied by each mutation. Moreover, if this mutation
was applied during the optimization phase, and had negative effects on the fitn-
ess of the individual, then the mutation is retracted. This cause the production
of individuals that are too specific. However, when there are few discretization
intervals, it is more likely that ECL can establish a good discretization interval
for a rule.

In general ECL encountered problems with unsupervised discretizers that
produces many intervals, e.g., the random discretizer, while it produces good
results when the basic discretization intervals were produced with supervised
discretizers. And the worst results are always obtained when the basic discre-
tization intervals are determined by an unsupervised discretization method. On
average ECL obtained the best results when the Fayyad & Irani’s algorithm was
used for producing the basic discretization intervals.

As far as the number of rules is concerned, in general ECL obtained the
simpliest results when the Fayyad & Irani’s algorithm was used. This is due to
the fact the this algorithm produces a limited number of basic discretization
intervals, and ECL can not generate the same diversity of rules that it can gene-
rate when other discretization methods that produces more basic discretization
intervals, e.g., the ID3 method, are used.

The results for GAssist show a different behavior. Looking at the results
we can see that the sensitivity to the discretizer is much smaller than in ECL
or HIDER* . Moreover, there is not a clear correlation between the number of
cut points of each discretizer and the performance of the system, showing that
GAssist can explore successfully the search space.

Another important observation is that the discretizer performing worst in
GAssist is the Fayyad & Irani’s one, which was the best method for ECL. The
reason of the poor performance of this discretizer in GAssist is due to the hier-
archical selection operator used to control the bloat effect [16]. This operator
introduces a bias towards compact individuals, in both rules and intervals (as
this system uses rules in Conjunctive Normal Form, the number of intervals per
rule can vary). While this feature is usually good, the difference between a well
generalized solution and a too simple one is very small, specially if we use a
discretizer that generates few cut points (like the Fayyad & Irani’s). Therefore,
it is easier to get the system stuck in a local optimum.
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Table 3. Average results for each discretization method. From left to right, average
accuracy, average average number of rules in the solutions, number of times the discre-
tizator obtained the best and worst performance, rank of the discretizator and average
number of cut points per attribute.

Method Avg. Accuracy Avg. # rules # best # worst Rank Cut points
ID3 78.1±11.9 16.1±16.3 6 2 3 83.2±48.1
USD 79.0±11.1 11.9±8.6 7 0 2 72.1±42.4
Fayyad 80.0±12.1 4.3±3.0 6 2 1 1.3±1.5
Random 75.1±13.2 13.3±15.1 0 9 7 106.1±97.5
EW10 76.5±13.2 7.6±5.9 1 3 6 9
EW20 76.5±13.0 8.4±6.3 1 0 6 19
EF10 77.6±12.4 11.2±12.0 1 2 4 9
EF20 77.2±12.1 13.8±13.8 1 3 5 19

The group of supervised discretization methods have better performance with
HIDER* than the others. HIDER* expands the limits of intervals within rules
slowly, similar to ECL, so it needs the boundary points to be accurate, i.e. they
might be possible interval limits for conditions in decision rules. As ID3 and USD
generates more intervals, boundary points can be more precise but the evolu-
tionary system needs more time to find them. HIDER* has a specific mutation
operator to remove attributes from rules, so when there are a lot of attributes
it is more difficult to remove any if the number of intervals is high (ionosphere
and sonar datasets are good examples). In contrast, when the number of discre-
tization intervals is small, as provided by Fayyad & Irani’s method, results can
be better.

Finally, it is at least interesting to remark the performance of the random
discretizer in GAssist, as it does perform quite well. Probably the reason is
that the average number of cut points used across all domains was 106.1. This
number is large enough to minimize the loss of information intrinsical in any
discretization algorithm.

For summarizing the results, we propose two tables. In Table 3, we present
the average results obtained by the discretization methods on all datasets. We
also report the number of time a discretizator obtained the best and the worst
performance on a dataset for a system. For instance, ID3 obtained six times the
best results and three times the worst results. It can be seen that the supervised
methods performed better than the unsupervised methods. In particular the
random discretizer obtained the worst performance.

The second table, Table 4, proposes a ranking of the discretization methods.
For each row of results from Table 2, the results are ranked. At the end of
the table the average ranks are computed and the final rank is assigned to the
discretization methods. From the Table 4 it emerges that USD results as the best
discretizer. This is because USD has a stable behavior. USD never obtained the
worst results, while in seven cases (out of 21, three methods by seven datasets) it
obtained the best results. The worst rank is assigned to the random discretizer.
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In fact it never obtained the best results, and in nine cases it obtained the worst
ones.

Table 4. Ranking of the discretization methods. For each dataset the single results
obtained by the sistems with each discretization methods are ranked. At the end the
average of the ranks is computed and the final rank is assigned. E, G and H mean ECL,
GAssist and HIDER*, respectively.

4 Conclusions and Future Work

In general, all of the systems provided good performance for all of the discre-
tization methods. However, GAssist differs from ECL and HIDER* with respect
to the representational methodology. GAssist generates one solution with a set
of decision rules, while HIDER* uses a sequential covering technique to find one
rule at a time, removing examples covered by previous rules, and ECL evolves a
population of rules from which a subset of rules representing the final solution
is extracted.

It seems that the performance of Pittsburgh–based methodology is more sta-
ble, especially when the number of attributes and discretization intervals is high,
which leads to a better exploration of the search space. This means that GAssist
is less sensitive to the effect of discretization choices. On the other hand, super-
vised discretization methods, e.g., ID3, USD and Fayyad & Irani’s algorithm,
seem more appropriate for evolutionary algorithms where an individual encodes
a single rule, which simplifies the search space. This reason justifies the fact that
neither ECL or HIDER* find better results with non–supervised discretization
methods.

There is no doubt that intrinsic properties of datasets might have influence
on the results, so our future research directions will include to analyze the rela-
tionship between the discretizer outputs and the dataset features, and also, how
this can give us a clue to choose the evolutionary approach (Pittsburgh–based
approach or sequential covering methodology).
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5 Related Work

Discretization is not the only way to handle real–valued attributes in Evolutio-
nary Computation–based Machine Learning systems. Some examples are induc-
tion of decision trees (either axis–parallel or oblique), by either generating a full
tree by means of genetic programming operators [17] or using a heuristic method
to generate the tree and later a Genetic Algorithm or an Evolutionary Strategy
to optimize the test performed at each node [18]. Other examples are inducing
rules with real–valued intervals [19] or generating an instance set used as the
core of a k-NN classifier [17]. Other approaches to concept learning, e.g., Neural
Network, do not need any discretization for handling numerical values.

Also, several discretization algorithms are reported in the literature. Some
examples not tested in this paper are the Mántaras discretizer [20] which is
similar to that of Fayyad & Irani’s, but using a different formulation of the
entropy minimization. Another example is ChiMerge [21]. This discretizer creates
an initial pool of cut points containing the real values in the domain to discretize,
and iteratively merges neighbour intervals that make true a certain criterion
based on the χ2 statistical test.
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17. Llorà, X., Garrell, J.M.: Knowledge-independent data mining with fine-grained
parallel evolutionary algorithms. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2001), Morgan Kaufmann (2001) 461–468

18. Cantu-Paz, E., Kamath, C.: Inducing oblique decision trees with evolutionary
algorithms. IEEE Transactions on Evolutionary Computation 7 (2003) 54–68

19. Stone, C., Bull, L.: For real! xcs with continuous-valued inputs. Evolutionary
Computation Journal 11 (2003) 298–336

20. De Mántaras, R.L.: A distance-based attribute selection measure for decision tree
induction. Machine Learning 6 (1991) 81–92

21. Kerber, R.: Chimerge: Discretization of numeric attributes. In: Proc. of AAAI-92,
San Jose, CA (1992) 123–128


	Introduction
	Discretization Methods
	Experimental Evaluation
	Rule Induction Systems
	Experiments Settings
	Results
	Analysis of Results

	Conclusions and Future Work
	Related Work

