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Summary. We provide a new description of the notion of fuzzy p-value, within the
context of the theory of imprecise probabilities. The fuzzy p-value is viewed as a
representation of a certain second-order possibility measure. According to Walley,
any second-order possibility measure can be converted into a pair of lower and
upper probabilities. Thus, we can convert the fuzzy p-value into an interval in the
real line. We derive a construction of imprecise (but non fuzzy) tests, which are
formally similar to recent tests used to manage with set-valued data.

Key words: Imprecise probabilities, hypothesis testing, fuzzy p-value, second-
order possibility measure.

1 Introduction

Uncertainty about measurements arises naturally in a variety of circumstances
(see [7] for a detailed description). This is the reason why the development
of procedures for hypothesis testing with imprecise observations has recently
gained increasing attention. When the data set contains intervals rather than
points, we are not always able to take a clear decision about the null hypoth-
esis. In the recent literature, imprecise tests are proposed to deal with such
situations (see [7], for instance). According to this approach, an interval of
upper and lower bounds of the critical value can be computed from the data
set. When both bounds are on one side of the significance level, the deci-
sion (reject or accept) is clear. But when that interval and the significance
threshold do overlap, we are not allowed to take a decision. In such situations,
multi-valued test functions are defined. They can take the values {1} (reject),
{0} (accept) and {0, 1} (undecided). This idea has been extended to the case
of fuzzy-valued samples, under different approaches. Specifically, Filtzmoser &
Viertl [8] and Denoeux et al. [6] independently introduce the concept of fuzzy
p-value. The concept of fuzzy test is then derived in a natural way by Denoeux
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et al. [6]. But what should we do when a crisp decision is needed? They pro-
pose a particular defuzzification of the test output, in order to take a decision.
Here we will propose an alternative construction, based on an interval-valued
assignation for the critical level. We will justify why such defuzzification of
the fuzzy p-value makes sense. We will show that it is in accordance with the
possibilistic interpretation of fuzzy random variables developed in [3].

2 Fuzzy p-values and fuzzy tests

2.1 Fuzzy p-value associated to a fuzzy random sample

Let X∗ : Ω → R be a random variable with distribution function F ∗ and let
X∗ = (X∗1 , . . . , X

∗
n) : Ωn → Rn be a simple random sample of size n from F ∗

(a collection of n iid random variables with common distribution F ∗. They
represent n independent observations of X∗.) Let now the Borel-measurable
mapping ϕ : Rn → {0, 1} represent a non-randomized test for

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1.

Both hypotheses refer to a certain parameter of the df F ∗. We will denote by R
the critical region of ϕ, i.e., R = {x ∈ Rn :ϕ(x) = 1}. Let supθ∈Θ0

Eθ(ϕ(X)) =
supθ∈Θ0

Pθ(Reject H0) denote the size of the test ϕ. Suppose that for every
α ∈ (0, 1) we have a size α test ϕα with rejection region Rα and let x∗ =
(x∗1, . . . , x

∗
n) a realization of the sample. The p-value of x∗ is defined as the

quantity pval(x∗) = inf{α : x∗ ∈ Rα}.
Let us now assume that we have got imprecise information about x∗,

and such imprecise information is given by means of a fuzzy subset of Rn,
x̃ ∈ F(Rn). According to the possibilistic interpretation of fuzzy sets3, x̃(x)
represents the possibility grade that the “true” realization x∗ coincides with
the vector x. Denoeux et al. [6] and Filzmoser & Viertl [8] independently
extend the concept of p-value, introducing the notion of fuzzy p-value. Each
of those papers deals with a specific problem, but both definitions lead to the
same general notion. We will call the fuzzy p-value of the fuzzy sample x̃ to
the fuzzy set ẽxt(pval)(x̃) determined by the membership function:

ẽxt(pval)(x̃)(p) = sup{x̃(x) :∃x ∈ Rn, with pval(x) = p}, ∀ p ∈ [0, 1]. (1)

According to the possibilistic interpretation of fuzzy sets, the membership
ẽxt(pval)(x̃)(p) represents the possibility grade of the equality pval(x∗) = p,
according to the imprecise information we have about x∗ described by x̃. The
last fuzzy set is closely related to the nested family of sets (pval(x̃δ))δ∈[0,1]

defined as follows:
3 We show in [2, 3] some specific situations where such a membership function is

derived from an imprecise perception of some x∗.
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pval(x̃δ) = {pval(x) : x ∈ x̃δ}, ∀ δ ∈ [0, 1].

For some particular situations studied in [6] and [8], it is the family of δ−cuts
of ẽxt(pval)(x̃). In the general case, it is just a gradual representation of the
fuzzy p-value. In other words, the membership function of ẽxt(pval)(x̃) can be
derived from such nested family as follows:

ẽxt(pval)(x̃)(p) = sup{δ : p ∈ pval(x̃δ)}.

But we should assume some continuity properties to assure that (pval(x̃δ))δ∈[0,1]

is the family of δ−cuts. In general, only the following relation holds:

[pval(x̃)]δ ⊆ pval(x̃δ) ⊆ [pval(x̃)]δ, ∀ δ,

where [pval(x̃)]δ and [pval(x̃)]δ respectively denote the strong and the weak
δ−cut.

2.2 Fuzzy test associated to the fuzzy p-value

First of all, let us specify the meaning of the expression “fuzzy test” in our
context: The null and the alternative hypotheses are referred to the distribu-
tion of the original random variable, F ∗, so they are customary hypotheses
in usual statistical problems. But the test is a fuzzy-valued function, i.e., it
is a mapping that assigns, to each possible fuzzy sample x̃ ∈ F(Rn), a fuzzy
subset of {0, 1}. That fuzzy subset reflects the possibility grades of rejection
and acceptance of the null hypothesis, in accordance with the information
provided by the fuzzy random sample. Some recent papers in the literature
about statistics with imprecise data fit this formulation (see [6], for instance.)
Let the reader notice that this approach is not related to other different works
in the fuzzy statistics literature (see [9] for a detailed description), where the
test functions are crisp, but they are referred to a certain parameter of the
probability distribution induced by a fuzzy random variable on a certain σ-
algebra of fuzzy events. This approach would not be useful in our context,
where the frv represents the imprecise description of an otherwise standard
random variable (see [1, 3, 4] for more detailed comments.)

In this paper, we will follow Denoeux et al. [6] to construct a fuzzy test from
a fuzzy p-value function. They specify the calculations for the Kendall and the
Mann-Whitey-Wilcoxon tests. We will give here a more general description.

Let (ϕα)α∈(0,1) be a family of tests for H0 against H1, where ϕα : Rn →
{0, 1} is a test of size α, for each α ∈ (0, 1). Let pval : Rn → [0, 1] and
ẽxt(pval) : F(Rn) → F([0, 1]) respectively denote the crisp and the fuzzy p-
value functions, in accordance with the formulae given in the last section. We
can construct the fuzzy test ϕfext(pval)

from ẽxt(pval) as follows:

ϕfext(pval)
(x̃)(1) = sup{ẽxt(pval)(x̃)(p) : p ≤ α}, and

ϕfext(pval)
(x̃)(0) = sup{ẽxt(pval)(x̃)(p) : p > α}.
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According to the interpretation of ẽxt(pval)(x̃)(p), the membership value
ϕfext(pval)

(x̃)(1) represents the possibility grade that pval(x∗) is less than or
equal to α or, in other words, the possibility that x∗ belongs to the rejection
region. Similarly, ϕfext(pval)

(x̃)(0) represents the possibility of accepting (no
rejecting) the null hypothesis. Thus, ϕfext(pval)

(x̃) represents a fuzzy decision.
In the cases where a crisp decision is needed, this fuzzy subset may be defuzzi-
fied. Denoeux et al. [6] suggest the following rule: rejecting the null hypothesis
whenever ϕfext(pval)

(x̃)(1) > ϕfext(pval)
(x̃)(x̃)(0) and accepting (no rejecting) it

otherwise. In Section 3, we will propose a different rule based on the theory
of imprecise probabilities. First, we need to give an alternative description of
the fuzzy p-value.

2.3 An alternative approach to the concept of fuzzy p-value

Let us now give an alternative approach to the notion of fuzzy p-value. Let
us first consider, for each particular realization x ∈ Rn, the Borel measurable
mapping D(x) : Rn → {0, 1} defined by:

D(x)(y) =

{
1 if pval(y) < pval(x)
0 otherwise.

D(x)(y) takes the value 1 when the sample y is “less compatible” with the
null hypothesis than x is. Thus, for a fixed x ∈ Rn, we have:

sup
θ∈Θ0

Pθ(D(x) = 1) = sup
θ∈Θ0

Pθ({y ∈ Rn : pval(y) < pval(x)}).

Let us now remind that ϕα is assumed to be a test of size α, i.e.,

sup
θ∈Θ0

Eθ(ϕα(X)) = sup
θ∈Θ0

Pθ(Rα) = α.

Hence, we can prove that D(x) satisfies the equality:

sup
θ∈Θ0

Pθ(D(x) = 1) = pval(x).

For the sake of simplicity, let us assume that the sizes of the α−tests are
associated to a certain value of the parameter θ0 ∈ Θ0, i.e., let us assume
that:

sup
θ∈Θ0

Pθ(Rα) = Pθ0(Rα) = α, ∀α ∈ (0, 1).

(The above condition holds, for instance, when the null hypothesis is simple
and also for the most common unilateral and bilateral tests.) In that case,
D(x) is a Bernoulli random variable with parameter pval(x), under the dis-
tribution Fθ0 . In other words, pval(x) = Pθ0({D(x) = 1}), ∀x ∈ Rn. (The
p-value of x represents the probability, under the null hypothesis, of getting
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a sample which is “less compatible” with H0 than x is.) Let X represent the
class of binary random variables that can be defined on Rn and let us now
use the extension principle to extend D : Rn → X to F(Rn). I.e., let us define
the mapping ẽxt(D) : F(Rn)→ F(X ) as follows:

ẽxt(D)(x̃)(Z) = sup{x̃(x) :D(x) = Z}, ∀Z ∈ X .

Let us note that ẽxt(D)(x̃) is a possibility distribution over X and represents
our imprecise information about D(x∗), according to our imprecise percep-
tion of the realization x∗, represented by x̃. More specifically, for each binary
random variable Z ∈ X , ẽxt(D)(x̃)(Z) represents the possibility grade that
D(x∗) coincides with Z. Each binary random variable induces a Bernoulli dis-
tribution, B(p). Thus, according to [3], we can derive a possibility distribution
on the class of the Bernoulli measures. From now on, we will denote the class
of all Bernoulli distributions by P℘({0,1}), since it is the class of probability
measures that can be defined over ℘({0, 1}). This possibility measure, IΠx̃, is
determined by the possibility distribution ππx̃ : P℘({0,1}) → [0, 1]:

ππx̃(B(p)) = sup{D(x̃)(Z) :PZ ≡ B(p)}, ∀ p ∈ [0, 1].

In words, ππx̃(B(p)) represents the degree of possibility that the probability
measure B(pval(x∗)) induced by D(x∗) coincides with B(p). In other words,
ππx̃(B(p)) represents the degree of possibility of the equality pval(x∗) = p.
Mathematically,

ππx̃(B(p)) = sup{D(x̃)(Z) :PZ ≡ B(p)} = sup{D(x̃)(Z) :P (Z = 1) = p} =

sup{x̃(x) :P (D(x) = 1) = p} = ẽxt(pval)(x̃)(p), ∀ p ∈ [0, 1].

Summarizing, the fuzzy p-value is closely related to a certain second-order
possibility measure [5]. Section 3 will be based on this alternative description
of the fuzzy p-value.

3 Defuzzification of the fuzzy p-value

In Section 2.1 we have shown how the fuzzy p-value can be interpreted in
terms of a second order possibility measure. In fact, ẽxt(pval)(x̃) represents
a possibility distribution over the class of possible values of the parameter of
a Bernoulli random variable, and we have identified it with a second-order
possibility measure IΠx̃ defined over the class of all Bernoulli distributions.
According to Section 2.1, IΠx̃ and ẽxt(pval)(x̃) are connected by the formula:

ẽxt(pval)(x̃)(p) = ππx̃(B(p)) = IΠx̃({B(p)}) (2)

According to Walley [10], any second-order possibility measure (which is
an upper probability over the class of standard probabilities) can be reduced
into a pair of upper and lower probabilities. Let us briefly describe Walley’s
procedure in our particular situation. We will consider the product space
P℘({0,1}) × ℘({0, 1}) and:
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• the possibility measure IΠx̃ on P℘({0,1}). (In our particular problem, it
represents our imprecise knowledge about the probability distribution of
the random variable D(x∗).)

• the “transition probability” IP 1
2 : P℘({0,1}) × ℘({0, 1}) → [0, 1] given by

the formula:

IP 1
2(A,P ) := P (A), ∀A ∈ ℘({0, 1}), P ∈ P℘({0,1}).

(It represents the following conditional probability information: if P were
the true Bernoulli distribution associated to D(x∗), then the probability
of occurrence of the event D(x∗) ∈ A should be P (A). In particular, for
A = {1}, and P = B(p), the quantity IP 1

2({1}, B(p)) = p represents
the probability of occurrence of the event D(x∗) = 1 according to the
conditional information “D(x∗) induces the probability measure B(p)”.)

In this setting, Walley constructs, by means of natural extension tech-
niques, an upper-lower joint model. Thus, the available information about the
marginal distribution on the second space ℘({0, 1}) is described, in a natural
way, by a pair of lower and upper probabilities, PW and PW . In particular,
PW ({1}) and PW ({1}) will represent the tightest bounds for the probabil-
ity of the event D(x∗) = 1 or, in other words, the tightest bounds for the
p-value, pval(x∗). To specify how this reduction is made, let us first recall
that the second-order possibility measure IΠx̃ can be identified with the class
of second-order probability measures {IP : IP ≤ IΠx̃}. If IP were the “true”
second-order probability that governs the “random”4 experiment associated
to the choice of the “true” Bernoulli distribution, then the probability of oc-
currence of the event {1} (i.e., the “true” p-value) should be computed as
follows (if we combine degrees of belief about events and about probabilities
of events into the same model):∫

IP 1
2({1}, P ) dIP (P ) =

∫
P ({1}) dIP (P ).

Since all we know about IP is that it is dominated by the possibility measure
IΠx̃, the lowest upper bound for the probability of occurrence of the event
D(x∗) = {1} is determined by

PW ({1}) = sup
IP≤IΠx̃

∫
IP 1

2({1}, P ) dIP (P ) = sup
IP≤IΠx̃

∫
P ({1}) dIP (P ).

Similar arguments lead us to represent the highest lower bound of the proba-
bility by:

PW ({1}) = inf
IP≤IΠx̃

∫
IP 1

2({1}, P ) dIP (P ) = inf
IP≤IΠx̃

∫
P ({1}) dIP (P ).

4 Note that we are here interpreting the uncertainty associated to the perception of
x∗ as “randomness”, since this imprecise perception is described by a possibility
measure, which is, in turn, an upper probability.
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Thus, the Walley reduction allows us to convert the fuzzy p-value into
the crisp interval [pval(x̃),pval(x̃)] = [PW ({1}), PW ({1})]. Furthermore, ac-
cording to Walley [10], these upper and lower bounds can be alternatively
computed as follows:

PW ({1}) =
∫ 1

0

P δ({1}) dδ, PW ({1}) =
∫ 1

0

P δ({1}) dδ,

where, for each index, δ ∈ [0, 1], P δ and P δ are defined as follows:

P δ({1}) = sup{Q({1}) :Q ∈ P℘({0,1}), IΠx̃({Q}) ≥ δ} and

P δ({1}) = inf{Q({1}) :Q ∈ P℘({0,1}), IΠx̃({Q}) ≥ δ}.

Theorem 1.

P δ({1}) = sup[ẽxt(pval)(x̃)]δ and P δ({1}) = inf[ẽxt(pval)(x̃)]δ, ∀ δ ∈ [0, 1].

According to the last theorem, the combination of first and second-order
probabilities into the same model converts the fuzzy p-value, ẽxt(pval)(x̃) into
the interval:

pval(x̃) = [pval(x̃),pval(x̃)] =
[∫ 1

0

inf[ẽxt(pval)(x̃)]δ dδ,
∫ 1

0

sup[ẽxt(pval)(x̃)]δ dδ
]
.

(3)
The extreme points of such interval represent the most accurate bounds for
the true p-value, pval(x∗), based on our imprecise knowledge of x∗. Let us
denote by ϕ

pval(x̃)
the multi-valued α−test associated to such interval

ϕ
pval(x̃)

(x̃) =


{0} if pval(x̃) =

∫ 1

0
inf[ẽxt(pval)(x̃)]δ dδ > α

{1} if pval(x̃) =
∫ 1

0
sup[ẽxt(pval)(x̃)]δ dδ ≤ α

{0, 1} otherwise.

The following relation between ϕ
pval(x̃)

and the Denoeux et al. [6] defuzzifica-
tion of ϕfext(pval)

holds:

Theorem 2. defuzDMH(ϕfext(pval)
) ⊆ ϕ

pval(x̃)
.

According to this result, the multi-valued test proposed in this paper is
more times inconclusive than the Denoeux et al. defuzzification is. I.e., when-
ever ϕ

pval(x̃)
leads us to a clear decision (reject or accept the null hypothesis),

defuz(ϕfext(pval)
) also leads to the same decision. But, for some fuzzy samples

defuzDMH(ϕfext(pval)
) is conclusive and ϕ

pval(x̃)
is not. This could be viewed as

an argument against the use of ϕ
pval(x̃)

. Nevertheless, it is not clear whether a
higher number of inconclusive tests is a disadvantage or an improvement. The
dependence between the degree of imprecision of the data-set and how many
times a given test is inconclusive is not clear, and should be further studied
in future works.
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4 Concluding remarks

We have proposed a new construction of crisp tests from fuzzy data, based on
the theory of imprecise probabilities. The new tests are obtained as functions
of the fuzzy p-values associated to the fuzzy samples, but they cannot be
obtained as direct defuzzifications of the initial fuzzy tests.
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