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Advocating the Use of Imprecisely Observed
Data in Genetic Fuzzy Systems
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Abstract—In our opinion, and in accordance with current litera-
ture, the precise contribution of genetic fuzzy systems to the corpus
of the machine learning theory has not been clearly stated yet. In
particular, we question the existence of a set of problems for which
the use of fuzzy rules, in combination with genetic algorithms, pro-
duces more robust models, or classifiers that are inherently better
than those arising from the Bayesian point of view.

We will show that this set of problems actually exists, and com-
prises interval and fuzzy valued datasets, but it is not being ex-
ploited. Current genetic fuzzy classifiers deal with crisp classifi-
cation problems, where the role of fuzzy sets is reduced to give a
parametric definition of a set of discriminant functions, with a con-
venient linguistic interpretation. Provided that the customary use
of fuzzy sets in statistics is vague data, we propose to test genetic
fuzzy classifiers over imprecisely measured data and design exper-
iments well suited to these problems. The same can be said about
genetic fuzzy models: the use of a scalar fitness function assumes
crisp data, where fuzzy models, a priori, do not have advantages
over statistical regression.

Index Terms—Fuzzy fitness function, fuzzy rule-based classi-
fiers, fuzzy rule-based models, genetic fuzzy systems, vague data.

I. INTRODUCTION

STATISTICS and machine learning are closely intertwined.
The ambit of application of statistics ranges from experi-

mental designs [32] to theoretical studies about the generaliza-
tion properties of algorithms, or computational learning theory
[24]. Genetic fuzzy systems (GFSs) are likewise influenced by
this trend, and statistical tests are a standard tool when the per-
formances of genetic classifiers or models are compared [8].

Apart from the machine learning field, fuzzy statistics [3] is
an active research area, and there have been advances in the
fuzzy counterparts of most of the aforementioned techniques.
But, as far as we know, there are scarce connections between
fuzzy statistics and GFSs. Contrary to this, we think that the na-
ture of GFSs makes the introduction of some elements of fuzzy
statistics desirable. In this paper we will study the changes in the
definitions of the fitness function that are needed when interval
and fuzzy extensions of either the classification or the regression
problems are introduced and discuss the impact of these exten-
sions on the design of new genetic fuzzy learning algorithms,
and over the experimental design of GFSs.
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This work is structured as follows. In Sections II and III,
the statistical definitions of classification and modeling under
stochastic noise are introduced, and it is explained that current
GFSs are designed to solve the stochastic, crisp problem and not
the fuzzy one. In Sections IV and V, extensions to these defini-
tions are introduced. These extensions deal with both stochastic
noise and observation errors and are based upon the relations
between random and fuzzy sets. In Section VI, it is shown, by
means of examples, how the fuzzy valued fitness functions of the
respective extended GFS are evaluated. In Section VII, the re-
sults of the applications of these concepts to practical problems
are reviewed. This paper finishes with the concluding remarks
and a discussion about the newly opened research lines.

II. STATISTICAL CLASSIFIERS AND GFSS

A. Classification Systems Based on Discriminant Functions

Let us suppose we have a set that contains objects , and
let us admit also that each one of them is assigned to a class

, . We are given a set of measurements
over every object. We will say that a clas-

sification system is a decision rule that maps every element of
to a class , whose main objective is to produce a low

number of errors.
For example, let be a set of fruits: apples ( ), pears ( ),

or bananas ( ). We observe the weight and the color of a ran-
domly selected fruit, for example, . Our
classification system relates the pair (yellow, 150) to the class

, and we wish this relation to be true on most occasions (i.e.,
most of the yellow fruits that weigh 150 g are bananas).

Since we do not assume that
(i.e., we admit that there can exist a yellow pear weighing 150 g)
perhaps a decision rule that never fails cannot be defined for this
problem. But an optimum classifier can be defined with respect
to the average number of errors.

To define the concept “average number of errors,” we need
to assume that the mapping fulfills all the necessary condi-
tions to be a random variable. Let us also define a new random
variable that quantifies the cost of assigning the class to
an object when it belongs to class , cost . If we choose
cost when and zero else, the expectation of the
cost function is the mean number of errors. This rule is called
“minimum error Bayes rule.”

For the problem stated, if the classifier is a decision rule
and class is the class of the object , then the merit

value of a classifier can be numerically quantified as

err cost class (1)
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where the error function is integrated with respect to a proba-
bility measure defined over . It is well known that this error
is optimized by a classifier defined as follows [23]:

class (2)

In practical designs, a monotonic transformation of the
conditional probabilities does not alter the classi-
fication but simplifies computations. We define functions

, taking as the decision rule that
belongs to class for which is maximum. s are called
“discriminant functions,” and the optimal classifier is written

(3)

B. Genetic Fuzzy Classifiers Should be Learnt and Evaluated
With Fuzzy Data

It is important to note that the latest approach is followed, to
our knowledge, by all genetic fuzzy classifiers [9]. The random
nature of the problem is clearly assumed by all genetic fuzzy
classifiers’ authors, because current standard experimental de-
signs (leave one out, cross validation, etc.) are unbiased estima-
tions of the classification error over the whole population [see
(1)], and therefore the optimal classifier, no matter the learning
technique, is defined by (2), or by one of its transformations, as
defined in (3). Moreover, when an input is applied to a fuzzy
rule base, the inference process eventually computes truth
values [19] or number of votes [29] for the set of assertions
“the input matches class ” and the defuzzification, in classifi-
cation problems, consists in choosing the class maximizing the
corresponding set of votes. This process is not different from
that depicted in (3).

As a consequence of this, the term “fuzzy” does not mean in
genetic fuzzy classifiers that a classification problem different
from the crisp one is being solved. “Fuzzy” means here that
the parameterizing of the discriminant functions has a linguistic
interpretation compatible with the fuzzy logic postulates. This
does not mean that a fuzzy classifier cannot be fed with fuzzy
data; obviously, it can. We mean that neither learning algorithms
nor statistical tests take into account the fuzzy nature of the
output of the classifier. For example: we know that a random
piece of fruit is yellow and weighs “about 150 g” Now imagine
that we want to compare two classifiers, A and B. Classifier A
outputs “pear” with confidence 0.1 and “apple” with confidence
0.2. Classifier B outputs confidences 0.8 and 0.9. Which one
is better? To our knowledge, for all the statistical tests used by
GFS researchers, the two are assigned the same error because
they will both eventually classify the fruit as being an apple.

The experimental designs of GFSs that are focused on impre-
cisely observed data are not being actively studied by the GFS
community. Contrary to this, and according to the fuzzy sta-
tistics community, the customary use of fuzzy sets in classifica-
tion and regression problems is the treatment of vague data [14],
[21]. We think that this last point should not be understressed. If
we admit that the classification problem being solved by GFSs
is not different from the crisp one, the following may follow.

• GFSs are not a different machine learning technique than
Bayesian classifiers. They are a numerical method able to
obtain discriminant functions with intuitive meanings.

• There are no reasons different from linguistic inter-
pretability that favor fuzzy rule based classifiers. There-
fore, the usefulness of approximate classifiers (fuzzy
classifiers with scatter partitions) [1], where linguistic
concerns are secondary, is compromised.

On the other hand, if imprecise data sets were used to train and
test fuzzy classifiers, and specific statistical tests were devised
to compare classifiers with fuzzy outputs, we would be able
to compare different fuzzy classifiers over the set of problems
where we expect that fuzzy classifiers make a difference over
crisp classifiers, namely, data sets with interval or fuzzy valued
data.

III. STATISTICAL MODELS AND GFSS

Unlike the classification case, where the Bayesian framework
provided us with a widely accepted definition of the optimal
classifier, there exist many definitions of statistical regression (a
survey of many of them can be found in [4]). We have decided to
evaluate the fuzzy extension of the standard case first, and leave
robust regression techniques to be carried out in future works.
Therefore, as we will show in the next section, in this paper we
will define the output of the model as the conditional expectation
of the output random variable, given a certain input.

A. Least Squared Models and Conditional Expectation

Let us suppose, again, that we have a set that contains ob-
jects , but now let us assign to each one of them a numer-
ical value instead of a label “class .” We are given a
set of measurements
over every object. We will say that a model is a mapping that
associates every element of with a value , whose
main objective is to minimize the differences between and

over .
For example, let be a set of people. We observe the height

and the weight of a randomly selected person and want to know
his expected body fat percentage. Suppose that someone mea-
sures and weighs and has of
fat. We wish that the difference between the value that our model
assigns to him and the true value
be as low as possible. If we admit that there can exist two dif-
ferent people that measure 180 cm and weigh 82 kg but have a
different percentage of fat because of their different body consti-
tution, the assignment cannot be defined.
In the example at hand, this means that the model will assign the
same value to all people that measure 180 cm and weigh
82 kg; therefore the optimal model should be defined with re-
spect to averaged weight differences.

Again, to define the concept “averaged differences,” we need
to assume that the mappings and fulfill all necessary con-
ditions to be random variables. Let us also define a new random
variable that quantifies the cost of assigning the value to an ob-
ject when its true value is , cost . For the problem stated,
if the model is a mapping and is the value associated
to the object , then the merit value of the model can be numer-
ically quantified as

err cost (4)
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where the error function is integrated with respect to a proba-
bility measure defined over .

If we choose cost , the expecta-
tion of the cost function is the mean squared error,
which gives rise to “least squares regression.” Given that

for any function ,
the conditional expectation is then the
optimal definition of model

(5)

where is the conditional density of the output variable
conditioned to a given input variable.

B. Genetic Fuzzy Models and Fuzzy Data

There have been many interval and fuzzy valued extensions
of the modeling problem, in both the statistics [25], [41] and the
fuzzy rule learning fields [34], [35], [37], [36]. However, the
most widely used genetic methods for learning fuzzy models
are least squares based [9].

In least squares based learning methods, the genetic algorithm
is designed to minimize the estimation of (4) over the popula-
tion, using a standard experimental design (leave one out, cross
validation, etc.). But, being the optimal classifier defined by (5),
it is immediate that, whenever the quality of a fuzzy model is
assessed by means of its mean squared error over a sample, the
best models will be nonparametric estimators of the conditional
expectation. Again, as was pointed out in the preceding sec-
tion, from a statistical point of view, the crisp problem is being
solved, and not the fuzzy one. Therefore, least squared based
GFSs are not inherently better than statistical methods over crisp
problems, whatever the complexity of the genetic search.

IV. AN EXTENDED DEFINITION OF THE

CLASSIFICATION PROBLEM

In this and the following sections, we will generalize the defi-
nitions given in Sections II and III. We will study the case where
we cannot precisely observe the values obtained by the set of
measures . This vagueness will be modeled by a fuzzy set that
contains the true measurement with certain confidence; there-
fore we will end up with a fuzzy valued data set.

We will use the interpretation of a fuzzy random variable as
a nested family of random sets, which in turn are defined as im-
precise observations of an unknown random variable, called the
original random variable [28]. Consequently, it will be consid-
ered that a fuzzy valued data set is a sample of a fuzzy random
variable, as defined in [20], whose -cuts are random sets. This
interpretation allows us to extend the definition of the crisp
problem to the interval case first, and then to extend it to the
fuzzy case.

A. Interval Data

Remember (2): to succeed, a learning algorithm should be
able to estimate the values class from a sample of mea-
sures taken over a subset of . To simplify the notation, in this

section we assume that takes values in . When has ab-
solutely continuous distribution, the standard technique consists
in making a transformation

(6)

where is the density function induced by the random variable
. The denominator can be removed without affecting the result

(7)

and we obtain a well-known result: from a statistical point of
view, learning a classifier is the same problem as estimating a
density function from a sample of a random variable.

Now we are presented with a sample from a random set
and need to know how can we estimate the density function
of the underlying, imprecisely observed random variable (the
aforementioned original random variable [28]). Rephrasing the
problem, we need to generalize the concept of density function
to the random set case. Our primary thought was to define an
“upper” density function as

provided that this limit exists. For instance, if the random set
is a random interval of the form

, , where is a random variable with absolutely
continuous distribution, this limit exists almost everywhere, but
it is . Observe that

For the continuity of the probability distribution induced by ,
this probability converges to when tends to
zero. When this last one is not null, the limit of the quotient
tends to infinite.

To solve this problem, we work directly with (2). We need
to estimate the values to choose in each case
the for which the corresponding value is maximum (where
represents, in this section, the original variable, whose imprecise
observation is given by ). For each , we can try to give
a couple of upper and lower bounds for the value

. Following [2], the limit when tends to zero of
these quantities is the value we need, . Applying
the definition of conditional probability, we have that

equals

(8)

The denominator is, again, the same for all classes; therefore we
only need to compare the numerators for the different classes
and give lower and upper bounds for it. The bounds of

are

(9)
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(a) (b) (c)

Fig. 1. Example of three possible situations when comparing interval-valued
probabilities. (a) The lower bound of P is higher than the upper bounds of P
and P , thus the object is assigned to class 3. (b) The lower bound of P is
contained in the range of values of P but is higher than P , thus the object can
be assigned to classes 2 or 3. (c) The intersection of all ranges is not empty, thus
the object can be assigned to classes 1, 2, or 3.

and

(10)

Since we do not know the value of but a set that contains
it, it is clear that, unless the intervals do not overlap, we
cannot know if for all pairs of classes; thus the decision
rule is not completely defined. This is graphically illustrated
in Fig. 1: the decision rule is no longer a point function but a
set valued function, where

with (11)

and is assigned a value small enough for the problem.
Given that is a set valued function, the average error of the

classifier is no longer known (or, alternatively, we could say that
the average error is a set valued statistic). We can find upper and
lower bounds for it [see (1)]. Let us define a pair of functions

cost if class otherwise (12)

cost if class otherwise (13)

In words, cost is the optimistic estimation of the error, where
we admit that an object is correctly classified if its class number
is included in the output, and cost is a pessimistic estimation,
where we suppose that an object is misclassified unless its class
number is the only output of the classifier. Therefore, the av-
erage classification error is contained in the interval

err cost cost (14)

B. Fuzzy Data

If we are given a fuzzy data set, both the output of the classi-
fier and its expected error will be fuzzy sets, as we show in this
section.

Fuzzy data sets can be regarded as samples of a fuzzy random
variable . Every instance of the variable combines two types

of noise: random noise, originated in the selection of the object
(“we choose a piece of fruit at random”), and observation error,
originated in an imprecise measure (“the weight of the fruit is
high, where ‘high’ is one of the values of the linguistic variable
‘weight”’).

-cuts of are random sets (for example, the 0.5-cut of the
value “high” can be the interval [100, 160]). Therefore, for every
value of , we can build an interval classifier, as shown in the
preceding section, whose output is a discrete set of class labels
(“if the weight is [100, 160], then the object is compatible with
both pear and apple”). It is intuitive to conclude that the output
of the classifier, if fed with a fuzzy input, will be a discrete fuzzy
set defined over the set of class labels (“if the weight is high, then
the object is 0.1/apple 0.6 pear.”) The same can be said about
the average error of the fuzzy classifier; it will be a fuzzy set.

To obtain this last value, the best description we can make
about the probability ,
given that the original random variable is contained in the
fuzzy random variable , is a fuzzy set , whose -cuts are
intervals defined as follows:

(15)

and

(16)

Therefore, the fuzzy output of the classifier will be the set

with (17)

and its average error is another fuzzy set

err cost cost (18)

where

cost if class otherwise (19)

cost if class otherwise

(20)

C. Computer-Friendly Definition

In the preceding section, we have stated that the average error
of a classifier, when its input comprises fuzzy sets, should also
be a fuzzy set. Therefore, the fitness functions in GFSs will
return a fuzzy value. This value can be numerically estimated
by means of (18)–(20). Since these equations are expressed in
terms of a family of -cuts, we give a rewriting of them that is
easier to codify in a computer.

Let be the fuzzy output of the clas-
sifier, with the index of the class with maximum member-
ship value in , , and the second
maximum membership, . Let the
height of , . Then, the contribution of the object
to the total error is

cost
if class
otherwise

(21)
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For example, suppose that, in a problem with three classes, the
output of the classifier is the fuzzy set {0.2 pear} 1 apple

0.8 banana}. If the object were a pear, the accumulated
error of the classifier would be increased by the fuzzy amount
{0.2 0 1 1}. If it were an apple, the new error would be {1 0

0.8 1} higher, or {0.8 0 1 1} if it were a banana.

V. AN EXTENDED DEFINITION OF THE MODELING PROBLEM

As before, a fuzzy valued data set is a sample of a fuzzy
random variable, as defined in [20], whose -cuts are random
sets. We will extend first the definition of the modeling problem
to the interval case, and then apply the results to all cuts of the
fuzzy random variable sample.

A. Interval Data

Remember (5): to succeed, a learning algorithm should be
able to estimate the values from a sample of mea-
sures taken from a subset of . Suppose that we are given sam-
ples from two random sets and that model the imprecise
observations of and

(22)

(23)

and need to define the conditional expectation of the
underlying, imprecisely observed random variables.

Let us suppose that is a discrete random variable,
. Then

(24)

We need to estimate the values . For a given
small value , we can try to give a couple of upper and
lower bounds for the value . Following
[2], the limit when tends to zero of these quantities is the value
we need, . Applying the definition of conditional
probability, we have that equals

(25)
The bounds of

are equals

and equals

and the bounds of are
equals

and equals

Thus we can know that the conditional expectation is
contained in the interval defined as follows [the denominator of
(25) does not depend on ]:

(26)

where , and
the quotient must be understood as an interval valued operation

.
In words, when the model was fed with a real input , its

output was . Now we have fed the model with an interval ,
and we knew that was contained in . Its output has been the
interval , which has been constructed to contain .

B. Fuzzy Data

If we are given a fuzzy data set, both the output of the model
and its expected error will be fuzzy sets, as we show in this
section.

Fuzzy data sets can be regarded as samples of a fuzzy random
variable . Every instance of the variable combines two
types of noise: random noise, originated in the selection of the
object (“we choose a person at random”), and observation error,
originated in an imprecise measure (“the weight of the person is
high, where ‘high’ is one of the values of the linguistic variable
‘weight’”).

The -cuts and are random sets (for example, the
0.5-cut of the value “high” can be the interval [80, 110]). There-
fore, for every value of we can build an interval model, as
shown in the preceding section, whose output is an interval of
values (“if the weight is [80, 110], then the percentage of body
fat is between 20 and 30”). It is intuitive to conclude that the
output of the model, if presented a fuzzy input, will be a fuzzy
set defined over the set of outputs (“if the weight is high, and
height is low, then the body fat is high.”) In fact, this is the usual
structure of a fuzzy rule.

To obtain this last value, the best description we can make
about the probability

, given that the original random variable
is contained in the fuzzy random variable , is a fuzzy set
, whose -cuts are intervals , where equals

and , , and are defined similarly, as we did in the
preceding section. Therefore, the fuzzy output of the model will
be the set , defined by its -cuts

(27)

The fuzzy-arithmetic based quotient in (27) may produce
rather conservative estimations of ; i.e., we can expect the
nonspecificity of to be large. However, we will seldom build
a fuzzy model using (27). It is easier to define a parametric
family of functions (for instance, that family could be the set
of all fuzzy rule-based models that depend on certain linguistic
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partitions of the variables) and then to choose the element of
that family that minimizes the squared error. The difficulty here
is that the output of the model is no longer known but a fuzzy
set that contains it, and therefore we can at most determine a
fuzzy interval for the squared error of a model. This problem
will be studied in the next section.

C. Mean Squared Error of a Fuzzy Model and the Variance
of a Fuzzy Random Variable

Since we cannot know the precise output but fuzzy sets that
describe them, we cannot compute a number that measures the
error of a candidate model over our train data, but we can pro-
vide a fuzzy interval for it. Let be the residual
of the model. We are interested in computing . Observe
that the definition of this value is very near to that of the vari-
ance of a fuzzy random variable (FRV), which is a well studied
problem. The best known definitions of the variance of an FRV
are two, which we will name “classical” and “imprecise.” We
will derive a definition of the mean squared error from either
one of them. There are also some recent new definitions, not so
widespread, that we will not cover here. A review of them can
be found in [13].

1) Classical Variance: Let us consider a probability space
and a metric defined over the class of the fuzzy sub-

sets of (or over a subclass), and let us suppose that
is a function -measurable (here, represents

the Borel -algebra induced by ). The classical variance of
is the quantity

Var

and we will call the classical mean squared error (CMSE) of a
model with residual to the quantity

CMSE

The different definitions of variance in the literature that fit
this formulation differ in the metric used and in the definition of
the expectation of a fuzzy random variable [27], [30].

This definition is very convenient from a numerical point of
view because the error of a fuzzy model is reduced to a crisp
number that could be easily optimized. Unfortunately, it is not
compatible with our semantic interpretation and its use would
not produce meaningful results, as we point out in the example
that follows.

2) Example 1: Let us suppose that we have a sample of size
two of the residual of the model and that this residual is the
FRV , whose images are the triangular fuzzy sets

and (see Fig. 2.) This FRV,
if regarded as a classical measurable function, has null CMSE,
since it is a constant function, and therefore the model is as-
signed a null error. However, in our context, it is not coherent to
state that we cannot know the precise data that the model must
fit but only certain fuzzy sets that contains them, and simultane-
ously be able to affirm that the model matches these unknown
data without error.

Fig. 2. Both definitions of variance explained in the text are summarized here
for the data in Example 1. The classical squared error of this model is the crisp
number zero. The imprecise squared error produces a fuzzy interval that contains
the true, unknown error of the model.

3) Imprecise Variance: In [31], Kruse defines the variance of
a multivalued mapping, , as the set

where represents the set of all measurable selections of
the multivalued mapping. The preceding definition can be easily
extended to the case of fuzzy random variables as follows: Let
us call Kruse’s variance of the fuzzy random variable

to the only fuzzy set determined by the nested family of
sets

Var Var

where is the multivalued mapping -cut of . (The variance
of Example 1 is plotted in the bottom part of Fig. 2.)

Therefore, we define the second-order mean squared error
(SMSE) as the fuzzy set

SMSE

where

We can easily check that the membership function of this
fuzzy set is given by the expression

SMSE

The membership degree of a value to the fuzzy set SMSE
represents the possibility degree of the original random vari-
able’s being one of those whose squared error is equal to . We
propose using the SMSE as the fitness of a fuzzy model when
applied to fuzzy data.

VI. EXAMPLES OF FUZZY FITNESS EVALUATIONS

In this section, we will numerically evaluate the two proposed
fitness functions (for fuzzy classifiers and for fuzzy models)
over toy problems to clarify the computational procedures.

A. Example of Fitness Evaluation in the Extended Classifier

Let us suppose that we have to discriminate between three
classes (apple, pear, banana), given the weight of a piece of fruit.
To design the classifier, we are given a sample comprising five
pieces, whose weights and classes are given in Table I.
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TABLE I
DATA SET FOR THE EXAMPLE PROBLEM “FRUIT”

Fig. 3. Definition of the linguistic variable “weight,” as used in the example
problem “fruit.”

TABLE II
OUTPUT OF THE CLASSIFIER IN THE EXAMPLE WHEN FED WITH CRISP DATA

(COLUMN “CRISP WEIGHT” IN TABLE I)

Weights are triangular fuzzy numbers, designated by three
numbers: leftmost, center, and rightmost values.

Let us also suppose that the GFS has to evaluate the fitness of
the rule base that follows:

where the linguistic variable “weight” takes the values shown in
Fig. 3. We wish to assign a fitness value to this rule base, given
the mentioned data set.

Observe that the fitness value assigned to this rule base mea-
sures the classifier error as defined in (18). This, on the one hand,
assesses the degree to which these rules approximate the usual
Bayes criterion in (7) but, on the other hand, also takes into ac-
count how sensitive these rules are to measurement errors. The
nonspecificity of the fuzzy fitness value is higher when bases
are less robust. The ranking of the fitness values should take
into account more information than that given, for example, in
the center of gravity of the set.

Let us evaluate first this classifier over the crisp dataset given
by the column “crisp weight” in Table I. The output of the clas-
sifier, using the winner rule inference mechanism, is shown in
Table II. The cost of this classifier is two (in other words, we
estimate that it is wrong 40% of the time).

If we apply an interval input to the same classifier (the support
of the fuzzy examples), its output is a crisp subset of the class
labels. For example, the interval [88, 112] has associated with
it the crisp subset {banana, apple}
because, if we classify all the points in [88, 112], we observe that
points in [88, 92.5] are assigned the class “banana” and points

TABLE III
COST OF THE CLASSIFIER IN THE EXAMPLE WHEN IT IS FED WITH

INTERVAL DATA (THE SUPPORT OF THE FUZZY EXAMPLES

IN THE COLUMN “FUZZY WEIGHT” IN TABLE I)

TABLE IV
OUTPUT OF THE EXAMPLE CLASSIFIER WHEN THE INPUT IS A FUZZY SET

in (92.5, 112] are assigned the class “apple.” To calculate the
cost of the classifier, we operate as shown in Table III. We find
that the cost is contained in the interval [1, 4], i.e., when data are
precisely measured, we estimate that the classification is wrong
40% of the time; when data are interval-valued, all we can say
without assuming a random distribution of the observation error
is that it is wrong between 20% and 80% of the time.

Finally, if the classifier is applied a fuzzy input, its outputs and
costs are as shown in Table IV. The inputs are fuzzy triangular
numbers and the data are left, center, and right point.
The cost of the classifier is

or, in words, the error of the classifier is 20% with con-
fidence 0.875, 40% with confidence 1, 60% with confi-
dence 0.5625 and 80%, with confidence 0.15. The error is
still between 20% and 80%, but a genetic algorithm could
prefer this result over a different classifier that has, say,
{0.875 1 1 2 0.5625 3 0.25 4}, even if the punctual
estimations of the classification error of either are the same,
because the differences in the fuzzy errors state that the former
classifier is less affected by imprecision in the input data (it is
less likely to obtain an 80% error.) Observe also that, if input
data are triangular fuzzy sets, the punctual error of the classifier
is given by the value with membership 1 in the fuzzy cost, in
this example two (or 40% of errors).

It is remarked that the algorithm used here to calculate the
output, and the error of the classifier, given a fuzzy input, does
not produce the same results that we would have obtained by
means of the direct use of fuzzy inference. For example, if we
apply max-min inference to compute the output of the rule
base when its input is the fuzzy set (91, 101, 118), we obtain
{0.4 banana 0.9048 apple 0.3095 pear}. However, the
procedure proposed in this paper produces the set {0.15 banana

1 apple 0.0294 pear}. In other words, we have proposed
using fuzzy logic to assign a class to a crisp input but a fuzzy
statistics-based interpretation of the observation error to extend
the classification to imprecise data.
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TABLE V
DATA SET FOR THE EXAMPLE PROBLEM “BODY FAT”

Fig. 4. Definition of the linguistic variables (top) “weight” and (bottom) “body
fat” as used in the second example (extended models.).

TABLE VI
RESULTS OF EVALUATING THE EXAMPLE MODEL OVER THE CRISP DATA SET

(COLUMN “WEIGHT” IN TABLE V)

B. Example of Fitness Evaluation in the Extended Model

In this second example, let us suppose that we have to guess
the percentage of body fat, given the weight of a person. To
design the model, we are given a sample comprising five people,
whose weights and percentages are given in Table V.

Let us also suppose that the GFS has to evaluate the fitness of
the rule base that follows:

where the linguistic variables “weight” and “body weight” take
the values shown in Fig. 4.

We wish to assign a fitness value to this rule base, given the
mentioned data set. Let us evaluate first this model over the crisp
data set given by the column “weight” in Table V. We have
used weighted center of gravity defuzzification (the output of the
model is computed as a weighted sum of the output of each rule,
where the weights are the areas of the truncated memberships of
the output). The results are displayed in Table VI, and the cost
of this model is .

If we apply an interval input to the same model (the support of
the fuzzy examples), its output is an interval of values. Observe

TABLE VII
INTERVAL OUTPUTS AND COSTS OF THE EXAMPLE MODEL OVER THE

INTERVAL DATA SET (SUPPORTS OF THE FUZZY EXAMPLES IN

THE COLUMN “FUZZY WEIGHT”, TABLE V)

TABLE VIII
OUTPUT OF THE EXAMPLE MODEL WHEN THE INPUT IS A FUZZY SET. THE

TRIPLETS (a; b; c) REPRESENT THE LOWER LIMIT, MODE AND UPPER LIMIT

OF THE CORRESPONDING FUZZY NUMBERS. THE ERROR OF THE MODEL IS

(0.10, 2.86, 20.11), AND ITS MEMBERSHIP FUNCTION IS PLOTTED IN FIG. 5

that, since the rule base in this example defines a monotonic
continuous mapping, we just need to compute the output at the
boundaries of the intervals, but this might not be true with a dif-
ferent rule base. The interval outputs and costs are displayed
in Table VII, and the cost is contained in the interval [0.10,
20.11], i.e., when data are precisely measured, we estimate that
the mean squared error was 2.86. With interval-valued data, all
we can conclude, knowing (or assuming) the random distribu-
tion of the observation error, is that the error is contained in the
interval [0.10, 20.11].

Finally, if the model is applied a fuzzy input, its outputs and
costs are shown in Table VIII. The modal point is also 2.86.
Observe that not the output, the costs, nor the average error are
triangular fuzzy numbers; the fuzzy valued fitness of this rule
base is plotted in Fig. 5. It is remarked that the numerical proce-
dure described here is not different from those used to compute
the variance of a sample of an FRV (see, for instance, [16]).

VII. REVIEW OF PRACTICAL APPLICATIONS

Beginning with the first publication of the ideas contained in
this paper [38], we have developed some practical applications
of GFSs that combine the use of a fuzzy-valued fitness function
and vague data. In this section, we make a short review of these
applications and reproduce their most relevant results.

Depending on the source of the fuzziness in the data, we can
enumerate three categories, which we will detail below:

1) crisp data with hand-added fuzziness [40];
2) transformations of data based on semantic interpretations

of fuzzy sets [7], [39];
3) inherently fuzzy data [33].

A. Crisp Data With Hand-Added Fuzziness

If a small amount of fuzziness is artificially added to each
element of a crisp data set, the use of the fuzzy fitness func-
tion proposed in this paper might help to improve the robust-
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Fig. 5. SMSE of the example model. Observe that this fuzzy fitness carries information about the punctual error of the model (the mode) but also about the mean
slope of the model: the higher the mean of the slopes of the model in the points of the sample, the less specific the SMSE is.

ness of both classifiers and models. An example of this tech-
nique is in [40], where a problem related to the learning of fuzzy
rule-based models with backfitting algorithms was solved. The
algorithm discussed in that reference incrementally generates
fuzzy rules from data. Each new rule is chosen on the basis of
the residual of the model in the preceding iteration; therefore
some outliers might have rules assigned, and this is not desired.
Regularization techniques help to mitigate the effect; if the max-
imum slope of the model is limited, an isolated point will not be
assigned a rule whose consequent is too different from those in
its neighborhood.

The regularization proposed in said paper consists of fuzzi-
fying by hand the crisp data set and optimizing the subsequent
fuzzy-valued fitness function with a multicriteria simulated an-
nealing algorithm. Models with high slopes will be penalized
because a small deviation in the input will mean they have a
higher upper bound in the fuzzy error proposed here.

In Fig. 6, we have reproduced some of the results of this last
work. The box-plots of the mean squared error over the test data
are shown for (a) the original algorithm and (b) for the algorithm
trained over data to which a triangular, symmetrical fuzzy set
with a support of size 0.01 was added.

B. Transformations Based on Semantic Interpretations of
Fuzzy Sets

There exist certain problems where each pattern comprises a
set of values. For instance, when questionnaires are designed,
a factor can be evaluated by the answers to a set of different
questions. All of these answers are averaged to obtain the level
of that factor. They may have contradictions, though. In this
case, averaging them discards potentially useful information. In
[7], it is proposed to represent these lists of answers by means
of a fuzzy set each. This set is defined by means of a semantic

(a) (b)

Fig. 6. (a) Test errors of the same algorithm trained over crisp data and data to
which a triangular, symmetrical fuzzy set with a support of size 0.01 was added
(reproduced from [40]).

interpretation of a fuzzy set as a nested family of confidence
intervals [12], [22].

In the aforementioned [7], a model of preferences in a
marketing problem was solved with this procedure. The
fuzzy-valued fitness function was optimized by means of a
genetic algorithm that used a fuzzy ranking to select the best
of any two fuzzy intervals. Later, in [39], the same data were
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Fig. 7. Minimum, mean, and maximum values of the validation error of an
algorithm that learns fuzzy rules from data, applied to a marketing problem (
reproduced from [39]). The crisp problem is drawn with dashed lines and the
fuzzy problem with solid lines.

optimized with a multiobjective genetic algorithm, derived
from NSGA-2 [18], that does not use the fuzzy ranking but a
true dominance relation based on the fuzzy fitness. Some of the
results of this last [39] are reflected in Fig. 7, where it is shown
that the validation error of the fuzzy fitness based model is
lower than that of the original version of the algorithm, which
was based on the average value of the answers.

C. Inherently Fuzzy Data

There are also certain practical problems where the data are
inherently fuzzy; thus the use of a fuzzy valued fitness func-
tion is the natural choice. For instance, in [33], a novel indus-
trial application, where taximeters are calibrated with the help
of a Global Positioning System (GPS), is described. The output
of a standard GPS receiver comprises a set of confidence in-
tervals for the expected position of the vehicle, obtained at dif-
ferent significance levels; thus it matches the same semantic in-
terpretation of a fuzzy set that was mentioned in the preceding
section; it makes sense to state that a GPS gives fuzzy coor-
dinates of the position of the vehicle (see Fig. 8). In the work
reported in that paper, it was necessary to compute the lowest
upper bound of all the trajectories compatible with a set of fuzzy
coordinates. A modified NSGA-2 multiobjective genetic algo-
rithm was used to search for the model that minimized the fuzzy
error between that set of vague coordinates taken from the GPS
and the model-based trajectory of the taxi.

VIII. CONCLUDING REMARKS AND OPEN PROBLEMS

In both stochastic classifiers and models, when data are
vague, it is necessary to introduce some hypotheses over the
measurement errors. Fuzzy algorithms are less restrictive about
these assumptions. Generally speaking, statistical models and
classifiers assume a well-known probability distribution over
the measurement errors, while fuzzy approaches only assume
that we know a couple of lower and upper bounds for the
probability of each error.

If data are “defuzzified” before they are fed to the learning al-
gorithm, some information is lost. In this case, the optimal deci-
sions are the Bayes classifier or the conditional expectation, thus
we cannot expect GFS to outperform statistical methods, and the

Fig. 8. A 0.9-cut of the fuzzy coordinates produced by a GPS and true trajectory
of the vehicle. The distance between a model of the trajectory and the data of
the GPS is inherently a fuzzy interval (reproduced from [33]).

(a) (b)

Fig. 9. (a) The three decision surfaces A, B, and C completely separate the two
classes; thus they would be assigned the same crisp fitness. (b) If we enclose
every example in a ball of size � and proceed as if the examples were imprecise,
our fuzzy fitness function biases B over A and C.

benefits of the fuzzy approach are restricted to the field of lin-
guistic understandability. Nevertheless, when using vague data,
fuzzy algorithms are able to draw conclusions under weaker as-
sumptions than the stochastic ones. Therefore, we can state, in
this sense, that fuzzy classifiers and models are better than their
stochastic counterparts.

Other problems are still in the works. Apart from its obvious
use (induce classifiers and models from fuzzy data), we think
that the fuzzy-valued fitness functions proposed here might be
useful in some crisp problems. For instance, observe the situa-
tion on the left-hand side of Fig. 9. The three decision surfaces
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A, B, and C separate squares from circles without error. Despite
the fact that the decision surface B is further from the examples
of both classes, there is no information in the crisp fitness func-
tion that makes it preferable. Now let us artificially center an
-sized neighborhood in each example and treat the sample as

if it were imprecise, i.e., as if we only knew that the examples
are contained in their corresponding neighborhoods. The three
interval-valued fitness functions will contain the value 0 but the
only surface whose error is null will be the surface B. This seems
to suggest that connections between minimum margin classi-
fiers [15] and genetic classifiers with interval and fuzzy valued
fitness may be found.

Finally, the adoption of a fuzzy-valued fitness function poses
some problems, both in the implementation of the genetic algo-
rithm and in the experimental design.

1) To carry out fitness-based orderings of individuals in the
GA, we must either use a fuzzy ranking [5], [7] to induce a
total order over the fuzzy parts of or induce only a partial
ordering and use multiobjective genetic algorithms instead
[10], [39]. The selection of the best fuzzy ranking or, from
a more general point of view, the processing fuzzy values
when evaluating the fitness function in genetic algorithms,
is a problem that cannot yet be considered as generally
solved [26].

2) New statistical tests have to be designed in order to judge
the relevance of the differences of two fuzzy algorithms.
There are some works in fuzzy statistical inference [6],
[11], [17], but more work needs to be done in order to
make practical comparisons between fuzzy valued algo-
rithms. It is not clear yet how the comparison between
fuzzy and crisp data should be made (and it is necessary,
in order to compare extended GFSs to other algorithms),
and this originates other problems: the definition of statis-
tical tests about fuzzy-valued parameters in fuzzy random
variables, the definition of parametric families of random
sets or fuzzy random variables, and the design of their cor-
responding test statistics.

3) Common benchmarks used with GFSs include missing
values that can be codified with fuzzy information, and
linguistic data, that can also be assimilated to fuzzy sets,
but we lack data sets of imprecisely measured data that
allow us to compare the robustness of GFSs to that of sto-
chastic methods in terms of the degree of imprecision in
the data. This absence prevents us from optimizing GFSs
towards the main objective of fuzzy techniques, as stated
by Zadeh [42]: “Exploit the tolerance for imprecision […]
to achieve tractability, robustness, and low solution cost.”
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