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Abstract— Measuring the length of a path that a taxi must
fare for is not an obvious task. When driving lower than certan
threshold the fare is time dependent, but at higher speeds th
length of the path is measured, and the fare depends on such
measure. When passing an indoor MOT test, the taximeter is \
calibrated simulating a cab run, while the taxi is placed on a

device equipped with four rotating steel cylinders in touchwith  rijg 1. if the owners of the taxis calibrated their taximstier good faith, the
Fhe d“V‘? Wh?e|5- This Indoqr measure might be Inaccurate, = density of the errors in the measures of taximeters shouldebeered in 0.
information given by the cylinders is affected by tires inflding  Field measures show that the density is centered near 9%efjhbcut point
pressure, and only straight trajectories are tested. Morewer, is 10%). A small deviation in the tolerance of our measureictviwould be
modern vehicles with driving aids such as ABS, ESP or TCS unnoticed under theoretical circumstances (dark gray,)avéth cause a high
might have their electronics damaged in the test, since twokeels Percentage of rejections (light gray area).
are spinning while the others are not.

To overcome these problems, we have designed a small,
portable GPS sensor that periodically logs the coordinateof g apply (as well as the legal limits of the fare). To test a cab

the vehicle and computes the length of a discretionary cirdtt . .
We will show that all the legal issues with the tolerance of sth a taximeter, the drive wheels of the cab were put between the

procedure (GPS data are inherently imprecise) can be overeoe  CYlinders and a cab run was simulated. This system is still in
if genetic and fuzzy techniques are used to preprocess andalyze use but fails with modern cabs where electronic driven aids a

the raw data. present. Active safety systems nowadays present in cas lik
ABS, ESP, TCS are connected to electronic control units to
process different signals. These signals include datangmo
One of the tasks to be performed in the Spanish VTSshers, of the speed of the four wheels of the car. If some
is the test and control of the taximeters in the taxicabdifference is detected, the electronic control unit trizhielp,
This supervision must be performed every year because gending messages to solve that, possible dangerousjaituat
taxicabs’ fares are revised and published by the authsritigo if the two rear wheels are blocked and the two front wheels
every year. The process a taxicab owner must follow includage rotating during a long time, the electronic control unit
driving the taxicab to a specialized garage to change thesfamay be damaged. In this situation, a new method of testing
in the taximeter. When the fares are changed, a MOT tdskimeters must be developed. This system should be de&signe
must be done. In this MOT test, the tester engineer verifitaking into account that it is not desirable to block one MOT
if both the distance traveled and the waiting time fares li@st engineer when testing a taximeter. We have decideckto us
between the limits imposed. The verification of the fares c&aPS technology to track the position of a vehicle in an actual
be done in two ways. The simplest way consists in doirrgad, and process this information on-line. Moreover, the t
a cab run in a previously measured circuit; in this case tlgiver can be sent alone to cover a distance, and no personal
MOT test engineer manually calculates the resulting fan¢, bof MOT agency is needed, making the process cheaper.
the waiting fare and the traveled fare cannot be done at theThere are some drawbacks, though. GPS generates impre-
same time, because the changing from one fare to the othise data, and the degree of imprecision of every sampld-is di
depends on the speed of the taxicab. The second approeknt. The differences in tolerances must be taken intowatc
is to use a machine capable of the recovering of the speadhe algorithm that analyzes the data. The significanchisf t
of the cab to select the waiting fare or the traveled fare astep is crucial for our system to compute the upper and lower
to compute the time elapsed and the distance. In 1990 teunds of the length of the trajectory, which must be pradide
developed a device to accomplish this task. The machine waghe case that a a taximeter is rejected. The legal margin of
made of four rotating steel cylinders, one of them connectedror of a taximeter in Spain is 10%. We can not reject a
to an encoder. The pulses from this transducer were fed tdaai with a deviation of 7% if we can not warrant a tolerance
computer where the appropriate software computed the fédoaer than 3%, say. This could seem a minor problem, and it
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would be, if the density of the errors in the taxis resemblg®0%), where CEP means Circular Error Probable or median

the left Gaussian in Figure 1. Unfortunately, our study séee error.

that the calibration of taximeters is far from unbiased. Bma

changes in the tolerance produce important changes in me

number of rejections. Therefore, it is needed a procedure to

determine the bounds of the measure with high accuracy andis stated before, not only the number of satellites but also

it is also needed that all the tolerance errors benefit theeownheir relative positions has an impact on GPS accuracy. Here

of the taxi. In other words, we need to compute the loweste explain how to estimate the impact on horizontal position

upper bound (LUB) of the trajectories compatible with th&he term HDOP of DOP stands for Horizontal Dilution Of

(imprecise) GPS measures. Precision and is close related to the horizontal precisibn o
In this paper we will explain a new method for estimatingsPS receivers, specifically to the CEP magnitude.

the LUB of the trajectory from imprecise data. Through ahe RMS error of a set of fixes under a common HDOP can

multiobjective genetic algorithm, the measures are fitterdbe approximated by equation 1, where A and B are constants

to obtain the smallest set of samples that define a mut@rdware dependent, empirically obtained [22].

polygonal covering the input data. The LUB of the path is

found by means of a deterministic algorithm that procedsiest ~ RMS_Error(HDOP) = \/(A- HDOP)2 + B2 (1)

multi polygonal. The structure of this work follows: In next

section, how GPS measures are obtained is detailed. TheROP is related with the number of available satellites

description of the proposal is done in section Ill. The genetthrough equation 2, where C and D are hardware dependent

algorithm is detailed in section IlI-A, while the deternmstic  again.

algorithm for estimating the maximum length is detailed in

section IlI-B. In section IV experiment and results are show o

Finally, conclusions and future work are presented. RMS_HDOP = )
(number of satellites)?

HDOP and GPS horizontal precision errors

Il. GPSBASED MEASURES ARE FUZZY DATA

|er distribution of the position measured by a GPS device
ollows a Rayleigh error probability conditioned to a given
HDOP, as expressed in equation 3, where the different mag-
ngdes have been defined in previous paragraphs.

The term Global Positioning System (GPS) refers to a set
devices (satellites and receiver) working together to gix a
(the position) of the receiver. The receiver can get sonmeassg
from the satellites and compute a set of measures: longitu
latitude, altitude, number of satellites in use, time, &ach CcBp 2
signal received from a satellite contains information atibhe ~ P(Err < CEP|HDOP) =1 — e(RMS-E””(HDOP)) (3)
time that the signal lasts from the satellite to the receiver

So it can be thought that using signals from four satellitdgom equation 1 and 3 and solving for CEP, follows that CEP
(three for geographical coordinates and one for time cerregan be computed by equation 4, where for a given probability
tion) could be enough to get a fix. One fix computed witand a HDOP the corresponding CEP is obtained. An analogous
that information, however, is pretty inaccurate: theresamme procedure with equation 2 leads to an expression where the
errors in GPS technology that make necessary to get signaignber of satellites appears instead of HDOP [22].
from more than four satellites. Some of the sources of these
errors are: perturbations of the satellites’ signals whessing
the atmosphere, satellite ephemerids deviation, sagltock CEP = (—((A- HDOP)? + B?).
errors, receiver errors _and multipath (signals are notivede In(1 — P(Err < OEP|HDOP)))O'5 (4)
directly from the satellite).

The higher the number of satellites, the better the accura
But even with a high number of satellites in use (12 to 1
the geometry or constellation of the satellites must bertake Under the imprecise probabilities framework, it makes sens
into account to estimate the fix accuracy. This is done usitg understand a fuzzy set as a set of tolerances, each one of
DOP (Dilution of Precision), a measure of the probability ofhem is assigned a confidence degree, being the lower degree
the effects of the constellation on the fix accuracy; a highdre narrower tolerance [12]. In particular, it has stateat,th
value of DOP indicates a weaker geometry of satellites. DQf#/en an incomplete set of confidence intervals for a random
has four components: PDOP (3D or spherical DOP), HDORiriable, we can build a fuzzy random variable, whaseuts
(latitude and longitude DOP), VDOP (vertical DOP) ant TDORre confidence intervals with degrée- « [5], that contains

. Fuzzy interpretation of GPS-values

(time DOP). all the information we know about the unknown random
In the case of GPS longitude and latitude accuracy, tkariable. In our case, the GPS sensor provides two confidence
HDOP value must be taken into account. intervals at 50% and 90% (the mentioned circle of radius CEP,

When using consumer-grade receivers, it is very command therefore the fuzzy representation of GPS coordinates i
to obtain accuracies like 3 meter CEP (50%) and 7 metdmsmediate.



data from a geographical database [1] for reconstructi@Dof
images by means of B-splines [3]. By extending B-splines
with fuzzy coefficients, and training those fuzzy numbers
minimizing the fuzzy data that are not covered, the restiltan

fuzzy B-spline interpolates between its limits. A fuzzy ipioi

4818240

I is said to be covered by the fuzzy B-spline if the fuzzy set

2 o @ induced by the latter completely contains the former.

£ ®

% X A. Multiobjective fuzzy fitness genetic algorithm for filigr

z the fuzzy input data
8 The input of the genetic preprocessing is a vector of fuzzy
S points. The output is the minimum set of fuzzy input data
P> that defines a fuzzy trajectory containing as many points
~ as possible. Using those fuzzy points, and for eacbut,

: : : a distance value is computed by means of a deterministic
722000 722050 722100 algorithm, which will be detailed later.
_ Every candidate solution is evaluated as follows: we first
Easting build a polygonal chain for each-cut of the selected data,
using the tangent surfaces to the selected fuzzy data ¥e.
wish that this chain contains as many data as possible, while
having the minimum area.

Fig. 2. Actual data in table I, the circles represent CEP itense the units
of x and y axes.

Easting | Northing | CEP 0.90 | CEP 0.50 Both objective_zs are fuz_zy numbers and define a multicriteria
722064.9| 4818196 | 7.834569 | 4.298530 problem [4] which we will solve by means of the NSGA-II
722041.5| 4818209 | 7.547423 | 4.140084 algorithm [6], [7]. Further details of this algorithm follo
722018.2 | 4818223 | 14.964010| 8.210182 1) Codificati f each individualSi ish btai
721972.6 | 4818247 | 7.547423 | 4.140984 a subset of the input fuzzy data, the representation used for
each individual is a vector of integers indexing the input
TABLE | vector, determining the fuzzy data used to define the polggon
REAL DATA PLOTTED IN FIGURE 2, FIRST TWO COLUMNS AREUTM chain. This representation admits each individual to have a
EASTING/NORTHING COORDINATES LAS TWO COLUMNS ARECEPFOR different number of final fuzzy data. To generate an indigiclu
0.90AND 0.50PROBABILITY a probability p value is given, and for each fuzzy point in the

vector of input fuzzy data, it is included in the hypothesithw
probability less of equal than p. The origin and the end of the
ride must be always included.

2) Genetic operatorsThe definitions of the crossover and
mutation must reduce the number of vertexes in the populatio

GPS data is recorded at regular time intervals. Each sam@Rd therefore they are unbiased.
is a fuzzy set, as mentioned, whose cuts are circles. In turnGiven two parentsA and B, the offspring are two new
every circle is a confidence interval for the coordinateshef t chainsC' and D such thataAN B C C andANB C D; a
taxicab at that moment. It is remarked that taking the centéfertexv € A — B has a probability™ of being inC, and a
of these circles is not a valid estimation. We need to compwt@rtex in B — A has a probabilityp™ of being inC, where
the LUB of the paths whose extremes are contained in tHe iS much lower thap™. The setD is built the same way.
circles, and this length will always be higher than the value Mutation is defined as the random removing of a point of
obtained from the centers. the chain, different from the first or last one.

The answer to the problem is not easy, though. If we try 3) Multiobjective fuzzy fitnessThe set of objectives used

to compute the maximum length of all compatible piecewidB this approach are the number of uncovered fuzzy input
linear paths that are contained in the circles it is obvitas,t dat@, and the total area of the polygonal chain. Both cateri
the shorter the sampling period, the longer the estimaTibis &€ fuzzy numbers. This means that it is needed an _operator
is not correct, and we wish the estimation of the length niSS thanand an operatoless or equal thanboth defined

to be too influenced by the sampling period [16]. We haJ@r fuzzy numbers, so dominance could be evaluated. In [23]

decided to preprocess the fuzzy data and remove all redundf}§ Pareto dominance concept is extended to fuzzy domipance
information with the help of a genetic algorithm, as we wilgnd dlfferen_t levels ofv-cut are used for ef';lch decision m_al_<|ng
show in the section that follows. process, using the concept knowncadominance. In [15] it is

When using crisp data, the geometric problem of simplif)prOpOSEd a fuzzy rule to determine tihegree of dominance of

ing _polygonal lines has been studied in [10]' [14]' The mOStlThis chain might include some extra points not covered byiripat data,
similar approach to ours, up to our best knowledge, useg/fuzi this always would benefits the taxi, thus it is legallyreot.

IIl. DETERMINING THE LENGTH OF TRAJECTORIES USING
FUZZY DATA



x over y and another fuzzy rule to determine thegree of been
dominated of x by.yThen, aggregating those rules by means
of the max t-conorm a crisp rank of dominance is obtain for
each individual x. In [13] a totally different approach iseds
It defines a comparison between fuzzy numbers, so Pareto
dominance could be used as stated in its definition. In [11] a
generalization of the Pareto dominance concept is proposed
In that work, instead of using especial operatess thanand
less or equal thanfuzzy Pareto dominance is defined so the
result of such redefinition is that decision surface is ofetdi Fig. 3. Possible relative positions of vertex and lines leefwprior and next
In this work it was decided to use the-dominance ap- "
proach. Each criteria is characterized as a fuzzy number, v
and for different levels ofa-cuts values of such criteria
are computed. The two criteria used, as stated before, were
the total area of the polygonal chain and the percentage of
uncovered data, both of them have to be minimized. Hence, the
dominance is evaluated for eachcut, obtaining a dominance
result for eachn-cut.
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B. Deterministic longest path estimation

Once the data is preprocessed, and we have obtained from i
the genetic algorithm the smallest set of vertexes thataiont S
the true path, we need to evaluate its LUB. Fig. 4. Example of longest path estimation.

For eacha-cut of the fuzzy b-splines that contain the taxi
trajectory, we get a polygonal set constructed with trajuEzo
as can be seen in Figure 4. The motion direction is indicatééie heuristic is as follows: the first segment of the longest
by a thin dashed arrow. Each trapezoid vertex is denoted withth goes from a convex vertex in step 1 to the vertex at step
a pair of integers, the ones at the left of the arrow haykthat gives the maximum segment length. From step 1 to the
zero at first, the ones at the right have one at first. Tieme before the last, the path goes through:
other number is the step in motion sequence. The longest If there is only a convex vertex, trough this vertex.
path at each step goes through0,4) vertex or(1,4). The « If there are two convex vertexes, through the farthest one.
set of vertexes that define the longest path, can be computed If there are no convex vertex, trough the farthest one.

by exhaustive exploration of all possible combinationst bghe |ast segment ends in the farthest vertex from the previou
this is very expensive in terms of computational cost anghe. In figure 4 the path computed with this heuristic is mdrke
proved impracticable in a realistic trajectory with 700misi jth a thick dashed line. The first segment goes fraimn)

for instance. This problem has been studied in the areatgf(ovl) because(0,1) is convex and the distance t0,0)
Com_putationql Geometry_and is related with Longest Path wifs shorter. Then the longest path continuegto2) because
Forbidden Pairs [2], that is NPO PB-complete. is the only convex. The same happens with3) and (0,4).

Because of this and given that in a realistic trajectory thgnally, the path ends ifi1, 5) because is farther frorfn, 4)
changes of direction and the changes in distance betwgggn (0, 5)).

left and right vertex are limited due to the dynamics of the

taxi, the geometry of the road and GPS behavior, we use a IV. EXPERIMENTS AND RESULTS

heuristic that is lineal in time with the number of vertex.eTh In the experiments presented here, the parameters of the
heuristic is based in the selection of convex vertexes: whBlISGA-Il algorithm are: 400 generations, 100 individuals in
a vehicle turns, the longest path goes through the extefiorthe population, 0.1 and 0.7 of mutation and crossover proba-
the trajectory curvature. The convexity of a vertex is apatly bilities, p™ = 0.7 andp~ = 0.01. Each individual must cover
using the straight lines that rely on previous and next xede a minimum of 85 percent of input data to be included in the
the possible relative positions of the central vertex casdmn Pareto front.

in figure 3, where convex vertex are marked with a small circle We have decided to evaluate our algorithm in a realistic path
and the lines that pass through vertéx: — 1), (0,74 1) and that covers the situations usually found when the MOT test of
(1,5 —1), (1,74 1) are drawn. From left to right and up toa taxi is done. This includes several turns, accelerations a
bottom, if both vertex are between the lines, both are camcadecelerations, changes in number of available satellites a
If only one is out of the lines, it must be convex. If both ar¢hus, changes in HDOP and CEP [22]. GPS longitude/latitude
out of the lines, may be both are convex (left) or may be om@ordinates were translated to Universal Transverse Narca
is concave and the other convex. In both cases, if the fdarthasrthing/easting coordinates in order to easy distanczutzal

one from the nearest line is chosen , then it is convex. tions between GPS fixes [21]. With this system, points infeart



600 800 1000
I I I
2500 3000

I

Northing
Northing

2000
I

1500
I

1000
I

T T T T T T T T T T T T T T
0 500 1000 1500 2000 2500 3000 3000 3200 3400 3600 3800 4000 4200

Easting Easting

Fig. 6. Trajectories used in the experiments.

surface are projected on to a equal spaced planar metric gnitbre than 10% than this upper bound, it should be rejected
therefore the distance between fixes is the usual Euclidean doecause even in the worst case the taximeter is out of taleran

The trajectory is Samp|ed each Second’ obtaining 106@8 distance through the GPS fixes is 3238521, that is much
points, the total length of the trajectory is 21273.21 meetercloser to the real data, but the taxi owner can argue about the
At each location, we take a random number from 4 to 9 as tHEcertainty of the procedure saying that it is inaccurdterei
number of available satellites, that we found represemtdtir Compute an upper bound of the length compatible with GPS
real data. From this data, we build a dataset of GPS measuft&a there is no chance for this.
sampled at each second. Each measurement is simulated uside length of the second trajectory is 2741.306 meters.
the following procedure, with a probability of 0.95, a poist The estimated length of the longest path compatible with the
selected that is closer in distance to the real one less tH#n% of the points of the corresponding processed trajectory
the CEP at that probability. With 0.05 probability the paimt Polygonal chain is 3250.78. In this case the bound is lesd tig
selected further than the corresponding CEP from the aigirsince the trajectory has stronger turns and this leads tgekin
data. This resembles the uncertainty that occurs using GP8th compatible with the data.
and the obtained data can be used to test how tight the bounds
obtained with our algorithm are. The reader must remember V. CONCLUSIONS AND FUTURE WORK
that the goal is to obtain a multi polygonal chain that covers

most of T the GPS fixes with minimum number of vertexei% During the development of this application we found that if

e report directly the data obtained with GPS equipmentgethe
re legality issues about the uncertainty of the meastliaas.
ners could easily gain in courts any reclamation where the
uncertainty of the GPS measures where revealed. Nowadays
She only system that we can use to certify a taximeter in a
_ . ) ) 0 MOT (as stated in I) is to use a GPS device, so we have to
1S, .mOSt of t.he pomts of the regl trajectory ('P fact 95.@ arﬁmdify the point of view of the MOT test procedure. Because
inside the circles with CEP radius, centered in GPS fixes. of this we choose to give as result the upper bound of the
We perform two experiments with two subset of the comrajectory length compatible with GPS data, in this way ¢her
plete dataset with 120 points each. They can be seen in {§&0 doubt in that if the taximeter reported length is 10%
left (first) and right (second) sides of Figure 6. above of this measure, then it should be rejected. Addiligna
The true length of the first trajectory is 3228.574 meterthis alternative is less restrictive with the real data gitiee
The estimated length of the longest path compatible with tihéased error detected in the taximeters. We have found that
85 % of the points of the first processed trajectory polygonaur algorithm performs worst when the trajectory includes
chain is 3418.81. If the taximeter reports a distance longerore and stronger turns, this issue must be solved in future

and with the minimum area. In figure 5 is shown part q
the generated data. GPS measures are represented wids cir&ﬁ
(actually ellipsoids due to scaling issues) with radiusag¢do

95% CEP and the original trajectory with a continuous lin
As can be seen, most of the circles intersect the trajedtuay,
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