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Abstract— Multicriteria genetic algorithms can produce fuzzy
models with a good balance between their precision and their
complexity. The accuracy of a model is usually measured by the
mean squared error of its residual. When vague training data
is used, the residual becomes a fuzzy number, and it is needed
to optimize a combination of crisp and fuzzy objetives in order
to learn balanced models. In this paper, we will extend the
NSGA-II algorithm to this last case, and test it over a practical
problem of causal modeling in marketing. Different setups of
this algorithm are compared, and it is shown that the algorithm
proposed here is able to improve the generalization properties
of those models obtained from the defuzzified training data.

I. INTRODUCTION

There are many practical problems requiring to learn
models from uncertain data. The most studied problem is that
of the additive random noise, but many scenarios are well
known not to match a stochastic model. Think in coarse-
grained digital data (for example, weighing small objects
in a low resolution scale) or in data items comprising both
a numerical measure and a confidence interval defining its
imprecision (the position given by a GPS sensor, say.) In
these last cases, there is an unknown difference between the
true measure and the observed one, but assuming that this
difference is stochastic noise is an oversimplification. The
scale would be a good candidate for a random-sets based
solution, while the GPS output matches well with a model
based on fuzzy random variables (frv), for instance.

In both the random sets and the frv-based models we
assume the observation error follows certain probability
distribution, but there is not information enough to infer
this distribution from the observed data. Our knowledge
allows us to determine a family of probability distributions
that contain it, though. This means, in practice, that the
output of so called imprecise statistics related models are
intervals or fuzzy numbers that contain the true outcome.
This vision complements the common practice in Genetic
Fuzzy Systems, where fuzzy sets are associated to words and
used to model vague linguistic assertions, but the models that
depend on these words are fed with crisp data and produce
crisp results anyway. In previous works [1] we advocated
the use of fuzzy data to learn and evaluate Genetic Fuzzy
Systems, and raised the use of fuzzy-valued fitness functions
to formulate that kind of problems.
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The use of a fuzzy-valued fitness function poses some
numerical problems, some of which have been already ad-
dressed [2][3][4][5]. Currently, we are interested in extending
the use of fuzzy data to learn rule based models with
balanced accuracy and linguistic understandability. On the
one hand, when crisp data is used, this kind of models can
be obtained with multicriteria genetic algorithms [6]. On the
other hand, when using imprecise data, the accuracies of the
models become fuzzy numbers, thus it is needed to optimize
a combination of crisp and fuzzy objetives in order to learn
them. In this paper, we will extend the NSGA-II algorithm
[7] to this case, and evaluate it over a practical problem of
causal modeling in marketing.

This work is organized as follows: In Section II, the
imprecise fitness function we need to optimize is described.
In Section III we will detail the differences between the
NSGA-II algorithm and our own extension of it, and in
Section IV the practical problem that we will use to assess
the method is described. In Section V the experimental
results are discussed, and Section VI concludes the paper.

II. MEASURING THE QUALITY OF A MODEL

In the first place, we will define the squared error of a
model for fuzzy training data. Let Ω be a population of ob-
jects ω ∈ Ω, and let also X̃(ω), Ỹ (ω) be fuzzy observations
of certain atttributes of these objects. The training data will
be a list of pairs {(X̃(ω1), Ỹ (ω1)), . . . , (X̃(ωn), Ỹ (ωn))}
with ωi ∈ Ω. We are given a rule-based model M̃ , whose
output M̃(X̃(ω)) is computed by means of certain fuzzy
logic-based inference algorithm. M̃(X̃(ω)) is intended to
approximate Ỹ (ω).

Before defining the quality of this approximation, it is
remarked that the fuzzy logic-based inference used to obtain
M̃(X̃(ω)) must fulfill some properties. For the output of the
model to be a family of confidence intervals [1], it must
happen that (1) M̃(x) is crisp when x is a crisp vector, and
(2), the α-cuts of the output are

[M̃(X̃)]α = {M̃(x) | x ∈ X̃α}. (1)

Observe that the cylindric extension of the input, followed by
the intersection with the fuzzy graph of the model, projection
over the output space and defuzzification of the result fulfills
the first but not necessarily the second condition.

A. Definition of the Fuzzy Mean Squared Error (FMSE)

Let us define a new variable D̃ = Ỹ − M̃(X̃), the fuzzy
residual of the model. The expectation of the squared residual
E(D̃2) will be named Fuzzy Mean Squared Error (FMSE)



and generalizes the Mean Squared Error. We will use the
FMSE to measure the accuracy of a model.

The definition of the squared error E(D̃2) resembles that
of the variance E(D̃−E(D̃))2 of a frv. This is a well studied
case. There are three different definitions of the variance of
a frv [8] that could be adapted to our purposes. The first type
states that the variance of a frv is a crisp number [9][10].
The second definition [11] produces a fuzzy number, and the
third one [8] is an interval. We have stated in [2] that the first
type is not compatible with our nested confidence intervals
interpretation, and also that we prefer the second option for
the sake of simplicity.

This last definition of variance (or squared error) is based
on a possibilistic interpretation of a fuzzy model, which has
been shown to be the same interpretation as the nested con-
fidence intervals [12]. Let us consider that the membership
of the output of the model at a point t, M̃(X̃(ω))(t), is the
conditional possibility of t being the true output, given X̃:

M̃(X̃(ω))(t) = ΠM̃(ω)(t) = Π(t|ω). (2)

The probability distribution of the residual is then dominated
by the possibility distribution

ΠD̃(ω)(t) = (M̃(X̃(ω))	 Ỹ (ω))(t), (3)

and the expectation of the square of D̃(ω) is the set of
all the expectations arising from the probabilities that are
compatible with eq. (3):

FMSE (M̃) = {
∑

t2P (t) :
P is a probability distribution on T
and P (t) ≤

∑
ω∈Ω P (ω)ΠD̃(ω)(t)

for all t ∈ T}.

(4)

where T is the set of all the possible residual values of the
model.

B. Numerical estimation of the FMSE
The same procedure described in [13] to estimate the

variance of a frv can be applied to estimate the FMSE
from the training set. For each of the membership functions
D̃(ω1), D̃(ω2), . . . .D̃(ωn), we compute the fuzzy set D̃2,
whose α-cuts are D̃2

α = {x2|x ∈ D̃α}. Since the function
x2 is not locally monotonic, to evaluate the image of a
fuzzy set we must divide the area under the membership
functions in zones separated by the changes in the slope of
this function. This is graphically illustrated in Figure 1. If the
membership of D̃ does not cut the line x = 0, the number of
vertices is preserved. Otherwise, the left part of the profile
is replaced by a vertical segment, and the new right profile
is the maximum of the squares of the former left and right
parts. After we have computed all of the D̃2(ωi), we compute
the FMSE of each one of them. Let Li be the left profile of
D̃2(ωi), and Ri the right one. Then,

FMSEi =
[∫ 1

0

Lidα,

∫ 1

0

Ridα

]
(5)

and the FMSE of the whole model is

FMSE =
1
n

(FMSE1 ⊕ . . .⊕ FMSEn) (6)
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Fig. 1. The same extension to nonmonotonic functions of the profile method
that is used to compute the sample variance of a frv can be applied to obtain
its FMSE.

III. AN EXTENSION OF THE NSGA-II ALGORITHM

In this section, the NSGA-II algorithm [7] will be extended
so that it can find a set of nondominated solutions for a two-
objective problem, where one of the objectives is crisp (the
complexity of the fuzzy rule base) and the other one is the
FMSE of the candidate model, as defined in the preceding
section, which is an interval. We want all of our extensions
to reduce to the original formulation when the input data is
crisp, and that they are also compatible with the possibilistic
interpretation of the output of the model introduced before.

There are only three modules in the NSGA-II algorithm
where the fitness function is assumed to be a vector of
crisp numbers: the precedence (dominance) operator, the
non-dominated sorting of the individuals, and the crowding
distance. Therefore, our extension consists in alternate defi-
nitions for these modules.

A. Precedence in imprecise fitness-based Genetic Algorithms

Let us admit that a fuzzy model depends on a vector x of
parameters and has a fitness value θ. θ is unknown except
for a possibility distribution given by the fuzzy fitness F̃x

(in this paper, F̃x will be the FMSE of the model), thus we
know that

Π(θ|x) = F̃x(θ). (7)

To determine whether one individual precedes another, it
is needed to set up a procedure that, given two imprecise
observations F̃x1 and F̃x2 of two unknown fitness values
θ1 and θ2, estimates whether the probability of θ1 < θ2 is
greater than that of θ1 ≥ θ2, thus F̃x1 ≺ F̃x2 . In this sense,
the criteria that we pursue can be regarded as a special case
of fuzzy ranking. However, we also want to find those cases
where there is not statistical evidence in F̃x1 and F̃x2 that
makes us to prefer one of them (thus F̃x1 ‖ F̃x2 .)

If a joint probability P ((θ1, θ2)|(x1, x2)) were known,
comparing two individuals would be an statistical decision
problem. For instance, we could use

P ({(θ1, θ2) : θ1 < θ2}
P ({(θ1, θ2) : θ1 ≥ θ2}

<> 1. (8)

Unfortunately, as we have mentioned, the imprecise fitness
provides us with less information than this probability distri-



bution, because it is only an upper probability, that dominates
the posterior probability of the crisp fitness.

In other words, given an individual x, the information we
have about its fitness takes a value θ is limited to

F̃x(θ) = P ∗(θ|x) ≥ P (θ|x) (9)

thus the decision rule becomes
P∗({(θ1, θ2) : θ1 < θ2}|x)
P ∗({(θ1, θ2) : θ1 ≥ θ2}|x)

> 1. (10)

We also know that P ∗(·|x) is a possibility for all x, thus we
can state that

P ∗(A|x) = max{P ∗(θ|x) : θ ∈ A}. (11)

Since P ∗(A) = 1−P∗(Ac), the expression 10 is reduced to

P ∗({(θ1, θ2) : θ1 ≥ θ2}|x) < 1/2 (12)

thus to decide whether F̃x1 ≺ F̃x2 we check that

max{P ∗(θ|x1) · P ∗(θ|x2) : θ1 < θ2} ≥ 1/2
max{P ∗(θ|x1) · P ∗(θ|x2) : θ1 ≥ θ2} < 1/2 (13)

with P ∗(θ|x1) = F̃x1 and P̃ ∗(θ|x2) = Fx2 .
It is remarked that, in this last case, rejecting that θ1 <

θ2 does not imply that θ1 ≥ θ2, because it may happen
that eq. (12) is higher than 1/2 and also that P ∗({(θ1, θ2) :
θ1 < θ2}|x) ≥ 1/2, and then we must conclude that the
fuzzy memberships F̃x1 and F̃x2 do not contain information
enough to appreciate significant differences between them.
In particular, this will always happen when F̃x1 and F̃x2 are
non-disjoint intervals. It is remarked that the application of
eq. (10) for interval-valued fitness is numerically the same
as the so called strong dominance proposed in [5].

B. Introduction of a probabilistic prior

The inability to distinguish between intervals with non
empty intersection is a major problem. We can improve
the situation by introducing prior knowledge about the
probability distribution of the fitness. Should we admit the
profile likelihood rule [14], i.e. that the normalized likelihood
function is

L(θ) =
P (x|θ)

max{P (x|θ)}
= P ∗(θ|x) (14)

and also an uniform prior distribution, applying the Bayes
rule we obtain that

P (A|x) =
∑

θ∈A F̃x(θ)∑
θ∈Θ F̃x(θ)

, (15)

which in turn produces the decision rule∑
θ1<θ2

F̃x1(θ1)F̃x2(θ2)∑
θ1,θ2∈Θ F̃x1(θ1)F̃x2(θ2)

> 1. (16)

Example 1: Let Θ = [0, 5], and let Fx1 = [1, 3] and
Fx2 = [2, 4] two non disjoint intervals. Applying the rule
16 we obtain

7/8
1/8

> 1

thus we can state that Fx1 ≺ Fx2 .
Example 2: Let Θ = [0, 5], and let Fx1 = [1, 5] y

Fx2 = [1.9, 4] two non disjoint intervals. The application
of 16 produces

0.4875
0.5125

< 1

therefore Fx2 ≺ Fx1 .
The uniform prior defines a total order in the population,

since every pair of intervals is comparable. We may question
the consistency of this order, though. In the last example,
there might be situations where a fitness [1, 5] could be
prefered to [1.9, 4], and it is also reasonable to state that
these two intervals can not be compared.

It is also remarked that the Bayes rule with an uniform
prior produces, in the particular case that F̃ is an interval, the
same criteria proposed in [4]. Recently [15], a fuzzy ranking
also similar to this one has been proposed, although with a
different theoretical foundation.

C. Introduction of an imprecise prior

The use of a probabilistic prior is not compatible with
the possibilistic interpretation. In the preceding subsection,
we have recovered the posterior probability from an upper
bound of itself and a probabilistic prior. This is the same
as normalizing the fuzzy output of the model (so that the
sum of all the memberships is 1) and then assume that these
memberships are probabilities.

On the contrary, a combination of an upper bound of the
posterior probability and an imprecise prior is meaningful.
Following the proposal of [16], we can assume that the
prior distribution is in certain family P of probabilities, and
interpret that F̃ is an upper envelope of the set of poste-
rior probability distributions that arise when the likelihood
function is combined with every prior in the family:

P ∗(A|x) = sup
P∈P

∑
θ∈A L(θ)P (θ)∑
θ∈Θ L(θ)P (θ)

(17)

and F̃x1 ≺ F̃x2 when

P∗({(θ1, θ2) : θ1 < θ2}|x) > 1/2. (18)

The measure (17) is a plausibility. We only obtain a pos-
sibility in certain particular cases. According to [14], the
most informative possibility distribution containing (17) and
verifying some regularity conditions is

π0(θ) =

∑
ϕ:L(ϕ)≤L(θ) L(ϕ)∑

ϕ∈Θ L(ϕ)
. (19)

We can make F̃x(θ) = π0(θ) and solve for L, and then
substitute L and the prior in eq. (17). In case we use the
FMSE this is immediate, because, when F̃x is an interval,
L(θ) = π0(θ) = F̃x(θ).

The set of priors can range from the completely uninfor-
mative P ∗(θ) = 1 and P∗(θ) = 0 (in this case this criterion
reduces again to the strong dominance) to the probabilistic
prior of the preceding section. We want to use a family of
priors that is restrictive enough so we can assign precedences
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Fig. 2. Prior familiy of the example 3

to intervals with nonempty intersection, but not so restrictive
as the uniform prior. In particular, we propose to use the
family of priors that will be used in the example that follows:

Example 3: Let Θ = [0, 5] and let Fx1 = [1, 3] and Fx2 =
[2, 4] two non disjoint intervals. We want to decide whether
Fx1 ≺ Fx2 , assuming the family of priors that includes all
the probability distributions whose density is

f(x) = ε +
1
m
− 2ε

m
x

for ε ∈ [0, 1/m], where m is an upper bound of the fitness of
an individual (5, in this example.) A graphical representation
of this family is in Figure 2. This family models our
incomplete knowledge about the density of individuals in
the genetic population. It states that the probability of an
individual having a low fitness is higher than the the opposite,
but we do not know how higher, thus any distribution
between the uniform (ε = 0) and the linear density with
the maximum slope (ε = 1/m) is reasonable.

The likelihoods are the same as the indicator functions,

L1 = I[1,3], L2 = I[2,4]

thus the equation 17 becomes

P∗(θ1 < θ2|x) = 1− P ∗(θ1 ≥ θ2|x)

= 1− sup
P∈P

∫
θ1≥θ2

I[1,3](θ1)I[2,4](θ2)dP (θ1, θ2)∫
I[1,3](θ1)I[2,4](θ2)dP (θ1, θ2)

=

= 1− sup
ε∈[0,0.2]

∫ 3

2

∫ x

2
(ε + 1

5 −
2ε
5 x)(ε + 1

5 −
2ε
5 y) dxdy∫ 3

1

∫ 4

2
(ε + 1

5 −
2ε
5 x)(ε + 1

5 −
2ε
5 y) dxdy

= 0.869

and P∗(θ1 ≥ θ2|x) = 0.125

therefore we state that F̃x1 ≺ F̃x2 .
Example 4: Let Θ = [0, 5], and let Fx1 = [1, 5] and

Fx2 = [1.9, 4]. We want to decide whether F̃x1 ≺ F̃x2 ,
assuming that the family of priors of the preceding example
is used.

In this case, the calculations produce the values

P∗(θ1 < θ2|x) = 0.332

P∗(θ1 ≥ θ2|x) = 0.488

thus F̃x1 ‖ F̃x2 .

D. Non Dominated Sorting

The second module in the NSGA-II algorithm that must
be replaced is the fast non dominated sorting. Observe that
sorting the population with respect to an objective is the same
as finding the best individual for this criterion; trivially, once
this individual is found, we can remove it and recursively
repeat the search to obtain an ordered population.

Finding the best individual is a procedure of statistical
decision that generalizes the rules shown in the preceding
section. Let us extend the rule in section III-C. Observe that
we can bound the lower probability of the assert “the i-th
individual has the best fitness in the population” by

Mi = P∗(θi is the minimum) =
s∏

j=1

P∗(θi < θj) i 6= j.

We propose to admit that the best individual is that min-
imizing Mi. To sort the population, this best individual is
removed in the first place and the remaining values of Mi

are recalculated. Then we obtain the next element as the
new minimum of Mi. The procedure is repeated until all the
individuals have been extracted.

E. Crowding distance

The last module that needs to be extended is the crowd-
ing distance. The crowding distance is aimed to uniformly
sample the front, making the individuals in the most dense
areas less likely to be selected. In the crisp case, if the s
individuals in the population are sorted such that θi < θi+1,
the local density at the i-th individual is approximately

ρi =
3

s · (θi+1 − θi−1)

because the number of points lying in the volume [θi−1, θi+1]
is three. In other words, the crowding distance is inversely
proportional to the density of individuals in the fitness space,
based on a 2-neighbours criterion:

di =
3

sρi

where ρi is the local density at the i-th individual.
To extend this definition to the interval case, let us suppose

the s individuals in the population have a fitness θi ∈ Ii. The
local density is bounded by

ρi ∈
[

3
sV max

i

,
3

sV min
i

]
where V max

i is the smallest interval that completely contains
the fitness of Ii and two other individuals,

Ii ⊆ V max
i , #{j : Ij ⊆ V max

i } = 3

and V min
i is the smallest individual that has a non empty

intersection with the fitness of three individuals, being I1

one of them,

Ii ∩ V max
i 6= ∅, #{j : Ij ∩ V max

i 6= ∅} = 3.
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Fig. 3. Minimum and maximum crowding distances between interval-
valued fitness functions. The maximum distance is the volume of the
smallest interval that contains the fitness of three individuals, while the
minimum distance is the volume of the interval that has non-null intersection
with three individuals.

Therefore, the crowding distance associated to the i-th indi-
vidual is (see Figure 3)

di ∈
[
||V min

i ||, ||V max
i ||

]
.

Unfortunately, this generalization does not produce good
results, because the upper bound of the crowding depends too
much on the uncertainty of the fitness being compared. An
individual surrounded by two identical copies of itself can be
assigned a high upper crowding distance if these individuals
are uncertain.

We have solved the problem by introducing a metric
between imprecise values of fitness that is not influenced
by the nonspecificity of the measures. We wish that the
crowding distance between two intervals x ± ε and y ± ε
lays between the bounds mentioned before, does not depend
on ε, and it is compatible with the crisp definition, i.e.

d(x± ε, y ± ε) = |y − x|.

Many different metrics fulfilling these properties can be
defined. We have chosen the Hausdorff distance. Given two
sets A and B, this distance is defined as

dH(A,B) = max
a∈A

min
b∈B

d(a, b)

which, when A = [a1, a2] and B = [b1, b2] are intervals
reduces to

dH(A,B) = max{|a1 − b1|, |a2 − b2|}.

The crowding distance is defined as the distance between
the nearest (as defined by the Hausdorff metric) individual
preceding Ii and the nearest individual following Ii. The
first and the last individuals are assigned a high crowding
distance. The meaning of ’precede’, ’follow’, ’first’ and ’last’
is given by the order defined in the section III-D.

F. Precedence between fitness values comprising both an
interval objective and a crisp objective

In section III-C we have explained how to implement the
precedence between interval-valued fitness functions. Hetero-
geneous pairs, comprising an interval and an integer value
each, must be compared eventually. The precedence between
these pairs is as follows: for any two compound fitness values
(n1, F̃x1) and (n2, F̃x1), we say that (n1, F̃x1) � (n2, F̃x2)

when n1 < n2 and F̃x1 � F̃x2 or n1 ≤ n2 and F̃x1 ≺ F̃x2 .
F̃x1 � F̃x2 is defined as (F̃x1 ≺ F̃x2) ∨ (F̃x1 ‖ F̃x2).

IV. PRACTICAL APPLICATION: CAUSAL MODELING IN
MARKETING

In this section we briefly detail how the proposal in this
paper can be implemented in a practical problem of causal
modeling in marketing. In this respect, we focus this section
on the modeling estimation techniques by introducing a
knowledge extraction method that provides more quantity of
qualitative information than preceding estimation techniques
used in this field [17].

A. Acquisition of data

Data are obtained by means of a questionnaire. Specifi-
cally, in Table I we show a hypothetical example of the set
of items that could have been used for measuring each one,
while Table II shows an example of data available for this
problem.

TABLE I
EXAMPLE OF A QUESTIONNAIRE (EXTRACTED FROM [18])

Fashion consciousness
f1: Fashion is an important means of self-expression
f2: I’m usually the first among my friends to learn about a

new brand or product
Conservatism
c1: I tend to achieve my goals one step at a time
c2: I’m the type to deliberate things
c3: I gather various information and study well when decid-

ing to buy a specific item
Hedonism
h1: I want to enjoy the present rather than think about the

future
h2: I like to go out to night-time entertainment spots
h3: I want to lead a life with lots of ups and downs

TABLE II
EXAMPLE OF FOUR RESPONSES ABOUT THE ITEMS SHOWN IN TABLE I

Fashion consciousness Conservatism Hedonism
f1 f2 c1 c2 c3 h1 h2 h3

2 3 7 6 5 2 3 3
6 6 2 3 3 8 7 7
8 7 2 1 2 7 8 9
5 5 2 2 2 7 7 7

To work with this unusual kind of data, one could think
on reducing the items of a specific variable to a single
value, but we have adopted a more sophisticated process that
allows us to take profit from the original format without any
pre-processing stage: the consideration of fuzzy numbers to
describe each variable, as described in Section IV-B.

B. Semantics of a Fuzzy Set

Under the imprecise probabilities framework, it makes
sense to understand a fuzzy set as a set of tolerances, each
one of them is assigned a confidence degree, being the lower
degree the narrower tolerance [19]. In particular, the α-cuts



of the fuzzy set can be regarded as confidence intervals with
degree 1− α [12].

This representation allows us to codify the information
contained in a set of numbers by means of a fuzzy set. This
will be made clear with the example that follows. Let us
suppose that a variable X has associated the items valued

X = {2, 1, 3, 3, 2, 2, 4}. (20)

The most immediate calculation of a summary value is
the sample mean, which is 2.429. While this is a good
compromise value, we are discarding information that might
be relevant: there are some items as low as 1, and others as
high as 4. To gain additional insight about the importance of
the dispersion of the values, we will assume that the set of
items X is a sample of a larger population, whose mean is
unknown. Given the sample X , we can calculate confidence
intervals for the value of this mean, at different degrees.

A graphical representation of the membership function of
X̃ is shown in Figure 4. Observe that we can approximate it
by a triangular membership function without incurring large
errors. The same procedure must be applied to all lists of
input and output values, to obtain a fuzzy dataset, from which
we want to learn a model. This will be discussed in the next
section.
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Fig. 4. Membership function of that set X̃ that represents the sample X
in Section IV-B. The left one was obtained under normality assumptions,
and the right one is a basic bootstrap estimation.

C. Definition of the Genetic Fuzzy System

Once fixed the linguistic variables, a genetic fuzzy system
is proposed in this section to automatically extract the knowl-
edge existing in the considered fuzzy data. The obtained
model should not be only accurate enough but also be
easily legible, therefore we consider a multiobjective genetic
fuzzy system, whose main components are described in the
following sections.

1) Fuzzy Rule Structure: We opt by a compact descrip-
tion based on the disjunctive normal form (DNF) [20]:

IF X1 is Â1 and . . . and Xn is Ân THEN Y is B

where each input variable Xi takes as a value a set of
linguistic terms Âi = {Ai1 ∨ . . . ∨ Aili}, whose members
are joined by a disjunctive (T -conorm) operator, whilst the
output variable remains a usual linguistic variable with a
single label associated. For instance, a fuzzy rule of the
model given as example could be as follows:

IF FashionConsciousness is A1 and Conservatism is A2

THEN Hedonism is B.

2) Coding scheme: Each individual of the population
represents a set of fuzzy rules (i.e., Pittsburgh style). Each
chromosome consists of the concatenation of a number of
rules. The chromosome size is variable-length. Each rule
(part of the chromosome) is encoded by a binary string
for the antecedent part and an integer coding scheme for
the consequent part. The antecedent part has a size equal
to the sum of the number of linguistic terms used in each
input variable. The allele ‘1’ means that the corresponding
linguistic term is used in the corresponding variable. The
consequent part has a size equal to the number of output
variables. In that part, each gene contains the index of the
linguistic term used for the corresponding output variable.

For example, assuming we have three linguistic terms
(S, M, and L) for each input/output variable, the fuzzy
rule [IF X1 is S and X2 is {M or L} THEN Y is M] is
encoded as [100|011||2]. Therefore, a chromosome would
be the concatenation of a number of these fuzzy rules,
e.g., [100|011||2 010|111||1 001|101||3] for a set of three
rules. The “do not care” cases 111 and 000 are assigned
membership 1 for all values.

3) Objective Functions: In addition to the FMSE, we
also add an objective that intends to assess the linguistic
complexity of the generated fuzzy rule set. We measure the
number of rules of the fuzzy system F as C1(F). However,
since each DNF-type fuzzy rule has also a complexity degree
itself, we should also consider this aspect. Then, let C2(F) =∑

Rr∈F
∏n

i=1 lri be the complexity of the fuzzy system F ,
with lri being the number of linguistic terms used in the ith
input variable of the rth DNF-type fuzzy rule (excluding all
the “don’t care” terms.) The joint objective is the product of
both complexities.

4) Evolutionary Scheme: A generational approach with
the multiobjective NSGA-II replacement strategy [7] is con-
sidered. Binary tournament selection based on the rank of
each individual, depending on the Pareto-dominance relation
defined in section III-F is used, with the crowding distance
being used as a the secondary criterion for tiebreak. The
precedence operator derives from the bayesian coherent
inference with an imprecise prior, the dominated sorting is
based on the product of the lower probabilities of precedence,
and the crowding in based on the Hausdorff distance.

5) Genetic Operators: The crossover operator randomly
chooses a cross point between two fuzzy rules at each chro-
mosome and exchanges the right string of them. Therefore,
the crossover only exchanges complete rules, but it does
not create new ones since it respects rule boundaries on
chromosomes representing the individual rule base.

The mutation operator randomly selects an input or output
variable of a specific rule. If an input variable is selected,
one of the three following possibilities is applied: expansion,
which flips to ‘1’ a gene of the selected variable; contraction,
which flips to ‘0’ a gene of the selected variable; or shift,
which flips to ‘0’ a gene of the variable and flips to ‘1’ the
gene immediately before or after it. The selection of one



Fig. 5. Left part: validation error of the fuzzy models obtained with crisp and fuzzy fitness functions are shown. Three type of precedence operators have
been evaluated in combination with our own definitions of dominated sorting and crowding distances: the strong dominance [5], the uniform prior [4] and
the imprecise prior defined in this paper. Right part: FMSE and the validation errors of the crisp and the fuzzy model based on the imprecise prior.

of these mechanisms is made randomly among the available
choices (e.g., contraction can not be applied if only a gene
of the selected variable has the allele ‘1’). If an output
variable is selected, the mutation operator simply increases
or decreases the integer value.

V. EXPERIMENTAL RESULTS

The consumer behavior model we have used for the
experimentation is based on analyzing the consumer’s flow
state in interactive computer-mediated environments. Data
have been obtained from the survey used in [21] to test a
conceptual model previously presented by the same authors.
We have adapted the original structural model proposed in
that work by removing the least significant latent variable
in each second-order variable. According to the partition
performed by the authors, training data is composed by
1,154 examples (consumers’ responses) and test data by 500
examples. As an example, we focus the analysis on a specific
relationship among the six relationships with a total of 12
variables available in the data set.

We have run 10 times the proposed genetic fuzzy system,
and compared its performance to that of a crisp error-based
multiobjective approach in [22]. The resulting joint Pareto-
fronts are displayed in Figure 5.

In the left part of the figure the validation error of the fuzzy
models obtained with crisp and fuzzy fitness functions are
shown. All these models have been validated over the crisp
data used to learn the model in [22], but the fuzzy fitness-
based have been trained over fuzzy data obtained with the
bootstrap approximation mencioned in section IV-B. Three
types of precedence operators have been evaluated along
with our own definitions of dominated sorting and crowding
distances: the strong dominance [5], the uniform prior [4]
and the imprecise prior defined in this paper. Observe that the
Pareto front obtained by the method proposed here dominates
all other approaches. In the right part of the same figure, the
FMSE and the validation errors of both the crisp and the
fuzzy models are shown.

In the left part of Figure 6 a different measure of accuracy
is used. The average of the differences between the output
of these models and all the items in every output variable
is computed, and the best, worse and mean test error in
the ten repetitions is plotted for every generation. Observe
that the maximum value of test error in the fuzzy fitness is
always better than the minimum value of the scalar fitness.
In the right part of the figure, the comparison focuses in the
three type of precedence operators evaluated in this paper.
The differences between them begin to show in the latter
generations, where the inability of the strong dominance
to distinguish between overlapping FMSEs blocks further
convergence after the 250th generation. The use of the
uniform prior produced better average results in the first 200
generations, but the imprecise prior gives more weight to
the left part of the FMSEs, thus allowing the evolution to
continue passed that 250th generation, where the uniform
prior was stagnated. Observe that, while weighing more the
left part of the fitness, the imprecise prior also causes that
very similar FMSEs are indistinguishable, thus preventing
the overfitting, as seen in the Pareto fronts in the preceding
figure.

VI. CONCLUDING REMARKS

In this paper we have proposed an extension of the NSGA-
II algorithm that is able to optimize a combination of crisp
and interval-valued objectives. This extension was motivated
in the need of optimizing the fitness function that arises when
a fuzzy model is learned from vague data, and its accuracy is
measured by mean of the FMSE. The FMSE is an interval of
values arising from a possibilistic interpretation of the output
of a fuzzy model.

To assess our algorithm, we have solved a marketing prob-
lem where the input data comprised multi-item examples.
These multi-item examples were promoted to fuzzy sets by
means of an interpretation of the membership function as a
nested family of confidence intervals. We have shown, with



Fig. 6. Left part: The average of the differences between the output of crisp and fuzzy models and all the items in every output variable. Best, worse
and mean test error are plotted. Right part: Comparison between the three type of precedence operators evaluated in this paper. The differences between
them appear in the latter generations.

the help of a practical problem, that the models obtained by
minimizing the FMSE are more robust than “state of the art”
genetic fuzzy models, and are able to capture the dependence
between imprecise data without the need of aggregating them
or removing their fuzziness. From the multiobjective genetic
algorithms point of view, we have also shown that the use
of a coherent inference based precedence, depending on an
imprecise prior, improves the convergence passed a point
where both the strong dominance and the coherent inference
with an uniform prior are stagnated. Work remains to be
done in evaluating different test problems and other families
of priors to model our knowledge about the probability
distribution of the fitness function, along the evolution of
the GA.
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