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Abstract

Boosting and backfitting techniques
are between the fastest fuzzy rule
learning techniques, and therefore
are well suited for high-dimensional
datasets. In this paper we pro-
pose an extension of these last meth-
ods, that can be applied to learn
rule-based models from interval and
fuzzy valued data. The learning will
depend on the minimum of a fuzzy
valued fitness function, which will be
optimized by means of a multicrite-
ria, population based, simulated an-
nealing method.
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1 Introduction

Genetic Learning of fuzzy rules produces lin-
guistically understandable models, but the
computational cost involved is much higher
than the needed to obtain a statistical or neu-
ral model of comparable accuracy. This com-
plexity increases with the size of the datasets,
either with the number of examples or the
number of features, preventing the use of
GFSs in many practical problems.

In previous works, we have suggested to ex-
ploit the similarities between certain class of
fuzzy models and Extended Additive Models
[10] to apply boosting techniques in combina-
tion with GFSs [25]. The boosting of fuzzy
models has an speed comparable to that of

heuristic methods, and can be applied to a
meaningful range of Additive Fuzzy Models.
This kind of models has been long used by the
fuzzy community [16], mostly in connection
with neuro-fuzzy techniques [14, 18, 30] and
more recently in Support Vector Machines re-
lated works [11, 3, 4].

An additional problem is rooted to the appli-
cation of GFSs to crisp datasets. Given that
one of the main objectives of the fuzzy tech-
niques is to process imprecise information, in
our opinion the fuzzy models should be learnt
and evaluated over fuzzy data. There are also
theoretical arguments favoring the use of a
fuzzy valued fitness function in the context
of these learning techniques [26, 28]. But the
evaluation of a fuzzy valued function has an
important overhead in terms of the number of
calculations. We are not aware of optimiza-
tion techniques than can find, in a reasonable
time, the minimum of a fuzzy valued fitness
function so complex as the one that originates
in rule learning problems from high dimen-
sional imprecise datasets.

This paper is dedicated to the study of this
last problem, the efficient learning of fuzzy
rules from imprecise data. In the next section,
we will extend the basic backfitting algorithm
to deal with fuzzy data. Then, in section 3,
we will discuss the problem of optimizing a
fuzzy-valued fitness function, and in section 4
a new extension of a population-based, mu-
ticriteria simulated annealing is introduced.
The paper finishes with a benchmark analysis
of the proposed algorithm and the concluding
remarks.



2 Fuzzy Extended Additive Models

In this work, we will restrict ourselves to lin-
guistic additive fuzzy rule-based models, com-
prising M rules as the one that follows:

If x is Am then y is Bm, (1)

where x and y are the feature and the output
vectors, respectively, and Am are conjunctions
of linguistic labels, which in turn are associ-
ated to fuzzy sets. Bm can be either a single-
ton or a fuzzy number. In this paper, none
of the sets Am, Bm will be modified during
the learning, to preserve the linguistic inter-
pretability, but we will admit that each rule is
assigned a weight wm. Let B′

m be the result
of the inference process for the preceding rule:

B′
m(x, y) = I(Am(x), Bm(y)) (2)

where I is a fuzzy inference operator. The
output y of the fuzzy model is then computed
as

y = GM
m=1(wmB′

m) (3)

where G is an operator that combines all the
sets B′

m to produce the final output. Let us
define I to be the product, and G the sum of
the centroids. Then,

y =
M∑

m=1

D(wmAm(x)Bm(y)) (4)

where D stands for “defuzzification.” If all
the Bm are singletons, and the input x is crisp,
the output of the fuzzy model is a real num-
ber, which can be written as

y(x) =
M∑

m=1

fm(x) (5)

where fm(x) = βmAm(x), and Am is a con-
junction of linguistic labels taken from a pre-
determined set, as mentioned before.

2.1 Backfitting and Boosting

According to Friedman [10], the boosting is
a particular case of a backfitting algorithm,
applied to a classification problem that has
been transformed into a regression problem

by means of a logistic transform. This pro-
cedure has been previously applied to learn
fuzzy models and classifiers from crisp data
[7, 23, 27], and shown to be as fast as some
ad-hoc learning methods [25].

For clarity, let us repeat here the method pro-
posed in [25]. To learn the model (5) from
crisp data, we require an intermediate fit-
ting algorithm, that can select the function
fm = βmAm that best fits an arbitrary set of
data. Let us name “FitOneRule()” to this
intermediate algorithm. Then, we proceed as
shown in the pseudocode that follows:

residual[1..N] = y[1..N]
rule base = emptyset
repeat
f = FitOneRule(x[1..N],residual[1..N])
do i=1..N

residual[i] = residual[i] - f(x[i])
end do
rule base = rule base + f

until norm(residual)<epsilon

In words, we first fit one rule f1 to the train
set. Then, we replace the desired output by
the residuals of the output of this rule, re-
peat the process to obtain f2 and so on. Ob-
serve that, following the boosting nomencla-
ture, the use of the residual is equivalent to
the assignment of certain weight to each ex-
ample in the dataset, and solve the corre-
sponding weighted squares problem. These
weights would range from a perfect fit (weight
0) to an uncovered example (weight 1), so the
rationale of this process can also be explained
as “fit a rule to the dataset, remove the exam-
ples that are well explained by this rule and
repeat until all examples are explained.”

Each rule fm consists in a pair (βm, Am). Am

is a linguistic expression whose terms are la-
bels of the linguistic variables defined over the
input variables, connected by the operators
“AND” and “OR”. βm is the product of the
centroid of Bm and the weight wm assigned to
the rule. A fuzzy rule will be obtained in ev-
ery iteration, and the process finishes when
the best βm is zero or the accuracy of the
model is high enough, whichever come first.
Because of the limitations of space, the reader



is refered to [25] for further details in the nu-
merical procedure needed to obtain βm, and
the details of the algorithm FitOneRule().

2.2 Interval and fuzzy valued data

It is intuitive that the output of a fuzzy model,
when it is fed with a fuzzy input, must be a
fuzzy set. In our case, this means that the
measure of similarity between the output of
βmAm and the residual that is minimized by
the function “fit one rule” is not longer a num-
ber, but a fuzzy set. Let us suppose that all
the information we are given about the input
x to our model is the fuzzy set X. Then, the
most we can say about the output of the m-th
rule is that it is contained in the fuzzy set Fm,

Fm = βm ⊗Am(X). (6)

where Am(X) is the fuzzy set

[Am(X)]α = {Am(x) | x ∈ [X]α}. (7)

Following the ideas introduced in [26, 28],
given two fuzzy samples {X1, . . . XN} and
{Y1, . . . YN} of the input-output data, the best
rule will be the one that minimices the fuzzy
valued function

N⊕
n=1

SQ

(
Yn −

M⊕
m=1

βm ⊗Am(Xi)

)
(8)

where [SQ(X)]α = {x2 | x ∈ [X]α}. Two re-
marks are made: (a) the residual of the rule is
also a difference between two fuzzy numbers,
that must be computed by means of fuzzy
arithmetic and (b) with this algorithm it is
not longer needed that the consequents Bm

of the fuzzy rules are singletons.

3 Minimum of an imprecisely
known function

As we pointed in [26, 28], the minimum of a
fuzzy function is a problem that is actively
being studied and that can not be regarded
as solved. In [8] a review and a categorization
of the most relevant approaches of fuzzy opti-
mization problems is made. There are also
many proposals of specific numerical fuzzy
optimization algorithms (for example, Fuzzy

Tabu Search [17], Evolutionary Algorithms
[15] or Nonlinear Fuzzy Programming [19].)
Some of these approaches are based on cer-
tain kinds of fuzzy ranking, or other heuris-
tic criteria, that allow to compare any pair
of fuzzy numbers and then to extend a scalar
optimization algorithm to the fuzzy case. We
will not use these criteria, but we will address
the problem under the perspective of the α-
Pareto dominance [1, 24], and transform the
fuzzy optimization into a multicriteria prob-
lem. Our point of view will be made clear
with the following example: Let us suppose
that we want to compare the fuzzy error of
two models, whose cuts at the α level are
the intervals E1 and E2. Instead of applying
an heuristic criteria (like, for instance, com-
paring the centers of E1 and E2) we observe
that, if E1 ∩ E2 = ∅, it is clear that either
E1 α-dominates E2 or E2 dominates E1, be-
cause all the points contained in E1 are lower
that those of E2 or vice versa. Otherwise
(E1 ∩E2 6= ∅), we can not know, without fur-
ther assumptions, whether the unknown error
value contained in E1 is lower than that con-
tained in E2. It is also easy to see that a
pure Pareto-based multicriteria optimization
algorithm can be used to obtain a set of non-
dominated solutions from which that contain
the minimum of the imprecisely known func-
tion.

4 A fuzzy extension of the
Simulated Annealing algorithm

We have decided to implement an hybrid be-
tween the Simulated Annealing and a Genetic
Algorithm, combining the genetic operators of
crossover and selection with the probabilistic
search of SA, in order to obtain an evolution-
ary algorithm with greater possibilities of con-
trol of either the memory used and the speed
of convergence. This way, we can balance the
calculation time with the accuracy of the solu-
tion and better address the high-dimensional
problems mentioned in the introduction.

To our knowledge, Pareto-based multiobjec-
tive simulated annealing techniques has not
been widely applied. Nevertheless, multicri-



Select initial and final temperatures: T0, T1, and cooling factor :C
Select a starting point: x0

Initialize the population of search paths: X = {x0}
Initialize the set of elites (sample of Pareto front): P = {x0}
T ← T0

while T ≤ T1

// Initialize intermediate populations X ′. P ′

X ′ ← X; P ′ ← P;
for path ← 1 to size(X)

x← mutation(Xpath)
if x ≺ Xpath then

// The search point and the Pareto front are updated
X ′

path ← x; if x ≺ Ppath then P ′
path ← x

else if Xpath ≺ x then
// The search point might be updated
if rnd() < exp(-distance(Xpath,x)/T) then X ′

path ← x
else

// A new search path is generated
X ′ ← X ∪ {x}; P ′ ← P ∪ {x};

end if
end for
// If needed, the size of the set of paths is adjusted
X ← selection(X ′); P ← selection(P ′)
T ← T · C

end while

Figure 1: Pseudocode of the MOSA algorithm

teria extensions of SA are an active research
field [29, 20, 13]. In [6], Pareto-dominance was
applied to guide the evolution of the simulated
annealing, and the same approach was further
extended in [12], where fuzzy numbers and
uncertainty in dominance are used to decide
whether an individual dominates other, as we
will do in this paper. Similarly, in [21, 22],
Pareto-dominance was also applied to judge
how the multiobjective simulated annealing
evolves. But, in all of the preceding algo-
rithms, an aggregated function of objectives
is used to evaluate each individual, thus the
search is actually being carried in an scalar
space.

A different approach to Pareto-based multi-
objective simulated annealing is presented in
[2], where a comparison of a Pareto-based evo-
lutionary algorihtm and a population-based
simulated annealing with dominance control
approach is presented. In each simulated an-
nealing iteration, a new individual is obtained
by means of an heuristic, and it is included in
the population if there is a non dominance re-
lation with the current individual. If the new

individual dominates the current one, then
this last one is replaced. Otherwise, if the
new individual is dominated by the current
one, then it is accepted with temperature de-
pendant probability. But, even in this last
work, an aggregation function is used when
the dominance is evaluated, therefore it can
always be said that an heuristically generated
individual either dominates or is dominated
by the current one (thus collapsing the Pareto
front to one point.) In this paper we drop
this hypothesis and propose a new, population
based, extension of the simulated annealing,
where it may happen that an individual does
not dominates neither is dominated by other
different one.

4.1 The MOSA algorithm

The pseudocode of the Multi-Objective Sim-
ulated Annealing (MOSA) is shown in Fig-
ure 1. The algorithm is based in a variable
sized population of search points. At each
iteration, all the search points are mutated
to form an intermediate population. Given a
certain value of α, if the mutated individual



α-dominates the current search point, it re-
places its parent in the intermediate popula-
tion. If the mutated individual is dominated,
then a random decision is made. Otherwise,
the size of the intermediate population is in-
creased, and the mutated point constitutes a
new search point. A set of non-dominated so-
lutions, of the same size as the population,
is also maintained. Once all the individuals
in the population have been mutated, the in-
termediate population is sampled to form the
following generation. The codification of the
solutions is the same binary coding that the
one used in the GA in [25], and the operator
mutate is the crossover with a randomly gen-
erated individual, also as mentioned in this
last reference. The operators distance, and
select are explained in the following subsec-
tions.
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Figure 2: Evolution of the population in the
MOSA algorithm, for a two-criteria problem
(upper part,) and for a fuzzy optimization
problem (lower part.)

4.1.1 The distance operator

The distance between individuals is not mea-
sured in the genotype space, but in the fitness

landscape. The maximum of the differences of
fitness at the level α is used, i.e.

dα(E1, E2) = sup{||x− y|| : x ∈ [E1]α,

y ∈ [E2]α} (9)

4.1.2 The selection operator

The size of the intermediate population can
be twice as high as the the current population
size, in the worst case. To control the maxi-
mum population size, at each iteration the set
of elite points is revised and all the dominated
solutions and duplicated points, along with
their associated current search points, are re-
moved. If the number of points is still too
high, a random purge is performed until the
size of the intermediate population is small
enough.

4.2 Examples for crisp and fuzzy data

As an example, in Figure 2 it is shown the
evolution of the MOSA algorithm for a two-
criteria problem [9] and a fuzzy problem (fit
the coefficients of a linear regression problem
under data with an imprecision of the 10%).
In the first problem, it can be observed that
all the solutions are in the Pareto front after
100 iterations, and how the population size
evolves. In the second problem, the set of
non α-dominated solutions form a cloud that
surrounds the exact solution –the point (2,1)–
after 1000 iterations. Observe that the shape
of the cloud can be used to study how the im-
precision in the measures affects the tolerance
of the solution.

5 Numerical analysis

This section has two parts: First: some
benchmark problems are used to contrast the
properties of the simulated annealing with
those of the GA used in previous papers, and
second: the effect of introducing some impre-
cision in the dataset is studied.

5.1 Benchmark problems

To separate the effects of the fuzzy data and
the search method, we have fed our algorithm



WM1 WM2 WM3 CH1 CH2 CH3 NIT LIN CUA NEU WLS BFT BMO
f1 5.65 5.73 5.57 5.82 8.90 6.93 5.63 130.5 0.00 0.17 0.09 0.45 0.30

f1-10 6.89 7.19 6.54 6.84 10.15 8.20 7.16 133.91 1.40 1.78 1.62 1.86 1.71
f1-20 11.07 10.99 11.06 11.33 13.45 12.42 10.63 135.6 5.29 6.42 5.90 6.04 5.98
f1-50 51.78 46.40 47.80 53.48 48.94 48.16 39.65 166.64 33.53 41.18 36.76 39.62 38.66

f2 0.41 0.48 0.45 0.40 0.59 0.45 0.43 1.54 1.61 1.48 0.15 0.24 0.26
f2-10 0.64 0.68 0.68 0.59 0.68 0.60 0.58 1.71 1.75 1.81 0.29 0.42 0.41
f2-20 1.27 1.16 1.17 1.29 1.15 1.17 0.97 2.04 2.09 0.90 0.76 0.87 0.87
f2-50 4.34 3.98 3.94 4.47 3.90 3.97 3.59 4.67 4.78 3.76 3.62 3.67 3.72

cable ·10−3 778 720 723 673 663 655 548 418 393 522 486 441 437
building ·102 1.113 1.051 1.023 0.983 1.753 1.465 0.432 0.477 - 0.276 0.246 0.375 0.389

Table 1: Comparative results between additive regression + genetic backfitting (BFT), MOSA-
based backfitting (BMO) and other approaches. BFT method was limited to 25 fuzzy rules.
The best of WM, CH, NIT, BFT and BMO, plus the best overall model, were highlighted for
every dataset.
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Figure 3: Comparative results between additive regression + backfitting (BFT) and multiobjec-
tive fuzzy backfitting (BFO). over f1, f1-20 and f1-50 datasets.

with crisp data (i.e., all fuzzy sets have a sup-
port of size 0,) and let the new algorithm to
make at most the same number of evaluations
than the genetic backfitting.

All the methods, the datasets and the statis-
tical experimental setup used, are referenced
in [25]. Wang and Mendel with importance
degrees ’maximum’ (WM1), ’mean’ (WM2)
and ’product maximum-mean’ (WM3), the
same three versions of Cordón and Her-
rera’s method (CH1, CH2, CH3), Nozaki,
Ishibuchi and Tanaka’s (NIT), Linear (LIN)
and Quadratic regression (QUA) , Neural
Networks (NN) and TSK rules induced with
Weighted Least Squares (WLS) are compared
to genetic backfitting (BFT) and MOSA
backfitting (BMO) over 8 synthetic problems
and two real world problems. “f1” is z =
x2 + y2 and “f2” is 10(x− xy)/(x− 2xy + y).
“fx-y” is the function fx with y% of gaus-

sian noise. “Building” and “Cable” are real-
world problems, of moderate and small sizes,
respectively. 5x2cv experimental framework
was used: 50% of points were used to train
the model, that was tested against the re-
maining 50%; roles of training and test sets
were interchanged and the process repeated,
and this was replicated 5 times for different
permutations of the dataset, which gives 10
repetitions of the learning algorithm for every
dataset. The mean of the test errors is shown
in Table 1, and part of the boxplot of the re-
sults are shown in Figure 3. p-values assessing
significance of the statistical contrasts as indi-
cated in 5x2cv method are not included, but
they can be deduced from the graphs: non
overlapping boxes indicate that there exist a
statistically significant difference between the
algorithms involved. Observe that scalar SA-
based backfitting is approximately equal to
GA-based backfitting, and actually it seems
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Figure 4: BFT compared to BFO when input
data is fuzzified as mentioned in section 5.2.

to improve those results, while having less
than 1/100th of the memory consumption of
the GA.

5.2 Fuzzy data

In this second test, we have fuzzified the input
data by covering each example with a trian-
gular, symmetrical fuzzy set with a support of
size 0.01, and centered in the precise data. As
explained in [26, 28], we expect that the use of
a fuzzy fitness have measurable consequences
over the generalization properties of the mod-
els. In Figure 4 the dispersion of the results of
BFT (over crisp data) and BMO (over fuzzi-
fied data) for the dataset f1 are shown. It is
remarked that BMO produces a set of solu-
tions; we have selected in all cases the rule
with lower maximum error in the Pareto set.
It is clear that there exist a significant differ-
ent favouring the fuzzy algorithm. Neverthe-
less, since the time used by BFO was much
higher in this case than the used by BFT,
most restrictive tests must be made, but these
preliminary results seem promising to us.

6 Concluding remarks

The learning of fuzzy rules from imprecise
data is a heavy computational problem. In
particular, for high-dimensional datasets, we
need efficient algorithms that can be used to
find the minimum of a fuzzy-valued function,
which in turn is another hard problem.

In this work we have proposed to extend the
backfitting of Additive Fuzzy Models to im-
precise (fuzzy and interval valued) data, and
also propose to use a population-based Sim-
ulated Annealing able to find a set of non
α-dominated solutions of the problem. Com-
pared to genetic backfitting, the memory con-
sumption is much lower, and the execution
time comparable, therefore this algorithm can
be considered as a first step in the search for
the methods proposed in [26, 28].
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