
myjournal manuscript No.
(will be inserted by the editor)

KEEL: A Software Tool to Assess Evolutionary Algorithms to Data
Mining Problems?
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Abstract This paper introduces a software tool named
KEEL which provides a platform for an analysis of evo-
lutionary learning to Data Mining problems: regression,
classification, unsupervised learning, etc. It includes evo-
lutionary learning algorithms based on the different ap-
proaches, pitt, michigan, IRL, and the integration of evo-
lutionary learning algorithms with different pre-processing
techniques, providing a complete analysis of any learning
model in comparison with the existing ones.

Key words Computer-Based Education, Data Min-
ing, Evolutionary Computation, Experimental Design,
Graphical Programming, Java, Knowledge Extraction,
Machine Learning.

1 Introduction

Evolutionary Algorithms (EAs) [11] are optimization al-
gorithms based on natural evolution and genetic pro-
cesses. Nowadays in Artificial Intelligence (AI), EAs are
considered as one of the most successful search tech-
niques for complex problems.

In recent years EAs, particularly Genetic Algorithms
(GAs) [14,15], have proved to be an important tech-
nique for learning and knowledge extraction. This makes

? Supported by the Spanish Ministry of Science and Tech-
nology under Projects TIN-2005-08386-C05-(01, 02, 03, 04
and 05).

them also a promising tool in Data Mining (DM) [12,
16,52]. The idea of automatically discovering knowledge
from databases is a very attractive and challenging task.
Hence, there has been a growing interest in DM in sev-
eral AI-related areas, including EAs. The main motiva-
tion for applying EAs to knowledge extraction tasks is
that they are robust and adaptive search methods, which
perform a global search in the space of candidate solu-
tions (for instance, rules or another form of knowledge
representation). The use of EAs in problem solving is
a widespread practice. Problems as image retrieval [42],
the learning of controllers in robotics [28] or the improve-
ment of e-learning systems [39] show their suitability as
problem solvers in a wide range of scientific fields.

Although EAs are powerful for solving a wide range
of scientific problems, their use requires certain program-
ming expertise along with considerable time and effort in
order to write a computer program for implementing the
often sophisticated algorithm according to user’s needs.
This work can be tedious and needs to be done before
users can start on which they should be really working
on. Given this situation, the aim of this paper is to intro-
duce a non-commercial Java software tool, named KEEL
(Knowledge Extraction based on Evolutionary Learn-
ing)1, that allows the user to analyze the behaviour of
evolutionary learning for different kinds of DM problems:
regression, classification, unsupervised learning, etc.

This tool can offer several advantages. First of all,
it reduces programming work. It includes a library with

1 http://www.keel.es
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evolutionary learning algorithms based on the different
approaches (pitt, michigan and IRL) and easies the in-
tegration of evolutionary learning algorithms with differ-
ent pre-processing techniques. It can alleviate researchers
from the mere “technical work” of programming and
thus they are able to focus more on the analysis of their
new learning models in comparison with the existing
ones. Second, it extends the range of possible users ap-
plying evolutionary learning algorithms. A wide library
of EAs and an easy to use software considerably reduces
the level of knowledge and experience required by re-
searchers in evolutionary computations. As a result, re-
searchers with less knowledge in this framework would
be also able to apply these algorithms on their problems.
Third, using a strictly object-oriented approach for the
library and the software tool these can be used on any
machine with Java. As a result, any researcher can use
KEEL on his machine, independently of the operating
system.

The paper is arranged as follows. The next section
introduces a study on some non-commercial DM soft-
wares and the main benefits that the KEEL software
tool offers with respect to the remaining software tools.
Section 3 presents some aspects of KEEL, its main fea-
tures and the modules that comprise it. In Section 4,
two examples are given to illustrate how KEEL should
be used. Finally, Section 5 points out some conclusions
and future works.

2 A Study on some Non-Commercial Data
Mining Software

A search on the Internet about DM software reveals that
a lot of commercial and non-commercial DM tools and
libraries exists in development on the whole scientific
community. We recommend visiting the directories of
software KDnuggets 2 and The-Data-Mine 3 for an over-
all look of the most of them. Although a lot of them
are for commercial purposes, a few are available on an
open source basis. Among the commercial software are
leading mining suites such as SPSS Clementine 4, Oracle
Data Mining 5 and KnowledgeSTUDIO 6.

We can distinguish between libraries whose purpose
is to develop new EAs for specific applications and DM
suites that incorporate learning algorithms (some of them
may use EAs for this task) and provide a mechanism
to establish comparisons among them with researching
objectives. Over the Internet and in specialized litera-
ture, we can find a large number of libraries dedicated
to evolutionary computation. As generic tools in which

2 http://www.kdnuggets.com/software
3 http://the-data-mine.com/bin/view/Software
4 http://www.spss.com/clementine
5 http://www.oracle.com/technology/products/bi/odm
6 http://www.angoss.com/products/studio/index.php

it is possible to develop different EAs for different prob-
lems, we must remark ECJ [23], EO [17], Evolvica [40],
JCLEC [46] and Open Beagle [13]. We can also find
some libraries designed for a concrete type of EA: ge-
netic algorithms [8], genetic programming [32], memetic
algorithms [19], learning classifier systems [25], evolu-
tionary multiobjective optimization [43] and distributed
EAs [44].

Nowadays, more researches base on DM tools [38]
or they employ tools specifically designed for an area of
DM, see for example [48]. Our interest is focused on free
distributions of software dedicated to an overall point
of view of DM, in which developers may choose to ex-
tend the functionality since the source code is available.
Probably the most well-known open source DM package
is Weka [51], a collection of Java implementations of ML
algorithms. Others packages different from Weka are also
available in open source.

The objective of this section is to present a survey of
all of them, to summarize their main strong points and
to introduce why we have designed KEEL and which are
its main benefits.

2.1 Non-Commercial Suites

In this section, we list the open source DM software tools
that deserves the mention due to the acknowledgement,
qualities or acceptation they have.

– ADaM [41]: This toolkit is packaged as a suite of
independent components in order to employ them
working in grid or cluster environments. It provides
feature selection capabilities, image processing and
data cleaning.

– D2K (with E2K) [20] : Data to knowledge toolkit pro-
vides a visual programming environment and a set of
templates to connect with other standard packages.
It incorporates external packages to perform image
and text mining. D2K software tool offers an external
set of evolutionary mechanisms used for developing
basic GAs (E2K).

– KNIME [4]: This modular environment enables easy
integration of new algorithms, data manipulation and
visualization methods as models. It is compatible
with Weka and it also supports statistics via inte-
grated R [35].

– MiningMart [27]: It is developed with the purpose
of re-using best-practice cases of pre-processing data
stored in very large databases. MiningMart is focused
on the pre-processing chain, not on the possible steps
of DM.

– Orange [9]: It is a library of core objects and rou-
tines that includes a large variety of standard and
not-so-standard ML and DM algorithms, in addition
to routines for data input and manipulation. It is
also a scriptable environment for prototyping new
algorithms and testing schemes built in Python.
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– Tanagra [36]: Tanagra is a DM software for edu-
cational and research purposes. It proposes several
data mining methods from exploratory data analysis,
statistical learning, machine learning and databases
area.

– Weka [51]: Weka is the best well-known software tool
to perform ML and DM tasks. The algorithms that it
includes can either be applied directly to a data set
or called from your own Java code. Weka contains
tools for data pre-processing, classification, regres-
sion, clustering, association rules, and visualization.
Given that it is practically the standard in DM suites,
it is also related with a complete set of extra packages
for completing some aspects.

– YALE [26]: It is a free open-source environment for
KDD and ML that provides a rich variety of methods
which allow prototyping new applications and makes
costly re-implementations unnecessary.

All these software tools are provided by several func-
tionalities, but each one supports them in a different
way. In the following subsection we analyze how these
software tools tackle a defined set of basic and advanced
functionalities.

2.2 Study based on Functionality

Once seen some of the available DM software tools, we
propose to analyze them by following a set of function-
ality criteria. We do not want to establish a comparison
among all software tools or emphasize the improvement
of one with respect to another. Our intention is focused
on pointing out the main strengths or weakness of each
software, in order to compile a set of characteristics in
which the existing software tools have not an advanced
functionality.

In order to do that, we have established a set of ba-
sic and advanced characteristics that the suites could
have or not. The idea implies to detect the mayor dif-
ferences among the software tools and, principally, cat-
egorize KEEL as an alternative for the researches with
others requirements. Table 1 shows a summary of the
characteristics pointed out. All of them have been se-
lected while evaluating all the software tools, tutorials
and guidelines for their use. The only one that we have
add is the EAs integration, given that the main moti-
vation of KEEL is just it. We distinguish four levels of
support in some characteristics: none (N), basic support
(B), intermediate support (I) and advanced support (A).
If the support can not be understood by levels, the no-
tation used is Yes (Y) for supporting and No (N) for no
supporting.

In the following, we briefly explain all the issues of
the Table 1:

– Language is the programming language used in the
development of the software. C++ language is less
portable with respect to Java.

– Graphical Interface includes functionality criteria
which can be managed through a handy interface by
the user.

– Graph representation indicates that the experi-
ments or knowledge flows are represented via
graphs with node-edge connections. This alterna-
tive is more interpretable and user-friendly than
using a chain of processes or a tree representation
of modules.

– Data visualization includes tools for representing
the data sets through charts, tables or similar
mechanisms.

– Data management comprises a set of toolkits that
allow us to perform basic manual operations with
the data, such as removing or modifying rows,
columns, etc.

– Input / Output functionality criteria point out the
different data formats supported, such as ARFF (stan-
dard of Weka), others (including C4.5 input .names
standard [34], .xls, .csv, XML) and database connec-
tion. The support is given if the environment can load
or save data in these formats or can transforms them
into a standard one used by it.

– Preprocessing Variety. It comprises discretization [22],
feature selection [29], instance selection [50] and miss-
ing values imputation [2]. The trend of most of the
suites is to offer a good feature selection and dis-
cretization set of methods, but they overlook special-
ized methods of missing values imputation and in-
stance selection. Usually, the contributions included
are basic modules of replacing or generating null val-
ues and methods for sampling the data sets by ran-
domly (stratified or not) or by value-dependently.

– Learning Variety. It is the support over main areas
of DM, such as predictive tasks (classification, regres-
sion,
anomaly/deviation detection), and descriptive tasks
(clustering, association rule discovery ,sequential pat-
tern discovery) [45]. The existence of the classical
models determines to achieve an intermediate level,
and the existence of advanced models indicates the
advanced level in the area.

– Off/On-line run of the experiment created. An On-
line run implies that the environment and algorithms
modules need to be in the same machine and the ex-
periments are completely dependent of the platform.
An off-line run entails the independency of the ex-
periments created with respect to the environment,
allowing the experiment to be executed in other ma-
chines.

– Advanced Features includes some of the non-common
criteria incorporated for extending the functionality
of the software tool.

– Postprocessing, usually for tuning the learned model
for the algorithm.
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Table 1 Summary of the characteristics of each DM software tool

G
ra

p
h

re
p
re

se
n
ta

ti
o
n

D
a
ta

v
is

u
a
li
za

ti
o
n

D
a
ta

m
a
n
a
g
em

en
t

A
R

F
F

d
a
ta

fo
rm

a
t

O
th

er
d
a
ta

fo
rm

a
ts

D
a
ta

B
a
se

co
n
n
ec

ti
o
n

D
is

cr
et

iz
a
ti

o
n

F
ea

tu
re

S
el

ec
ti

o
n

In
st

a
n
ce

S
el

ec
ti

o
n

M
is

si
n
g

va
lu

es
im

p
u
ta

ti
o
n

C
la

ss
ifi

ca
ti

o
n

R
eg

re
ss

io
n

C
lu

st
er

in
g

A
ss

o
ci

a
ti

o
n

R
u
le

s

O
n
-l
in

e
ru

n

O
ff
-l
in

e
ru

n

P
o
st

p
ro

ce
ss

in
g

M
et

a
-L

ea
rn

in
g

S
ta

ti
st

ic
a
l
te

st
s

E
v
o
lu

ti
o
n
a
ry

A
lg

o
ri

th
m

s

Software Language Graphical Input / Preprocessing Learning Run Advanced
Interface Output Variety Variety Types Features

ADaM C++ N N I Y N N N A B N I N A B Y N N N N B
D2K Java Y A I Y Y Y I A B B A A A A Y N N N N I
KNIME Java Y A A Y Y Y I A B B A A A A Y N N N I B
MiningMart Java Y B A N N Y I A B I B B N N Y N N N N B
Orange C++ Y A A N Y N A I B B I N I I N Y N N N N
Tanagra C++ N A A Y Y N B A B N A I A A Y N N I A N
Weka Java Y A A Y Y Y I A B B A A A A Y N N N N B
YALE Java N A A Y Y Y I A B B A A A A Y N N A B I

– Meta-learning, that includes more advanced learn-
ing schemes, such as bagging or boosting, or meta
learning of the parameters of the algorithms.

– Statistical tests for establishing comparisons among
the results obtained. An advanced support of this
property requires a complete set of parametric
and non-parametric statistical tests; a basic sup-
port implies the existence of the well-known sta-
tistical tests (such as t-test).

– Evolutionary models support points out the inte-
gration of EAs into the DM areas that the soft-
ware tool offers. A basic support of this feature
implies the use of genetic algorithms in some tech-
niques (usually, genetic feature selection). To up-
grade the level is necessary to incorporate EAs in
learning or meta-learning models.

Analyzing the characteristics presented in Table 1
we can highlight that most of software tools have a ba-
sic support for EAs. Moreover, the software tools stud-
ied usually integrate a representative set of algorithms
for each type of learning and preprocessing task but the
experiments are thinking for being run on the same envi-
ronment, which is not useful when the algorithms require
high computation times (such as happens with the EAs).

From our point of view users need a software tool
where they can analyze the behaviour of evolutionary
and non evolutionary algorithms for different kinds of
DM problems and run their experiments in both modes
(off-line and on-line). Based on these requirements we
have developed the KEEL software tool. In the next sec-
tion we will describe KEEL in detail.

3 KEEL

Essentially, KEEL is a software tool which allows the
integration of evolutionary models in the different ar-
eas of learning and preprocessing tasks, making easy to
the user the management of these techniques. The mod-
els correspond with the most well-known and performed
models in each methodology, such as evolutionary fea-
ture and instance selection [5,21], evolutionary fuzzy rule
learning and Mamdani rule tuning [1,31], genetic arti-
ficial neural networks [24,37], Learning Classifier Sys-
tems [3,49], etc.

The presently available version of KEEL consists of
the following function blocks7:

– Data Management : This part is composed by a set of
tools that can be used to build new data, export and
import data in other formats to KEEL format, data
edition and visualization, apply transformations and
partitioning to data, etc...

– Design of Experiments: The aim of this part is the de-
sign of the desired experimentation over the selected
data sets. It provides options for many choices: type
of validation, type of learning (classification, regres-
sion, unsupervised learning), etc...

– Educational Experiments: With a similar structure to
the previous part, allows us to design an experiment
which can be step-by-step debugged in order to use
this as a guideline to show the learning process of a
certain model by using the platform with educational
objectives.

7 http://www.keel.es/software/prototypes/version1.0/
/ManualKeel.pdf
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Taking into account each one of the function blocks,
KEEL can be useful by different types of user, which
expect to find determined features in a DM software.

In the following, we describe the user profiles who it
is designed for (Subsection 3.1), its main features (Sub-
section 3.2) and the different ways of working integrated
in the software tool. They include the data management
functionality, which is explained in Subsection 3.3 and
the details of the creation of experiments in off-line and
on-line mode, described in Subsections 3.4 and 3.5, re-
spectively.

3.1 User Profiles

Essentially, KEEL is an integration of an environment
with a defined architecture and a development of knowl-
edge extraction as expandable modules. It is mainly in-
tended for two categories of users: researchers and stu-
dents. Either group has a different set of needs:

– KEEL as a research tool: The most common use of
this tool for a researcher will be the automated exe-
cution of experiments, and the statistical analysis of
their results. Routinely, an experimental design in-
cludes a mix of evolutionary algorithms, statistical
and AI-related techniques. Special care was taken to
make possible that a researcher can use KEEL to as-
sess the relevance of his own procedures. Since the
actual standards in machine learning require heavy
computational work, the research tool is not designed
to offer a real-time view of the progress of the al-
gorithms, it is designed to rather generate a script
and be batch-executed in a cluster of computers. The
tool allows the researcher to apply the same sequence
of pre-processing, experiments and analysis to large
batteries of problems and focus his attention in the
summary of the results.

– KEEL as an educational tool: The needs of a student
are quite different to those of a researcher. Generally
speaking, the objective is no longer that of making
statistically sound comparisons between algorithms.
There is no need of repeating each experiment a large
number of times. If the tool is to be used in class, the
execution time must be short and a real-time view of
the evolution of the algorithms is needed, since the
student will use this information to learn how to ad-
just the parameters of the algorithms. In this sense,
the educational tool is a simplified version of the re-
search tool, where only the most relevant algorithms
are available. The execution is made in real time. The
user has a visual feedback of the progress of the al-
gorithms, and can access the final results from the
same interface used to design the experimentation.

Both types of user require an availability of a set of
features in order to be interested in using KEEL. Then,
this is when we describe the main features of the KEEL
software tool.

3.2 Main Features

KEEL is a software tool developed to ensemble and use
different DM models. We would like to remark that this
is the first software toolkit of this type containing a
library of evolutionary learning algorithms with open
source code in Java. The main features of KEEL are:

– EAs are presented in predicting models, pre-processing
(evolutionary feature and instance selection) and post-
processing (evolutionary tuning of fuzzy rules).

– It includes data pre-processing algorithms proposed
in specialized literature: data transformation, discretiza-
tion, instance selection and feature selection.

– It has a statistical library to analyze algorithms’ re-
sults. It comprises a set of statistical tests for ana-
lyzing the normality and heteroscedasticity of the re-
sults and performing parametric and non-parametric
comparisons among the algorithms.

– Some algorithms have been developed by using a
Java Class Library for Evolutionary Computation
(JCLEC)8 [46].

– It provides an user-friendly interface, oriented to the
analysis of algorithms.

– The software is aimed to create experimentations
containing multiple data sets and algorithms con-
nected among themselves to obtain a result expected.
Experiments are independently script-generated from
the user interface for an off-line run in the same or
other machines.

– KEEL also allows to create experiments in on-line
mode, aiming an educational support in order to learn
the operation of the algorithms included.

– It contains a Knowledge Extraction Algorithms Li-
brary9, remarking the incorporation of multiple evo-
lutionary learning algorithms, together with classical
learning approaches. The main employment lines are:
– Different evolutionary rule learning models have

been implemented.
– Fuzzy systems. Fuzzy rule learning models with a

good trade-off between accuracy and interpretabil-
ity.

– Evolutionary neural networks. Evolution and prun-
ing in neural networks, product unit neural net-
works, and radial base models.

– Genetic programming. Evolutionary algorithms that
use tree representations for extracting knowledge.

– Subgroup discovery. Algorithms for extracting de-
scriptive rules based on patterns subgroup discov-
ery have been integrated.

– Data reduction (instance and feature selection and
discretization). EAs for data reduction have been
included.

8 http://jclec.sourceforge.net/
9 http://www.keel.es/software/prototypes/version1.0/

/AlgorithmsList.pdf
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KEEL integrates the library of algorithms in each
one of the function blocks that it is composed. We have
briefly presented its function blocks before, but in the
following subsections, we will describe the possibilities
that KEEL can offer us in relation with data manage-
ment, off-line experiment design and on-line educational
design.

3.3 Data Management

The fundamental purpose of data preparation is to ma-
nipulate and transform raw data so that the information
content enfolded in the data set can be exposed, or made
more easily accessible [33]. Data preparation comprises
those techniques concerned with analyzing raw data so
as to yield quality data, mainly including data collect-
ing, data integration, data transformation, data clean-
ing, data reduction and data discretization [53]. Data
preparation can be more time consuming than data min-
ing, and can present equal challenges to data mining.
Its importance lies in that the real-world data is im-
pure (incomplete, noisy and inconsistent data), high-
performance mining systems require quality data (re-
moving anomalies or duplications) and quality data yields
high-quality patterns (to recover missing data, to purify
data and to resolve data conflicts).

Data Management module integrated in KEEL al-
lows us to perform the data preparation stage indepen-
dently of the remaining of the DM process. This module
is focused on the group of users denoted domain experts.
They are familiar with their data, they know the pro-
cesses that produce the data and they are interested in
reviewing these processes for improving or understand-
ing them. In short, domain users are those whose interest
lies in applying processes to data of their own and they
usually are not experts in DM.

Fig. 1 Data Management

Figure 1 shows an example window of the Data Man-
agement module in the section of Data Visualization.
The module has seven sections, each one is accessible
through the buttons on the left side of the window. In
the following, we will briefly describe them:

– Creation of a new data set : This option allows us to
generate a new data set compatible with the other
KEEL modules.

– Import data to KEEL format : Since KEEL works
with a specific data format (alike the ARFF format)
in all its modules, this section allows us to convert
various data format to KEEL format, such as CSV,
XML, ARFF, connections with data bases, etc.

– Export data from KEEL format : It is the opposite
option to the previous. It converts the data treated
with KEEL procedures in other external formats to
establish a compatibility with other software tools.

– Visualization of data: It is the option used for repre-
senting and visualizing the data. With it, we can see
a graphical distribution of each attribute and com-
parisons between two attributes.

– Edition of data: This area is dedicated to manage
the data manually. The data set, once loaded, can
be edited in terms of modifying values, adding or
removing rows and columns, etc.

– Data Partition: Given that the experiments modules
of KEEL work with partitions of data in order to val-
idate the results, this zone allows us to make them. It
supports k-fold cross validation, 5x2 cross validation
and hold-out validation with stratified partition.

– Data Preparation: It is the section that allows us to
perform automatic data preparation for DM, includ-
ing cleaning, transformation and reduction of data.
All techniques integrated in this section are also avail-
able in the experiments modules of KEEL.

3.4 Design of Experiments: Off-Line Module

In the last few years, a large number of DM software
tools have been developed with researching objectives.
Some of them are libraries which allow to reduce pro-
gramming work of new algorithms: ECJ [23], JCLEC [46],
learning classifier systems [25], etc. Others are DM suites
that incorporate learning algorithms (some of them may
use EAs for this task) and provide a mechanism to es-
tablish comparisons among them. Some examples are
Weka [51], D2K [20], etc.

This module is a Graphical User Interface (GUI) that
allows to design experiments for solving different prob-
lems of regression, classification and unsupervised learn-
ing. Its main aim is to obtain the directory structure
and files required for running the designed experiments
in any local machine with Java (see Figure 2).

The experiments are graphically modelled based on
data flow, where they are represented by graphs with
node-edge connections. To design an experiment, first we
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Dataset

Pre-proc

Method 2

Method 3

Test

Method 1

exe scripts dataset results

1.- Graphic design of the experiment

2.- Obtain the directory structure with
the required files

3.- Execute in any local machine

Fig. 2 Design of experiments

have to indicate the type of validation (k-fold cross val-
idation [18] or 5x2 cross validation [10]) and the type of
learning (regression, classification or unsupervised learn-
ing) we want to use. Then, we have to select the data
sources, put the methods in the workspace and connect
it, combining the evolutionary learning algorithms with
different pre-processing and post-processing techniques
if needed. Finally, we can add statistical tests to achieve
a complete analysis of the studied methods and a box
to obtain a summary of the results. Notice that each
component of the experiment is configured in separate
dialogues that can be opened by double-clicking the re-
spective graph. Figure 3 shows an example of an experi-
ment following the MOGUL methodology [6] and with a
box to obtain a summary of the results. In this Figure is
also shown the configuration window of one of the used
post-processing methods.

When the experiment has been designed, the user
can choose either to save the design in a XML file or to
obtain a zip file. If the user chooses to obtain a zip file,
then the system will generate a zip file with the directory
structure and the required files for running the designed
experiment in any local machine with Java. This direc-
tory structure contains the data sources, the jar files of
the algorithms, the configuration files in XML format,
a script file with all the indicated algorithms in XML
format and a Java tool, named RunKeel, to run the ex-
periment. RunKeel can be seen as a simple EA scripting
environment which reads the script file in XML format,
runs all the indicated algorithms and saves the results
in one or several report files.

Obviously, this kind of interface is ideal for experts
of specific areas who know the methodologies and meth-
ods used in their interest area and with the intention
of proposing a new method and to compare it with the
well-known methods available in KEEL.

Fig. 3 Example of an experiment and the configuration win-
dow of a method.

3.5 Computer-Based Education: On-Line Module

There is a variety of terms used to describe the ed-
ucational use of computer [30]. Computer-assisted in-
struction (CAI), computer-based education (CBE) and
computer-based instruction (CBI) are the broadest terms
and can refer to virtually any kind of computer use in
educational settings. These terms may refer either to
stand-alone computer learning activities or to computer
activities which reinforce material introduced and taught
by teachers.

Most of the software developed in DM and evolution-
ary computation domain is designed for research pur-
poses (libraries, algorithms, specific applications, etc.).
But there are some free softwares that are designed not
only for research purposes but also for educational pur-
poses. These systems are easy to use due to the fact that
they provide a GUI oriented to help in the user interac-
tion with the system for doing all the tasks (to select
data, to choose parameters, to run algorithms, to visu-
alize the results, etc). Some examples of open source DM
systems are Weka [51], Yale [26] and Tanagra [36].

This module is a GUI that allows the user to design
an experiment (with one or more algorithms), to run
it and to visualize the results on-line. The idea is to
use it as a guideline to show the learning process of a
certain model. This module has a similar structure as
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the previous one but only including the more adequate
algorithms and options for academic objectives.

When an experiment is designed the user can choose
either to save the experiment in a XML file or to run it.
If the user chooses to run it, then the system will show
an auxiliary window which will allow to manage and to
visualize the running of each algorithm. When the run
finishes, this window will show the results obtained for
each algorithm in independent tags, showing for exam-
ple the confusion matrices for classification or the mean
square errors for regression problems (see Figure 4).

Fig. 4 Auxiliary window of an experiment with two algo-
rithms.

4 Case Studies

This section presents two case studies as examples for
illustrating the functionality and the process of creating
experiment in the KEEL software tool. The first case
study is focused in the development of a comparison of
some algorithms and in a later analysis of the results,
by using the off-line module. The second example is a
presentation of the educational on-line module.

4.1 Off-Line Case Study

Our purpose in this example is to establish a compari-
son of three methods that belong to different ML tech-
niques and use EAs in the learning task. The experiment
graph is represented in Figure 5. In this figure, we have
used a k-Nearest Neighbour classifier with a previous
pre-processing stage of prototype selection guided by a
CHC model (EIS-CHC + ClasifKNN) [5]. We have also
used a XCS classifier [49] and an Evolutionary Product
Unit based Neural Networks (NNEP) [24].

By clicking the Experiment option in the main menu
of the KEEL software tool, we define the experiment as

Fig. 5 Experiment graph of the off-line example.

Classification problem and we use a 10-fold cross vali-
dation procedure to analyze the results. Then, we have
to choose the data sets for beginning the setup of the
experiment graph. This example uses the Iris data set,
but more of one could be chosen at the same time.

The graph of the Figure 5 represents the flow of data
and results among the algorithms and procedures. A
node can represent an initial data flow (data set), a pre-
process/post-process algorithm, learning methods and
tests or visualization of results modules. They can be
easily distinguished according to the color of the node.
All their parameters can be adjusted by clicking twice
on the node. Logically, directed edges connecting two
nodes imply a relation between them (data or results
interchange). When the data is interchanged, the flow
includes pairs of train-test data sets in classification and
regression problems. By taking account of this explana-
tion, the graph describes a flow of data from the Iris
data set to three nodes, two of them are learning meth-
ods. At the top of them, the flow of data is the input
of a pre-process method, whose operation consist of re-
ducing the training data by removing instances and the
resulted subset is used as reference set of the later k-NN
classifier. XCS and NNEP will use the complete training
data for learning the model.

From now, all the models would be learned and the
data would be classified according to the training and
test data. These results are the inputs of the visualiza-
tion and the tests modules. The module StatTabularCL
gets as inputs these results and generates output files
with the results obtained, such as confusion matrixes for
each method, accuracy and error percentages for each
method, fold and class, and a summary of final results.
On the other hand, the graph represents other way of
results flow, interconnecting each two methods with a
test module. In this case, the test module used is the
signed-rank Wilcoxon non-parametrical procedure Stat-
TestClasRS for comparing two samples of results. The
experiment establishes a pair-wise statistical comparison
among the three methods.



KEEL: A Software Tool to Assess Evolutionary Algorithms to Data Mining Problems 9

---------------------------------------------------------
CONFUSION MATRIX. ALGORITHM: ClasifKNN
---------------------------------------------------------

TEST RESULTS
,iris-setosa,iris-versicolor,iris-virginica
iris-setosa,50,0,0
iris-versicolor,0,46,4
iris-virginica,0,3,47
TRAIN RESULTS
,iris-setosa,iris-versicolor,iris-virginica
iris-setosa,440,10,0
iris-versicolor,0,433,17
iris-virginica,0,11,439

Fig. 6 Confusion Matrix obtained for EIS-CHC +
ClasifKNN

Once the graph is described, we can create the exper-
iment associated and save it as zip file for an off-line run.
Following the structure of directories shown in Figure 2,
the experiment is created as a set of XML scripts and a
jar program for running it. Within the results directory,
there will be directories used for housing the results of
each methods during the run. Whether the method is a
learning method, its associated directory will house the
model learned or if is a test/visualization procedure, its
directory will house the results files. The experiment has
been run and we can find the result file of the confusion
matrix (see Figure 6 for the confusion matrix of the EIS-
CHC + ClasifKNN classifier) or the one associated with
a Wilcoxon comparison (Figure 7).

Wilcoxon signed rank test, Classification
Classification error in each fold:
Algorithm = 0
Fold 0 : 0.06666666666666667
Fold 1 : 0.06666666666666667
Fold 2 : 0.06666666666666667
Fold 3 : 0.06666666666666667
Fold 4 : 0.06666666666666667
Fold 5 : 0.0
Fold 6 : 0.0
Fold 7 : 0.13333333333333333
Fold 8 : 0.06666666666666667
Fold 9 : 0.13333333333333333
Algorithm = 1
Fold 0 : 0.0
Fold 1 : 0.0
Fold 2 : 0.0
Fold 3 : 0.06666666666666667
Fold 4 : 0.0
Fold 5 : 0.0
Fold 6 : 0.06666666666666667
Fold 7 : 0.13333333333333333
Fold 8 : 0.0
Fold 9 : 0.06666666666666667
Null hypothesis, true difference in means is equal to 0
Output=0: There is no evidence against H0
p-value: 0.09934224785065712

Fig. 7 Results for signed-rank Wilcoxon test comparing
XCS with NNEP.

With a simple design of a logical flow of data by
means of a graph representation, an user can create an
experiment involving several data sets, interconnect pre-
processing tasks with learning tasks, integrate and con-

figure powerful learning models with classical ones, com-
pile the results obtained establishing statistical compar-
isons among them and finally run all this process in an
independent machine with the only requirement of hav-
ing JAVA Virtual Machine installed in it.

4.2 On-Line Case Study

An example of an educational experience is shown in
Figure 8. Our propose is to observe the learning process
of a regression algorithm of fuzzy rule learning [47] over
a electrical energy distribution problem [7] by using five
labels per variable.

Fig. 8 Experiment graph of the on-line example.

The run of the experiment is performed in a new
window (see Figure 9). The user/teacher can start, sus-
pend/pause and stop the execution of an experiment at
any moment in order to be able to see step by step par-
tial reports of the execution. The final information that
provides after the run finishes is the run-time, accuracy
in each fold and average accuracy and a brief descrip-
tion of the used function to evaluate the accuracy of the
solutions.

Fig. 9 Window of results obtained in the experiment.

This GUI is ideal for students who can interpret the
results and know how to change the parameters in order
to improve the results. In this example, they can prove



10 J. Alcalá-Fdez et al.

how the Wand and Mendel’s ad-hoc method [47] is very
fast but the results are not very accuracies.

5 Conclusion and Future Work

In this paper, we have described a non-commercial Java
software tool, named KEEL, which provides a platform
for an analysis of evolutionary learning to Data Mining
problems. This tool relieves researchers from the tech-
nical work and favours them to focus on the analysis of
their new learning models in comparison with the exis-
ting ones. Moreover, this makes is easier for researchers
with lower level of knowledge in evolutionary to apply
evolutionary learning algorithms on their problems.

We have shown the main features of this software
tool and we have distinguished three main parts: a mod-
ule for data management, a module for designing ex-
periments with evolutionary learning algorithms, and a
module with educational objectives. We have also shown
two case studies as examples for illustrating the function-
ality and the process of the creation of an experiment in
the KEEL software tool.

The KEEL software tool is continuously updating
and improving. At the moment, we are developing a
new set of evolutionary learning algorithms and a test
tool which will allow us to apply parametric and non-
parametric tests on any set of data. We are also devel-
oping data visualization tools in the on-line and off-line
modules and a graphical tool to run in a distributed way
the experiments designed with the off-line module. Fi-
nally, we are also working on the development of a data
set repository including the data set partitions and the
algorithm results on these data sets, KEEL-dataset10.
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