
A New Fast Algorithm for Fuzzy Rule Selection

Barbara Pizzileo, Kang Li

Abstract- This paper investigates the selection of fuzzy rules
for fuzzy neural networks. The main objective is to effectively
and efficiently select the rules and to optimize the associated
parameters simultaneously. This is achieved by the proposal of
a fast forward rule selection algorithm (FRSA), where the rules
are selected one by one and a residual matrix is recursively up-
dated in calculating the contribution of rules. Simulation results
show that, the proposed algorithm can achieve faster selection
of fuzzy rules in comparison with conventional orthogonal least
squares algorithm, and better network performance than the
widely used error reduction ratio method (ERR).

I. INTRODUCTION

Fuzzy neural networks represent a large class of neural
networks that combine the advantages of associative memory
networks (e.g. B-splines, radial basis functions and support
vector machines) with improved transparency, a critical issue
for nonlinear modelling using conventional neural networks.
For associative neural networks, the advantage is that the lin-
ear parameters can be trained online with good convergence
and stability properties. However, they produce essentially
black box models with poor interpretability. For fuzzy neural
networks (FNNs), the basis functions are associated with
some linguistic rules, and every numerical result can admit
a linguistic interpretation [1].
One of the major issues with the FNN applications is

that the network complexity can be extremely high. To
tackle this problem, a number of FNN construction methods
have been proposed in the literature either to determine the
number of inputs, the number of membership functions or
the number of rules. For example, the adaptive-network-
based fuzzy inference system (ANFIS) [2], the radial basis
function (RBF) based adaptive fuzzy system (RBFAFS) [3],
and the self constructing neural fuzzy inference network
[4], have been proposed mainly to address the problem of
membership function selection. The orthogonal least squares
(OLS), which is one of the most popular approaches for fast
identification of nonlinear systems [5], [6], [7], [8], [9], was
extended for the selection of fuzzy rules [10]. In addition,
the Error Reduction Ratio [11] method has been widely
used in fuzzy structure selection for the Minimal Resource
Allocating Network (M-RAN) [12], Dynamic Fuzzy Neural
Network (DFNN) [13] and the Generalized Dynamic Fuzzy
Neural Networks (GDFNN) [14].

In [15], a Fast Recursive Algorithm (FRA) was proposed
for the identification of nonlinear systems using linear-in-the-
parameters models with improved efficiency and numerical
stability. It was recently applied to the selection of fuzzy

The authors are with the School of Electronics, Electrical Engineering
& Computer Science, Queen's University Belfast, UK (Emails: bpizzileo0l,
k.li@qub.ac.uk). This work was supported by the U.K. EPSRC under Grant
GR/S85191/01 to K. Li.

regressor terms for fuzzy neural networks [16]. In this
paper, a fast rule selection algorithm (FRSA) is proposed
by modifying and extending the FRA to the fuzzy systems,
and a comparison between the FRSA, the OLS and the ERR
will be provided.
The paper is organized as follows. Section II is the

preliminary, and section III presents the fast rule selection
algorithm (FRSA). Two numerical simulation examples are
given in Section IV. Section V is the conclusion.

II. PRELIMINARY

In Fuzzy Neural Networks, for a given set of m inputs
and N samples, each input variable xi(t), i = 1,... m
is classified by ki, i = 1,...,m fuzzy sets, denoted as
Ai(ji), ji = 1,... ,ki [17]. For every input value xi(t),
t = 1,... N, its membership degree in Ai(ji) is denoted
as 0 < Ai(ji) (t) < 1. The construction of a fuzzy
neural network mainly involves the following three steps: i)
fuzzification (each variable is classified into a certain number
of fuzzy sets, and this involves choosing the number of
the fuzzy sets and selecting the shapes of the membership
functions); ii) rule evaluation (typically using the Takagi-
Sugeno [17] or the Mamdani method [18]); iii) aggregation
of rules and defuzzification (once the values of the basis
function for each rule and for each data sample have been
obtained, all the rules should be aggregated and the final
value be defuzzified, i.e. to convert a fuzzy quantity to a
precise, or crisp quantity [18]).
The defuzzification is achieved by the centroid technique,

which produces the centre of gravity
NR
E Wtyr (t)

y(t) = r=l
NR
E Wtr
r=l

NR

Ert Y (t)
r=l

(1)

where y(t) is the crisp value for the tth sample; NR is the
NR

total number of rules; (D' = Wt / Wt is the fuzzy basis
r=l

function [19] associated to the rth rule, Vr = 1, NR. In
mrAn

(1) wtr H ,u> (t) where Ar is the fuzzy set of the jth

variable associated with the rth rule and Ar C {Aijj),j
1, ki}, yr (t) is the output associated to the rth rule and tth
sample whose expression depends on the particular choice of
model structure. For example a linear model will have

m

yr(t) = E: girxi (t), Vr = 1, ...,~NR
i=l

(2)

where g' is the consequent parameter associated to the ith
input and the rth rule [17].

1-4244-1210-2/07/$25.00 C 2007 IEEE.

From (1) and (2) it follows that Vt C {1, N} the crisp
output can be reformulated as

y(t) = Wt (glxi(t) + + gmXM(t)) +
+ Wt (gjlXi(t) + *** + gMXm(t)) + **-

+ t (1(t+*** + gm xm (t) (3)

NR
given that E Wtf = 1 for (1).

r=l
The total number of unknown parameters gr is n = mNR

where NR H ki is the total number of rules.

III. THE PROPOSED METHOD

For the convenience of notations, define 1) the scalars
fir(t) = WirVi(t) for t 1,...,N and r 1...NR;
2) the vectors so= [for(1) ... foj(N)]T, yr
[glr . . . r] ; and 3) the full column rank submatrices

(pr = (... (pm), where these NR submatrices
represent the corresponding initial NR candidate fuzzy rules.
Thus Vt C { 1, ... N} the output in the fuzzy neural network
can be expressed as:

y(t) = f (x(t))
NR m

S S 'oi (t)gi + £(t)
r=l i=l

(8)

(9)

I'Er = yTy (1r (O rTy

~or = (pr

where ler is the vector containing the estimate of the
m parameters and lE' is the model error at the step
j 1, associated to the rth rule.
Moreover define NR residual matrices ljRr C SN XN

1Rr = I _O r (lMr) -1 (o r)T (10)

which are obtained by updating the following matrix
(i = 1, ..., m) for m times,

'Rr i\ I_-I'(D-r) (ltr

where 1b Ci NX is the matrix with the first i

columns of r i.e. 1 (r s$r)
Moreover

1Mr (1 r) (14r) lmr 1 Mr

'Rr=I 'Rm=1 Rr : l m

To update 1Rr, according with [15] and from (9) it
holds that:

(4)
1Rr -=1 Rr (___)_____+_____+__(__)i+ 1 i - (o r+ 1) T(I1 Rr) (O'0r+ 1) (1 1)

with x(t) = [xi(t) ... Xm(t)]T the FNN neural input
vector and E(t) the model residual sequence. If N data
samples {x(t), y(t)} 1 are used for network construction
and training, (4) can then be reformulated as

(5)y = bDe) + E-

where ([1 . NR]

A(cf)T ... (cNR) b d.A cost function can be defined as

2) Furthermore define a regression, and from (9) it holds
that

larai k

lr

lara,y
l al n

and E3T

T
r

T

(s-,) T -,k(lR 1 ~)TkT
(-') i)(1-,)T
(PR_Y P

(12)

E =Et= (y(t)
NR m

r Ei1zz(t)g)
r=l i=l

which represents the cost function associated to the whole
network where all possible rule are included into the fuzzy
model. Now, the objective is to select M out of the total
NR rules given a rule selection criterion, and calculate the
corresponding M vectors gi, Vj = 1, . . ., M. To achieve this
requires to select M different sub-matrices (Oj) N.Xn from
b corresponding to the selected rules. To select the subma-
trices, a fast rule selection algorithm (FRSA) is proposed.

A. Fast Rule Selection Algorithm (FRSA)
At the beginning, suppose the first rule is to be selected

from all candidate rules, i.e. j 1, then at this stage, the
major issues for FRSA are

1) Define NR recursive matrices 'M'r C Wm xn

lpMr = (O -r)T (r) r= 1, .. .,NR (6)

According to [15] it holds that

1e-r = (lMr)-1 (o r)T y (7)

According to [15], the above quantities can be effi-
ciently computed for i = 1, . . .,m k = i, ..., m as

i-l

1, Twi f--E (lar ilah 1/ar
h=1

lary = (-r)T ya, (jPi}
i-1

E(1 ar 1ar)/1a
Sh(1aaa Y)/la=
h=l

(13)

3) Finally define the net cost function contributed by each
rule as lEr, which can be recursively updated as

(14)

where 1Er 1 + 1E[r = 1Er, 1Er = 1Er and
Er = lEr.

4) Now it's possible to select among all the rules the one
that gives the lowest cost function and start to build
the matrix 1S corresponding to the selected rules and
the matrix 1U of unselected rules. The updated full
regression matrix will be

1 = [1s 1u

'YT.3' .-X:i=l (1."h,yl."h,i+l)/I."h,h16Er (i+ h
i+i= .ar Tpr I:i=, lar, 2/ lar(i+) i+ h (h i+l) h, h

where
1S (lfs1)

and s, is the index of the selected rule; so if (PS1)
is the first corresponding selected submatrix from b
defined in (5), this matrix has to be updated as 1fS=
(iRSl) fSi in the matrix of selected rules iS. In
the meantime, the submatrices corresponding to the
unselected rules are grouped together as

lu [= 1ul

where i = 1,...,m, icpr is the jth vector of the
matrix ip u

2) Update of the regression context. From (12)

j+lau'r - (+Rr)jpl) (j+'R-rl))(j?r),
j+ 1aur7 = [(R) (j 0-r]iR() (i o-rnkd

and

... 1-UNR-1]

where if ur r = 1,... ,NR- 1 is the new index
of the unselected rules then 1 U, = (lRs') -u,

are the updated submatrices corresponding to the u'h
unselected rules and Ur #t Si.

Now to generalize to the selection of the (j + 1)th rule,
the starting full regression matrix defined in (5), updated at
the end of the step j becomes

i = [is jU]
where

and

is [1 sl Jj-j.

iU [j U,

and at the end of the step j,

ij -UNR-i

(15)

j+laur = [(i+ R-rl)(jpr]y
j+laur = (jRsi) (jop?r)]TY

Finally, according to (13), the above quantities can be
efficiently computed for i 1,... m, k = i,... m
as

j+a u,XU j^Ur) T (j ur)

h= (ahi ah k) a h

j+l±aU (j iur)T
1

(±lj+laui±j+lauh Y)/ a h
h=1

h,ih h,y ah,h

(16) 3) Computation of the net contribution to the cost func-
tion. From (14)

(17)

(18)

which is the final updated selected submatrix corresponding
to the sth selected rule andJ

(19)

j+16Eur
(yTi+plr h, 1 (+h yJ ha i+l)/ ah,)

(jp?r)TjO(p?l+ i,i1 j+ 1 aur+)2/ j lau'

where jESj + j+1iEur j+±Eul j+iEulr +
j+1± Eur j+±Eur and ±i+Eur = j+±Eut

4) The submatrix with the lowest cost function ji+Eu,
has the index u,r = Sj+i, (ur l=1 Nr-j)
Therefore, similar to (15), the full regression matrix
can be updated as

are the updated submatrices corresponding to the u'h unse-
lected rules, u,r # Sj.
Now, at this stage, the major issues for FRSA are

1) Update of the residual matrix. Similarly to (6), define
NR j recursive matrices, j+iMfr C jlXf

iMu4 = [j jUr]T [jS i(Ur]

where ur = 1, . . ., NR -j. From (7) and (8) it follows
that

j+l6 r = (j+ MXU)- [ijS ji Ur]TV

j+±iEu = Ty (_±j+1 U) [ijs]T

Moreover, similar to (10), the NR -j residual matrices
becomes i+ Rur, which can be obtained by updating
each of them m times, i.e., according to (11),

j+lRUr-RSj (jRs)(jo_lr)(jD_,)T(Rsj)T
1 (Jpu7)T(jR')(Jpr)

j+±iRu+ =j+± Ru r

±iRU ±iR
r(jn̂ r)(j+ _,r)(

j+'RlRU j+l Rur

j+l± = [i+ls

where from (16) and (17)
j+l S

±+lu

i+lu I

j+l sj+j)

and from (18) and (19), ur=1...,NR-j -1

(j+l(sj+±) = (j+lRsJ+l3) sj+l

(J+l-Ur) = (j+1Rsj+l)J r

The above procedure can be explained in a compact way,
Vj = 1 M, which is summarized as follows.

1) Define the matrix

(20)

where if j = 1 ur = r , then i-l S is an empty matrix
and j- l it,U = 0pUr = (pr
Moreover, define

j Ur T TjEulr = yTy _ (jur T (DU,))T

3 -8i = (4R-9i) (4-1 'j)(.o) .o

(Si) j-1 u ,-1 ..Ur) = (jR .o

(l(to
[(j+l -Ul) ... (j+l -UNR-j-1.o .o) I

344.Ur = (i-is j-l.our)

VI= 0,...,~m where 1Ru'
j-lRsj -1

2) Define

3arZ = [(4R'tr1) (-1 -u'r)] (T(R.Ur 1) (j-1-ur)
3al,k =
[(w-lRhjR1) (and- ur) T(j-lRsi-1) (j-1 -ur)

with °R'o = I and

i au,

a,Y3 al'y

I and iR"r

[(4 R"r 1) (-1 - ur)]Ty
[(-'Rsj-l) (4-1 -ur)] T y

which can be fast computed for i = 0, ..., m, k
i,... ,m as

ijatUr = (j-l _Ur)T (j-l ^-ur)

ZE (ia Jak) ahhhil
h k h

According to [15], if N >> m, for the FRA the computa-
tional effort mainly comes from the term = m2N. Therefore
the total cost for the FRSA is

C(FRSA) ((2NR -M + 1) (M) m2N
V2J

where NR is the total number of rules, M is the desired
number of selected rules, m is the number of inputs, N is
the number of samples.

IV. NUMERICAL EXAMPLES

Example 1- The membrane function was approximated
using a fuzzy network [1]. The function inputs are x, and
X2 which are within the range of [0 1]. The membership
functions are 1-D piecewise quadratic B-splines, which were
generated using the recursive Cox-De Boor algorithm [20]:

I[li (t) I d Tx +t -T, * [H-iz (Ot]d-1
+ Tz++ (.[Ii -tXdi1 (

Tzm 1 -Tz d-1 (21)

Ja% = (j-l UP)TTy Tz <xi (t) < Tz+
otherwise

3) Define

(Ti lopjL .(au /(- p? r _Y E ih=1 (ah ry ah,i+1) / ah, h)
(- i+?) T - i?+ 1 h 1(+1ah ri+1)/ h rh

where jE"r 1-'E'j_l + 5Eur,oEso
iE 1 + i&6Eu r and iEu- = iEU

4) Update the regression matrix as

iO= [is 4U]

where

is

Ju

(j3 Sj+l)

[(
Ul1) . .. (i -UNp R i)]

(j3SJ) (iRsj)3 1 Sj

(J3Ur) (jRsj)j-1 lr

This rule selection procedure will continue, until a fuzzy
neural network structure selection criterion is satisfied, such
as the net contribution of the selected rule is below certain
threshold, etc [15] and the output of the FNN can be
estimated as

8 = S [gl .. gM]T

B. Computational Complexity

Since for each step j 1,... ,M the FRA needs to be
apploed for [15] NR-j + 1 times, the total computation of
the FRSA is

NR \

C(FRSA) = i) C(FRA)

i=NR-M+1

where d is the degree of the B-spline, T is a knot vector
with ki + d + 1 dimensions, [,uP (t)ld is the B-spline for the
input value xi(t) in the iteration step z. In this example,
the fuzzy neural network is fuzzified by ki = 6 (i = 1, 2),
d = 2, NR = k, x k2 = 6 x 6 = 36 and T
[-0.2, 0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4].

Figure 1 shows the membership functions. Table II sum-
marizes the cardinality of rules associated to their linguistic
interpretations. Among a total of 2601 samples, 1989 sam-
ples were used for the training and 612 for the validation.
The specifications of the PC used in the simulation are

summarized as follows - CPU: Intel(R) Pentium(R) 4 CPU
3.20GHz; Speed: 512 MB; max bandwidth 266MHz.

A. Selection offuzzy rules

Using the proposed FRSA and the stop criteria
[MSE]j -[MSE]j+1 = 1 X 10-4 (MSEj is the mean
squared error with j rules), 18 rules were selected.

B. Comparison with other approaches

For comparison purpose, the OLS was also applied to the
fuzzy rule selection using the similar procedures described
above.

In addition, the Error Reduction Ratio (ERR) combined
with the sensitivity analysis of fuzzy rules [1]-[14] has
been another popular approach in pruning the insignificant
rules for the fuzzy models. This approach is summarized as
follows:

1) Error Reduction Ratio: given N samples from (4) and
(5), the matrix b can be transformed into a set of orthogonal
basis vector by the QR decomposition, therefore the output
can be expresses as

y = A + = TG +

i 1,.Ur I) T (j u,) T
i i+ i+ iiRur =JR'.r- ('ri)(i

i+l t

i+ i i+)

i-i
3aUr3 aur 3aUrE h,i h ,y h, h

h=l

,iE

1
[Piz (t) I0=

0.

medium-small medium large

e = A-1G,4 = (A-1 =[01 en

and A is a unit upper triangular matrix. The Least Square
solution of G is given by

G = [gl *.* * n] @@

(22)
4'T4'

As ibj and fbj are orthogonal for i :t j , the variance of y

is given by

n

Y _ ,gipf' + T

N N

Thus, based on (22) the ERR due to Oi can be defined as

gi 07 0i
erri= T

yTy
(,o 7,) 2(I pt Y

4'T'4'iyTy

0

0 0.2 0.4 0.6 0.8
xl (or x2)

Fig. 1. Piecewise quadratic B-spline fuzzy membership functions for
example 1

(23)

2) Sensitivity analysis of fuzzy rules: define the ERR
matrix

A (P1 . .. PNR) C UmxNR

whose elements are obtained from (23) and the r'h column
of A is the total ERR corresponding to the r'h rule.
Furthermore define the significance of the r'h rule as

PT
Tr =A\/,PrPr 1 NR

m

If T/r < kerr, r = 1, . . . , NR where kerr a pre-specified
threshold, then the r h is deleted.

This above approach was also applied to the same problem.
Table I summarizes the performances of the three methods,
where MSE is the mean squared error, MSET is MSE
for training data, MSEv is MSE for validation data. It is
shown that in comparison with the OLS, FRSA selected
the same rules with the same accuracy, however required
less computation effort. In comparison with the ERR, the
FRSA was less computationally efficient but produced more

accurate results.

TABLE I

COMPARISON OF PERFORMANCE FOR FRSA, OLS AND ERR

FOR EXAMPLE 1

Fig. 2. Membership functions of the inputs for example 2

Example 2: Nonlinear Dynamical System-The following
system was modelled using FNN [4]

y(t +) +y(t) ±u3(t)

where u(t) = sin(0.04w. t). One hundred training data were

generated using t = 1,. . .,100. The initial condition of the
output was set to be zero.

Figure 2 shows the inputs membership functions. Choos-
ing the stop criterion MSE < 10-3, the FRSA selected 19
rules. With the same number of rules being selected, again
the FRSA is computationally more efficient than the OLS and
more accurate than the ERR, as shown in Table III. Figures 3
and 4 illustrate the simulation results of the above different
approaches.

TABLE II

ASSOCIATION OF RULES TO FUZZY SETS IN EXAMPLE 1

where

or

y small

<,, 0.6

05

, 0.4

E

E 0.3

-02

very large

0.1

Method Index of Rules Simul. Time MSE
FRSA 20;8;21;14;22;15 15.9 sec MSET =5.6x 10-4

27; 13;2;3 1;23;35
26;19;25;28;7;1 MSEV=3.7x 10-4

OLS 20;8;21;14;22;15 80.7 sec MSET =5.6x 10-4
27; 13;2;3 1;23;35
26;19;25;28;7;1 MSEV=3.7x 10-4

ERR 13;19;7;20;14;25 2.5 sec MSET=2.61 x 10-3
2;8;21;26;1;32;15

27;22;33;3;9 MSEV =1.7x10-3

Rule Xi l
V-S S M-S M-L L V-L

X2
V-S 1 7 13 19 25 31
S 2 8 14 20 26 32

M-S 3 9 15 21 27 33
M-L 4 10 16 22 28 34
L 5 11 17 23 29 35
V-L 6 12 18 24 30 36

TABLE III

COMPARISON OF PERFORMANCE FOR FRSA, OLS AND ERR

IN EXAMPLE2

20 40 60 80 100
time step,t

Fig. 3. Simulation result of the fuzzy model by FRSA in example 2

2

15

0.5

~t 0

05

-15

-2
0 20 40 60 80 100

time step,t

Fig. 4. Simulation result of the fuzzy model by ERR in example 2

V. CONCLUSION

A fast rule selection algorithm has been proposed. The

simulation results show that, in comparison with the classi-

cal Orthogonal Least Square method, it leads to the same

modelling accuracy but requires less computational effort. In

comparison with the Error Reduction Ratio method, it gives

higher accuracy.

REFERENCES

[1] X. Hong, C. Harris, and S. Chen, "Robust neurofuzzy rule base
knowledge extraction and estimation using subspace decomposition
combined with regularization and d-optimality," IEEE Trans Syst Man
Cybern Part B Cybern, vol. 34, pp. 598-608, 2004.

[2] J. Jang, "Anfis: adaptive-network-based fuzzy inference system," IEEE
Trans. Systems Man Cybernet, vol. 23, pp. 665-684, 1993.

[3] K. Cho and B. Wang, "Radial basis function based adaptive fuzzy
systems and their applications to identification and prediction," Fuzzy
Sets and Systems, vol. 83, pp. 325-339, 1996.

[4] C. Juang and C. Lin, "An on-line self-constructing neural fuzzy
inference network and its applications," IEEE Trans. Fuzzy Systems,
vol. 6, pp. 12-32, 1998.

[5] S. Chen, S. A. Billings, and W. Luo, "Orthogonal least squares
methods and their application to nonlinear system identification,"
International Joumrnal of Control, vol. 50, pp. 1873-1896, 1989.

[6] S. Chen, C. F. N. Cowan, and P. M. Grant, "Orthogonal least squares
learning algorithm for radial basis function network," IEEE Trans.
Neural Networks, vol. 2, pp. 302-309, 1991.

[7] S. Chen and J. Wigger, "Fast orthogonal least squares algorithm
for efficient subset model selection," IEEE Trans. Signal Processing,
vol. 43, pp. 1713-1715, 1995.

[8] Q. M. Zhu and S. A. Billings, "Fast orthogonal identification of
nonlinear stochastic models and radial basis function neural network,"
Int. J Contr., vol. 64, pp. 871-886, 1996.

[9] K. Z. Mao, "Fast orthogonal forward selection algorithm for feature
subset selection," IEEE Trans. Neural networks, vol. 13, pp. 1218-
1224, 2002.

[10] X. Hong and C. J. Harris, "A neurofuzzy network knowledge extraction
and extended gram-schmidt algorithm for model subspace decompo-
sition," IEEE Trans Fuzzy Syst, vol. 11, pp. 528-541, 2003.

[11] L. Wang and J. Mendel, "Fuzzy basis functions, universal approxi-
mation, and orthogonal least-squares learning," IEEE Trans. Neural
Networks, vol. 3, pp. 807-814, 1992.

[12] N. S. Y. Lu and P. Saratchandran, "A sequential learning scheme
for function approximation using minimal radial basis function neural
networks," Neural Computation, vol. 9, pp. 461-478, 1997.

[13] S. Wu and M. J. Er, "Dynamic fuzzy neural networks-a novel approach
to function approximation," IEEE Trans. Systems Man Cybernet., P.
B: Cybernet., vol. 30, pp. 358-364, 2000.

[14] S. Wu, M.J.Er, and Y. Gao, "A fast approach for automatic generation
of fuzzy rules by generalized dynamic fuzzy neural networks," IEEE
Trans. Fuzzy Systems, vol. 9, pp. 578-594, 2001.

[15] K. Li, J. Peng, and G. Irwin, "A fast nonlinear model identification
method," IEEE Transactions on Automatic Control, vol. 50, no. 8,
pp. 1211-1216, 2005.

[16] B. Pizzileo, K. Li, and G. Irwin, "A fast fuzzy neural modeling method
for nonlinear dynamic system," in International Symposium on Neural
Networks, June 2007.

[17] J. D. Saez, "Takagi-sugeno fuzzy model structure selection based on

new sensitivity analysis," in The 2005 IEEE International Conference
on Fuzzy Systems, pp. 501-506, 2005.

[18] P. T. J. Ross, Fuzzy Logic with engineering application. John Wiley
& Son Ltd, 2004.

[19] H. M. Kim and J. M. Mendel, "Fuzzy basis functions: Comparison
with other basis function," IEEE Trans Fuzzy Syst, vol. 3, no. 2,
pp. 158-168, 1995.

[20] C. Wang, W. Wang, T. Lee, and P. seng, "Fuzzy b-spline membership
function (bmf) and its applications in fuzzy-neural control," IEEE
Trans Syst Man Cybern, vol. 25, pp. 841-851, 1995.

1.5

- fuzzy output
- output

0.5

~t 0

05

-0.5-

-1.5 L
0

Method Index of Rules Simul. Time MSE
FRSA 8; 18; 19;7; 17;4;23 1.3 sec MSE=1.2x10-3

14;25;2;21;12;6
10;24;22;3;20;9

OLS 8; 18; 19;7; 17;4;23 10.2 sec MSE= 1.2x10-3
14;25;2;21;12;6
10;24;22;3;20;9

ERR 1;25;21;4;16;11;5 0.2 sec MSE=2.61 x 10-3
15;20;23;6;22;2
10;14;12;24;3;13

