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Abstract— This paper investigates the selection of fuzzy rules
for fuzzy neural networks. The main objective is to effectively
and efficiently select the rules and to optimize the associated
parameters simultanecusly. This is achieved by the proposal of
a fast forward rule selecticn algorithm (FRSA), where the rules
are selected one by cne and a residual matrix is recursively up-
dated in calculating the contribution of rules. Simulation resulis
show that, the proposed algorithm can achieve faster selection
of fuzzy rules in comparison with conventional orthogonal least
squares algorithm, and better network performance than the
widely used error reduction ratic method (ERR).

[. INTRODUCTION

Fuzzy neural networks represent a large class of neural
networks that combine the advantages of associative memory
networks {e.g. B-splines, radial basis functions and support
vector machines) with improved transparency, a critical issue
for nonlinear modelling using conventional neural networks.
For associative neural networks, the advantage is that the lin-
ear parameters can be trained online with good convergence
and stability properties. However, they produce essentially
black box models with pooer interpretability. For fuzzy neural
networks (FINNNs), the basis functions are associated with
some linguistic rules, and every numerical result can admit
a linguistic interpretation [1].

One of the major issues with the FNN applications is
that the network complexity can be extremely high. To
tackle this problem, a number of FNN construction methods
have been propesed in the literature either to determine the
number of inputs, the number of membership functions or
the number of rules. For example, the adaptive-network-
based fuzzy inference system (ANFIS) [2], the radial basis
function (RBF) based adaptive fuzzy system (RBFAFS) [3],
and the self constructing neural fuzzy inference network
[4], have been proposed mainly to address the problem of
membership function selection. The orthegonal least squares
(OLS}, which is one of the most popular approaches for fast
identification of nonlinear systems [3], [6], [7], [8], [9], was
extended for the selection of fuzzy rules [10]. [n addition,
the Error Reduction Ratic [11] method has been widely
used in fuzzy structure selection for the Minimal Rescurce
Allocating Network (M-RAN} [12], Dynamic Fuzzy Neural
Network {DENN) [13] and the Generalized Dynamic Fuzzy
Neural Networks (GDENN) [14].

In [15], a Fast Recursive Algorithm (FRA)Y was proposed
for the identification of nenlinear systems using linear-in-the-
parameters models with improved efficiency and numerical
stability. [t was recently applied to the selection of fuzzy
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regressor terms for fuzzy neural networks [16]. In this
paper, a fast rule selection algorithm (FRSA)} is proposed
by modifving and extending the FRA to the fuzzy systems,
and a comparison between the FRSA, the OLS and the ERR
will be provided.

The paper is organized as follows. Section II is the
preliminary, and section III presents the fast rule selection
algorithm (FRSA). Twe numerical simulation examples are
given in Sectien V. Section V is the conclusion.

[I. PRELIMINARY

In Fuzzy Neural Networks, for a given set of m inputs
and N samples, each input variable x;(¢), ¢ = 1,...,m
is classified by k;, i = 1,...,m fuzzy sets, denoted as
Ai(3:), 7+ = 1,...,k; [17]. For every input value x;{t},
t =1,..., N, its membership degree in A4,(7,} is dencted
as 0 < ,u,f”'u") (t}) < 1. The construction of a fuzzy
neural network mainly involves the following three steps: i}
fuzzification {each variable is classified into a certain number
of fuzzy sets, and this involves choosing the number of
the fuzzy sets and selecting the shapes of the membership
functions}; ii} rule evaluation (typically using the Takagi-
Sugeno [17] or the Mamdani methed [18]); iii} aggregaticn
of rules and defuzzification {once the values of the basis
function for each rule and for each data sample have been
obtained, all the rules should be aggregated and the final
value be defuzzified, i.e. to convert a fuzzy quantity to a
precise, or crisp quantity [18]).

The defuzzification is achieved by the centroid technique,
which produces the centre of gravity
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where y(t) is the crisp value for the ¢** sample; Ny is the
Ng
total number of rules; &, = W[ / > WY is the fuzzy basis

r=1
function [19] associated to the +** rule, ¥r = 1,..., Ng. In
i) -
Iy Wy =] ,uf" (t) where A7 is the fuzzy set of the ¢*"
i=1
variable associated with the v rule and A7 ¢ {A;(:), 4 =
1,..., k;}, 4" (¢} is the output associated to the v rule and ¢**
sample whose expression depends cn the particular choice of
model structure. For example a linear model will have

vt = gim(t), ¥r=1,..,Ng (2)
i=1

where g7 is the consequent parameter associated to the ith
input and the r* rule [17].



From (1) and (2} it follows that V¢ € {1, ...,
output can be reformulated as

y(t) = Whigler () +... + gham () +
F Wiz (t) + oot ghzm () +
L Whe ( gNRa (8 - +gﬁ%m(t)) (3)

N} the crisp

Nr
given that > W =1 for (1).
r=1
The total number of unknown parameters g; is n = mNpg

where Np = [] k: is the total number of rules.
i=1

III. THE PROPOSED METHOD

For the convenience of notations, define 1) the scalars
@ity = Wlay(t) for ¢ = 1,...,N and r = 1...Np;

2} the vectors g?; = | L} r(N) }T, g =
[ g1 an, ] ; and 3) the full column rank submatrices
¢ = (@Y @’ ), where these Np submatrices

represent the corresponding initial Vg candidate fuzzy rules.

Thus ¥t € {1, ..., N} the cutput in the fuzzy neural network
can be expressed as:
Nrp m
y(t) = F(x () =D iltgl +e(t)  #
r=14=1

with x(¢) = [ a1(t) am(t) ¥ the FNN neural input
vector and (¢} the model residual sequence. If N data
sarples {x(t), y(t)}1, are used for network construction
and training, {4} can then be reformulated as

y=%90 {5 (5}
where & = [@¢' . ¢N" ] and T =
@ @]

A cost function can be defined as

=3 i -

which represents the cost function associated to the whole
network where all possible rule are included into the fuzzy
model. Now, the objective is to select M out of the total
Npg rules given a rule selection criterion, and calculate the
corresponding M vectors g7, ¥ = 1,..., M. To achieve this
requires to select M different sub-matrices (cﬁj ) N LTOM
@ corresponding to the selected rules. To select the subma-

trices, a fast rule selection algorithm (FRSA} is proposed.

A. Fast Rule Selection Algorithm (FRSA)

At the beginning, suppose the first rule is to be selected
from all candidate rules, i.e. § = 1, then at this stage, the
major issues for FRSA are

1} Define Ny recursive matrices 1M”™ € 7™

— (%) (%"}, r=1...Na  (©)
According to [15] it holds that
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where 1©F is the vector containing the estimate of the
mm parameters and 'E7 is the model error at the step
7 =1, associated to the * rule.

Moreover define N residual matrices LR” ¢ RN=N

lR‘T’ :1'70@7’ (1M7’)_1 (O(ﬁT)JT (10)

which are obtained by updating the following matrix
{(t=1,...,m) for m times,

AT sy —1 AT T
Lo () (1)
where 1&] € RV*? is the matrix with the first 4
AT
columns of @7, ie. '®; = ( @ 2 ).
Moreover
1pgr (1¢r)T(1@f) AL L A
‘Ri—-1, 'R, ='R, &, —¢"
To update 'R}, according with [15] and from {9) it
holds that:
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Furthermore define a regression, and from (9} it holds
that
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According to [15], the above guantities can be effi-
ciently computed feri =1, ...,
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Finally define the net cost function contributed by each
rule as LE", which can be recursively updated as
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Now it'’s possible to select among all the rules the one
that gives the lowest cost function and start to build
the matrix 'S corresponding to the selected rules and
the matrix U of unselected rules. The updated full
regression matrix will be

1{):[1 1y |



where
1S — (1@51)

and sy is the index of the selected rule; so if (3%}
is the first corresponding selected submatrix from ¢
defined in (5), this matrix has to be updated as 1% =
(LR**) %1 in the matrix of selected rules !S. In
the meantime, the submatrices corresponding to the
unselected rules are grouped together as

lU — { 1(’51.51 lgauNR,1 ]

where if w, r = 1,...,Ng — 1 is the new index
of the unselected rules then '@“r = (1R®1)@¥r
are the updated submatrices corresponding o the uﬁh
unselected rules and w, # 8.
Now to generalize to the selection of the (5 + 1) rule,
the starting full regression matrix defined in (5}, updated at

the end of the step 7 becomes

I =[78 U | (15)
where
I§=[ 1@ iges | (16)
and
U= [ dpm d@ime—i | (17
and at the end of the step 7,
(@) = (1R) (I71¢%) (18)

which is the final updated selected submatrix corresponding
to the s selected rule and

Cgr) =R (7717
th

are the updated submatrices corresponding to the
lected rules, wu, # s;.
Now, at this stage, the major issues for FRSA are

1} Update of the residual matrix. Similarly to (6}, define
Np — 4 recursive matrices, 7H1AL" < pm=m

{js j¢,“r ]T { ig j@ﬂr ]
Npg— 7. From (7) and (8) it follows
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Moreover, similar to (10), the Ng — 7 residual matrices
becomes 771 R, which can be obtained by updating
each of them m times, i.e., according to (11),
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where i = 1,...,m, 7@ is the i*" vector of the
matrix 7 %"

2) Update of the regression context. From (12)

(R G )T (R ) (),
ar = [CRDERT R ()

and
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Finally, according to {13}, the above quantities can be

efficiently computed for i = 1,...,m, &k =4¢,...,m
as
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3) Computation of the net contribution to the cost func-
tion. From {14}
j+15Eur -
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where fESi  iHgEYr = JH1pSe SRR
FHGEY = SH1E% and SHLEur — i1 Ru-
4y The submatrix with the lowest cost function 7+ L%
has the index v, = s;41, (4, = 1,, Np — 7).
Therefore, similar to {15}, the full regression matrix
can be updated as

ity = [ g U |

where from (16} and {17}
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The above procedure can be explained in a compact way,
¥4 =1,..., M, which is summarized as follows.

1y Define the matrix
j(bu"" :( jfls jfl(;\our ) (20)

where if j = 1, u, = r , then 7718 is an empty matrix
and j—l(pAur _ (:Ou,- — QAOT
Moreover, define
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4} Update the regression matrix as
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This rule selection procedure will confinue, unfil a fuzzy
neural network structure selection criterion is satisfied, such
as the net contribution of the selected rule is below certain
threshold, etc [15] and the output of the FNN can be
estimated as
. T
y="s[ gt ... g™ ]

B. Compurational Complexity

Since for each step 7 = 1,..., M the FRA needs to be
apploed for [15] Ng — 7 + 1 times, the total computation of
the FRSA is

Ng
O(FRSA) _ ( Z ’L) C(FRA)
i=Ng—-MI+1

According to [15], if N > m, for the FRA the computa-
tional effort mainly comes from the term = m2N. Therefore
the total cost for the FRSA is

C(FRSA) _ ((QNR— M+1) (M)> 2N

2

where Np is the total number of rules, M is the desired
number of selected rules, m is the number of inputs, N is
the number of samples.

[V. NUMERICAL EXAMPLES

Example 1- The membrane function was approximated
using a fuzzy network [1]. The function inputs are x4, and
xo which are within the range of [0 1]. The membership
Tunctions are 1-D piecewise quadratic B-splines, which were
generated using the recursive Cox-De Boor algorithm [20]:

[wF ()], = 2T ey
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where d is the degree of the B-spline, 7 is a knot vector
with &; + d 4+ 1 dimensions, [} (t})], is the B-spline for the
input value x;(t} in the iteration step z. In this example,
the fuzzy neural network is fuzzified by k; = 6(i = 1, 2),
d = 2 Np = ki xk = 6x6 = 36 and 7 =
[-0.2,0,0.2,0.4,0.6,0.8,1,1.2, 1.4].

Figure 1 shows the membership functicns. Table II sum-
marizes the cardinality of rules associated to their linguistic
interpretations. Among a total of 2601 samples, 1989 sam-
ples were used for the training and 612 for the validation.

The specifications of the PC used in the simulation are
summarized as follows - CPU: Intel{R) Pentium(R) 4 CPU
3.20GHz; Speed: 512 MB; max bandwidth 266 MHz.

otherwise

A. Selection of fuzzy rules

Using the proposed FRSA and the stop criteria
[MSE], — [MSE], ;, = 1 x 107* (MSF; is the mean
squared error with 7 rules), 18 rules were selected.

B. Comparison with other approaches

For comparison purpese, the OLS was also applied to the
fuzzy rule selection using the similar procedures described
above.

In addition, the Error Reduction Ratio {ERR} combined
with the sensitivity analysis of fuzzy rules [11]-[14] has
been another popular approach in pruning the insignificant
rules for the fuzzy models. This approach is summarized as
Tollows:

1) Error Reduction Ratio: given N samples from (4} and
(5}, the matrix € can be transformed into a set of orthogonal
basis vector by the QR deccmpesition, therefore the cutput
can be expresses as

y—TA® L E—¥G + E



where

O=A1G T=0A" =] U |

and A is a unit upper triangular matrix. The Least Square
solution of G is given by

G =l o) = [9T0] ' 0TY

or
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As 1p; and ¥, are orthogoenal for i # j , the variance of y

is given by

gi (22)
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Thus, based on (22) the ERR due to +; can be defined as
24 Tap, Top)?
err; = Si q’[;i ki = (;bl y)T (23)
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2) Sensitivity analysis of fuzzy rules: define the ERR
matrix

A={p PNy ) € RMNE

whose elements are obtained from (23) and the »** column
of A is the total ERR corresponding to the ** rule.
Furthermore define the significance of the r*" rule as

I
nT:\/M, r=1,...,Np
m

If 1 < ke, ¥ = 1,..., Ng where ko, a pre-specified
threshold, then the r** is deleted.

This above approach was also applied to the same preblem.
Table [ summarizes the performances of the three methods,
where MSE is the mean squared error, MSEr is MSE
for training data, M Sy is MSE for validation data. It is
shown that in comparison with the OLS, FRSA selected
the same rules with the same accuracy, however required
less computation effort. In comparison with the ERR, the
FRSA was less computationally efficient but produced more
accurate results.

TABLE 1
COMPARISON OF PERFORMANCE FOR FRSA, OLS AND ERR
FOR EXAMPLEL
Method Index of Rules Simul. Time MSE

FRSA 20:8:21;14,22;15 15.9 sec MSEp=56x10"1
37:13:2:31:23:35

26:19;25;28;7;1 MSEy=3.7x10"%

CLS 20:8,21;14;22:15 80.7 sec MSEp=56x10" 1
37:13:2:31:23:35

26:19;25;28;7;1 MSEy=3.7x10"%

ERR 13;19;7;20;14;23 2.5 sec MSEp=2.61x10 5
28:21:26:1:32:15

27:22;33:3:9 MSEy=1.7x10"%
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Fig. 2. Membership functions of the inputs for example 2

Example 2: Nonlinear Dynamical System-The following
system was modelled using FNN [4]

yit)
y{t +1) T
where u(t) = sin(0.04r ¢). One hundred fraining data were
generated using ¢ = 1,..., 100. The initial condition of the
oufput was set to be zero.

Figure 2 shows the inputs membership functions. Choos-
ing the stop criterion MSE < 1073, the FRSA selected 19
rules. With the same number of rules being selected, again
the FRSA is computationally more efficient than the OLS and
more accurate than the ERR, as shown in Table III. Figures 3
and 4 illustrate the simulation results of the above different
approaches.

+u®(t)

TABLE I
ASSOCIATION OF RULES TG FUZZY SETS IN EXAMPLE 1

Rula X
V-8 S M-S | M-L L V-L
Xo
VA 1 7 13 19 25 31
S 2 8 14 20 26 32
M-8 3 9 15 21 27 33
M-L 4 10 16 22 28 34
L 5 11 17 23 29 33
V-L 6 12 18 24 30 36




Fig. 3.

Fig. 4.

fuzzy output
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20 40 B0 an 100
time step,t

Simulation result of the fuzzy model by FRSA in example 2

wit+1]

i3 20 40 B0 a0 100
time step,t

Simulation result of the fuzzy model by ERR in example 2

V. CONCLUSION

A fast rule selection algorithm has been propesed. The
simulaticn results show that, in comparison with the classi-
cal Orthogonal Least Square method, it leads to the same
modelling accuracy but requires less computational effort. In
comparison with the Error Reduction Ratic method, it gives
higher accuracy.
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