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Abstract- Genetic fuzzy rule selection has been
successfully used to design accurate and interpretable fuzzy
classifiers. However there exists a computational complexity
problem for large data sets. This paper proposes a simple
but effective idea to improve the applicability of genetic
fuzzy rule selection to large data sets. Our idea is based on
the parallel distributed implementation of genetic fuzzy rule
selection. We examine the advantage of the proposed
approach through computational experiments on some
benchmark data sets.

I. INTRODUCTION

Genetic fuzzy rule selection is an effective approach
to the design of accurate and interpretable fuzzy rule-
based classifiers [1]-[3], [21]. It is the following two-step
approach. In the first phase, a large number of promising
fuzzy rules are generated by a data mining technique. In
the second phase, a genetic algorithm is used to select a
small number of fuzzy rules from the generated ones in
the first phase. Each string is evaluated with respect to the
accuracy on training patterns and the complexity of a
fuzzy classifier represented by the string.

The main advantage of genetic fuzzy rule selection is
less computational complexity than alternative algorithms
such as genetics-based machine learning [4]-[7]. But there
exists a computational complexity problem when we
apply it to large data sets. The evaluation time of each
string linearly increases as the number of patterns in a
data set increases.

In this paper, we propose a simple but effective idea
to improve the applicability of genetic fuzzy rule
selection to large data sets. Our idea is based on the
subdivision of a large data set into small subsets. A
similar idea was used in Cano et al. [8], [9] for instance
selection where a genetic instance selection algorithm
was independently applied to each subset. That is, a large
instance selection problem was subdivided into small sub-
problems. Selected instances in each sub-problem were
merged to form the final solution of the original instance
selection problem. We use the subdivision of a large data
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set to efficiently evaluate each rule set (i.e., each string:
fuzzy rule-based classifier).

This paper is organized as follows. First we explain
genetic fuzzy rule selection for designing fuzzy classifiers
in Section II. Next we explain its parallel distributed
implementation in Section III. Then we examine the
effect of the subdivision in Section IV. Finally we
conclude this paper in Section V.

II. CLASSIFIER DESIGN BY GENETIC RULE SELECTION

In this section, we briefly explain classification rules,
classification methods and genetic rule selection.

A. Pattern Classification Problem
Let us assume that we have m training (i.e., labeled)

patterns xp (xpv, ..., xpn) , p = 1,2, ..., m from M
classes in the n-dimensional continuous pattern space
where xpi is the attribute value of the p-th training
pattern for the i-th attribute ( i= 1, 2, ..., n). For the
simplicity of explanation, we assume that all the attribute
values have already been normalized into real numbers in
the unit interval [0, 1]. That is, xpi E [0, 1] for p = 1,
2, ..., m and i= 1, 2, ..., n. Thus the pattern space of our
pattern classification problem is an n-dimensional unit-
hypercube [0, I]n.
B. Fuzzy Rulesfor Pattern Classification Problem

For our n-dimensional pattern classification problem,
we use fuzzy rules of the following type:

Rule Rq: If x1 is Aql and ... and x, is Aqn
then Class Cq with CFq, (1)

where Rq is the label of the q-th fuzzy rule,
x = (xl, ..., x,) is an n-dimensional pattern vector, Aqi
is an antecedent fuzzy set (i = 1, 2, ..., n ), Cq is a class
label, and CFq is a rule weight (i.e., certainty grade).

Since we usually have no a priori information about
an appropriate granularity of the fuzzy discretization for
each attribute, we simultaneously use multiple fuzzy
partitions with different granularities in fuzzy rule
extraction. In our computational experiments, we use four
homogeneous fuzzy partitions with triangular fuzzy sets
in Fig. 1. In addition to the 14 fuzzy sets in Fig. 1, we also
use the domain interval [0, 1] as an antecedent fuzzy set
in order to represent a don't care condition. That is, we
use the 15 antecedent fuzzy sets for each attribute in our
computational experiments. Even when we use these
simple partitions, there still exist interpretability issues
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[21]. But we skip this discussion and focus on parallel
distributed implementation of genetic fuzzy rule selection
in this paper.
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Fig. 1. Four fuzzy partitions used in our computational experiments.

C. Fuzzy Rule Generation
Since we use the 15 antecedent fuzzy sets for each

attribute of our n-dimensional pattern classification
problem, the total number of combinations of the
antecedent fuzzy sets is 15n. Each combination is used in
the antecedent part of the fuzzy rule in (1). Thus the total
number of possible fuzzy rules is also 15n . The
consequent class Cq and the rule weight CFq of each
fuzzy rule Rq are specified from the given training
patterns in the following heuristic manner.

First we calculate the compatibility grade of each
pattern xp with the antecedent part Aq of the fuzzy rule
Rq using the product operation as

PAq (xp PAqj (Xpl ) * *-- * PAqn (Xpn )'(2)
where PAqi ( ) is the membership function of Aqi.

Next we calculate the confidence of the fuzzy rule
" Aq > Class h " for each class ( h = 1, 2,..., M ) as
follows [16]:

c(Aq > Class h)

E /Aq(Xp)
Xp cClass h

m

E /Aq (xp)
p=l

The consequent class Cq is specified by identifying
the class with the maximum confidence:

c(Aq > Class Cq) max {c(Aq > Class h)} . (4)
h=1,2,...,M

The consequent class Cq can be viewed as the dominant
class in the fuzzy subspace defined by the antecedent part
Aq. When there is no pattern in the fuzzy subspace
defined by Aq, we do not generate any fuzzy rules with
Aq in the antecedent part. This specification method of

the consequent class of fuzzy rules has been used in many
studies since [10].

The rule weight CFq of each fuzzy rule Rq has a
large effect on the performance of fuzzy rule-based
classification systems [II]. Different specifications of the
rule weight have been proposed and examined in the
literature. We use the following specification because
good results were reported by this specification in the
literature [12], [13]:

M
CFq = c(Aq > Class Cq) Z c(Aq > Class h). (5)

h=1
h#Cq

Let S be a set of fuzzy rules of the form in (1). A
new pattern xp is classified by a single winner rule Rw,
which is chosen from the rule set S as follows:

Rw =argmax{ IA (xp) CFq Rq E S} . (6)

As shown in (6), the winner rule Rw has the
maximum product of the compatibility grade and the rule
weight in S. For other fuzzy reasoning methods for
pattern classification problems, see Cordon et al. [15] and
Ishibuchi et al. [10], [12]. It should be noted that the
choice of an appropriate rule weight specification
depends on the type of fuzzy reasoning (i.e., single
winner rule-based fuzzy reasoning) used in fuzzy rule-
based classification systems [12], [13].

D. Rule Evaluation Criteria
Using the above-mentioned procedure, we can

generate a large number of fuzzy rules by specifying the
consequent class and the rule weight for each of the 15n
combinations of the antecedent fuzzy sets. It is, however,
very difficult for human users to handle such a large
number of generated fuzzy rules. It is also very difficult
to intuitively understand long fuzzy rules with many
antecedent conditions. Thus we only generate short fuzzy
rules with only a small number of antecedent conditions.
It should be noted that don't care conditions with the
special antecedent fuzzy set [0, 1] can be omitted from
fuzzy rules. The rule length means the number of
antecedent conditions excluding don't care condition. We
examine only short fuzzy rules of length Lmax or less
(e.g., Lmax = 3). This restriction is to find a small number
of short (i.e., simple) fuzzy rules with high interpretability.

Among short fuzzy rules, we choose promising rules
by a heuristic rule evaluation criterion as candidate rules
in genetic fuzzy rule selection. In the field of data mining,
two rule evaluation criteria (i.e., confidence and support)
have been often used. We have already shown the fuzzy
version of the confidence criterion in (3). In the same
manner, the support of the fuzzy rule " Aq > Class h " is
calculated as follows [16]:



s(Aq > Class h) = xpCass h (7)
m

In our computational experiments, we extracted
candidate rules using prespecified values of the thresholds
on support and confidence.

E. Genetic Fuzzy Rule Selection
Let us assume that N candidate rules have already

extracted. The task of genetic fuzzy rule selection is to
find an accurate and compact rule set from the N
candidate rules.

Any subset S of the N candidate rules can be denoted
by a binary string of length N as S = sI s3 ... SN where
si= 1 and si= 0 mean that the ith candidate rule is included
in and excluded from the rule set S, respectively. Such a
binary string is used as an individual in genetic fuzzy rule
selection.

In this paper, we use the following three objectives to
find an accurate and compact rule set S:

fi(S): The number of correctly classified training
patterns by S,

f2 (S): The number of fuzzy rules in S,
f3 (S): The total number of antecedent conditions in S.

The first objective is maximized while the second and
third objectives are minimized.

The first objective is calculated by classifying training
patterns xp. We use a single winner-based (i.e., winner-
take-all) classification method. That is, xp is classified by
the winner rule that has the maximum rule weight among
the compatible rules with xp in S. The classification of xp
is rejected when no rules are compatible with xp (which is
counted as an error in our computational experiments). In
our genetic fuzzy rule selection, random tiebreak is not
used to efficiently search for a small number of necessary
rules. That is, the classification of xp is rejected when
multiple compatible rules with different consequent
classes have the same maximum rule weight.

The second objective is calculated by just counting
the number of l's (i.e., selected rules) in S. Since we use
the single winner-based method without random tiebreak
to evaluate the accuracy of the rule set S, only a single
rule is responsible for the classification of each training
pattern. As a result, some rules may be used for the
classification of no training patterns. Whereas the
existence of such an unnecessary rule in the rule set S has
no effect on the first objective of the weighted sum fitness
function, it deteriorates the second and third objectives.
Thus we remove from the offspring all the unnecessary
rules responsible for the classification of no training
patterns.

The third objective is the total number of antecedent
conditions except for don't care conditions in the selected
rules in S.

The above-mentioned three objectives are combined
into the following weighted sum fitness function:

fitness(S) = w.f1(S) - w2 f2(S) - w3 f3(S), (8)

where w1, w2 and w3 are non-negative weights. This
fitness function is maximized in genetic fuzzy rule
selection. As a result, the accuracy is maximized while
the complexity is minimized. Of course, the final solution
(i.e., the rule set S) strongly depends on the specification
of the weight vector w =(W1, W2, w3)-

Genetic rule selection is implemented in the following
manner to find the optimal rule set S with respect to the
weighted sum fitness function in (8).

Genetic Rule Selection
Step 1: Generate a number of promising rules (i.e., N
rules) from the training patterns.
Step 2: Randomly generate Npop binary strings of length N
as an initial population where Nop, is a user-definable
parameter called the population size.
Step 3: Iterate the following operations Npop times to
generate an offspring population with Npop strings.
3.1: Select a pair of parent strings from the current

population by binary tournament selection.
3.2: Recombine the selected parent strings to generate

an offspring by the uniform crossover operation.
One of the generated strings is randomly chosen as
an offspring. This operation is applied with a pre-
specified probability. The crossover probability is
specified as 0.9 in this paper. When the crossover
operation is not applied to the selected pair of
parents, one of the two parents is randomly chosen
and used as an offspring in the following steps.

3.3: Apply a biased mutation operation to the offspring.
This operation changes 0 to 1 with a small
probability and 1 to 0 with a large probability to
decrease the number of l's (i.e., selected rules) in
the offspring. The mutation probabilities from 0 to
1 and from 1 to 0 are specified as 1/N and 0.05,
respectively, where N is the number of candidate
rules. In our computational experiments, N>> 100.

3.4: Remove unnecessary rules from the offspring in the
heuristic manner.

Step 4: Select the best Nop, strings with respect to the
weighted sum fitness function in (8) from the current and
offspring populations.
Step 5: If a prespecified termination condition is not
satisfied, return to Step 3 with the best Npop strings
selected in Step 4 as the population in the next generation.
Otherwise, terminate the execution of the algorithm.



We use the total number of iterations of the algorithm
(i.e., the total number of generations) as the termination
condition in this paper. The best rule set among examined
ones during the execution of our genetic rule selection
algorithm is returned to human users as the final result.

III. PARALLEL DISTRIBUTED GENETIC FUZZY RULE
SELECTION

Whereas genetic algorithms have been frequently
used in the field of data mining and knowledge extraction
[18], their applicability to large data sets is not high. This
is because a large number of rule sets are to be generated
and evaluated in evolutionary approaches. In this section,
we propose a simple but effective idea to improve the
applicability of our genetic rule selection algorithm to
large data sets.

Figure 2 shows the overview of our approach. To
handle a large data set, we use a cluster computer system
composed of a server CPU and a number of client CPUs.
We can easily set up this system by using four
independent desktop computers or a single computer with
multi-core CPUs.

....

Genetic Rule Genetic Rule Genetic Rule
Selection Selection Selection

Fig. 2. Parallel distributed genetic fuzzy rule selection.

Our main trick to handle a large data set is to divide a

population in GA and training patterns into the same

number of subgroups as the number of client CPUs. Let
the number of client CPUs be three like Fig. 2. The
training patterns are divided into three subgroups. In the
same way, the population is also divided into three
subpopulations. Then each client CPU performs genetic
fuzzy rule selection with a subgroup of training patterns
and a subpopulation given by the server CPU.

Of course, each subpopulation easily overfits to the
corresponding subgroup of training patterns if the

combination is fixed. Thus, we change the subgroups of
training patterns after the prespecified generations. Our
parallel distributed genetic fuzzy rule selection is
implemented in the following manner.

Parallel Distributed Genetic Fuzzy Rule Selection
Step 1: Generate a number of promising rules (i.e., N
rules) from the whole training patterns as in Section II.
Step 2: Randomly generate Npop binary strings of lengthN
as an initial population.
Step 3: Randomly divide the current population and the
training patterns into subpopulations and subgroups,
respectively.
Step 4: Send the subpopulations and the subgroups of the
training patterns to client CPUs.
Step 5: Iterate genetic fuzzy rule selection for a
prespecified number of generations in each client CPU.
Step 6: Systematically change the subgroups of the
training patterns to optimize each subpopulation for a
different subgroup of the training patterns.
Step 7: If a prespecified termination condition is not
satisfied, return to Step 5. Otherwise go to Step 8.
Step 8: Choose the best fuzzy classifier with respect to
(8) from the whole population and examine the
generalization ability for test patterns.

Roughly speaking, in the case that the number of
CPUs is three, the proposed algorithm is nine times as
fast as the original one in Section II. This is because the
population size and the number of training patterns for a
single CPU are decreased to 1/3, respectively.

IV. COMPUTATIONAL EXPERIMENTS

Through computational experiments on some test
problems in the UCI database, we demonstrate
advantages of our proposed parallel distributed genetic
fuzzy rule selection algorithm in Section III over the
original one in Section II.

Table I shows the test problems used in our
computational experiments. Whereas these test problems
are not actually very large, they can be used to
demonstrate the effectiveness of the proposed idea. We
use the whole ten-fold cross-validation procedure.

We first extracted candidate rules using the minimum
confidence and support levels. Table II shows these
values for each test problems. In this paper, we set these
values to about ten times the number of training patterns.
Table II also shows the average number of extracted rules
for the each test problem. Since rule extraction is
performed on the server, the number of extracted rules for
each approach is the same among the following five
implementations. Then genetic fuzzy rule selection was
performed using the weight vector (w1, W2, W3) = (100, 1,



1). The population size Npop and the number of client
CPUs are 300 and 3, respectively. Thus, the each client
CPU has a subpopulation of size 100. The number of
generations is 1000.

We examined the following five implementations.
Type 0: Only the server performs rule extraction and

genetic fuzzy rule selection. No subdivision is used in
this case. Thus, this type is the same as the original
algorithm in Section II.

Type 1: Three clients perform genetic fuzzy rule
selection. But the subgroups of the training patterns are

never changed during the execution.
Type 2: Three clients perform genetic fuzzy rule

selection. The subgroups are changed every 100
generations.

Type 3: Three clients perform genetic fuzzy rule
selection. The subgroups are changed every 10
generations.

Type 4: Three clients perform genetic fuzzy rule
selection. The subgroups are changed every generation.

The CPU time was measured on a workstation with two
Xeon 3.0 GHz dual processors (i.e., four CPU cores). We
regarded one of them as a server CPU. The others are

client CPUs.

TABLE I
DATA SETS USED IN OUR COMPUTATIONAL EXPERIMENTS

Data set Attributes Patterns Classes

Wine 13 178 3

Breast W 9 683* 2

Yeast 8 1484 10
* Incomplete patterns with missing values are not included.

TABLE II

MINIMUM CONFIDENCE AND SUPPORT LEVELS FOR EACH DATA SET,
AND THE NUMBER OF GENERATED CANDIDATE RULES

Data set Confidence Support Rules

Wine 0.8 0.1 2137.7

Breast W 0.9 0.2 6882.6

Yeast 0.02 0.002 12338.8

Table III, IV, and V show the average training data
accuracy, test data accuracy, number of fuzzy rules, rule
length, and CPU time of the best fuzzy classifier on the
training patterns over the whole ten-fold cross validation
procedure (i.e., ten runs). The proposed approach (i.e.,
Type 1 to Type 4) could not outperform the conventional
approach with respect to the training data accuracy. But
some types of them are comparable to the original
algorithm. For example, the average training data

accuracy of Type 3 is very close to that of Type 0. In
Type 3, the subgroups of the training patterns are
frequently changed. Thus, each subpopulation was not
overfitting to a particular subgroup of the training patterns.

The main advantage of the proposed approach is the
decrease in CPU time. In Type 1 to Type 3, CPU time
was very short compared with Type 0. But, in Type 4, we
needed more CPU time. This is because, whenever
applying genetic fuzzy rule selection, we calculated the
compatibility grade of each pattern in the given subgroup
to avoid the repetition of this calculation of the same
pattern with the same rule. We need the modification of
this implementation.

Figure 3 shows the trajectories of the average number
of fuzzy rules in the best fuzzy classifier on Wisconsin
breast cancer data set. The number of CPUs (Core) and
the generation interval between subgroup changes are
denoted in parentheses. The result on Type 4 is not shown
in Fig. 3 because the result was out of the range of the
vertical axis. We can see that Type 3 keeps the diversity
of the population. This must be the reason why Type 3 is
better than the other alternatives.

TABLE III
RESULTS ON WINE DATA SET

Train Test Rules Length Time
Type 0 100.00 94.38 5.8 11.2 0:02:24
Type 1 98.13 89.80 5.7 11.6 0:00:25
Type 2 99.13 92.71 5.3 10.9 0:00:25
Type 3 99.94 93.24 4.9 9.6 0:00:33
Type 4 99.69 96.60 18.7 37.9 0:05:58

TABLE IV
RESULTS ON WISCONSIN BREAST CANCER DISEASE DATA SET

Train Test Rules Length Time
Type 0 98.44 96.05 5.5 12 0:23:53
Type 1 97.67 96.78 5.4 11 0:03:11
Type 2 97.79 96.93 5.2 11 0:03:15
Type 3 98.34 96.05 5.2 11 0:03:50
Type 4 94.75 94.14 18.0 45 0:13:28

TABLE V
RESULTS ON YEAST DATA SET

Train Test Rules Length Time
Type 0 63.81 56.98 39.2 111.5 1:32:46
Type 1 61.03 56.63 25.5 71.9 0:11:34
Type 2 61.71 56.36 22.7 66.3 0:11:37
Type 3 63.05 58.11 23.7 68.6 0:13:52
Type 4 56.28 54.17 82.7 241.5 0:37:09



V. CONCLUSIONS

We proposed the parallel distributed genetic fuzzy
rule selection algorithm to handle large data sets. Through
computational experiments, we examined the effect of the
parallel implementation. The main advantage of the
proposed approach is low computational time with almost
the same performance as the original approach.

Computational complexity strongly depends on the
number of candidate rules in our genetic fuzzy rule
selection algorithm. We have proposed a candidate rule
reduction to deal with this problem in [19], [20]. The
combination of parallel distributed implementation and
the candidate rule reduction may have a larger effort on
the applicability for huge data sets and computational
time reduction. As another future work, we will further
consider migration and its communication topologies to
improve parallel search ability. The extension of our
parallel implementation to an evolutionary multiobjective
optimization will be an interesting research topic.

This work was partially supported by Grant-in-Aid for
Scientific Research on Priority Areas: KAKENHI
(18049065) and for Young Scientists (B): KAKENHI
(18700228).
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Fig. 3. The trajectories of the average number of fuzzy rules in the best
classifier at each generation over the whole lOCV procedure on

Wisconsin breast cancer data set.
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