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Abstract- We examine the effect of genetic rule selection as
a postprocessing procedure in fuzzy data mining. Usually a
large number of fuzzy rules are extracted in a heuristic manner
from numerical data using a rule evaluation criterion in fuzzy
data mining. It is, however, very difficult for human users to
understand thousands of fuzzy rules. Thus it is necessary to
decrease the number of extracted fuzzy rules when our task is
to present understandable knowledge to human users. In this
paper, we use genetic rule selection to decrease the number of
extracted fuzzy rules. Through computational experiments, we
examine the effect of genetic rule selection. First we extract
fuzzy rules that satisfy minimum support and confidence levels.
Thousands of fuzzy rules are extracted from numerical data in
a heuristic manner. Then we apply genetic rule selection to
extracted fuzzy rules. Experimental results show that genetic
rule selection significantly decreases the number of extracted
fuzzy rules without degrading their classification accuracy.

I. INTRODUCTION

Fuzzy rule-based systems have been successfully applied
to various application areas such as control, modeling and
classification. In the design of fuzzy rule-based systems, not
only their accuracy but also their interpretability has been
taken into account [1]-[7]. Multiobjective optimization has
been used in some studies [8]-[15] to find a number of non-
dominated fuzzy rule-based systems along the accuracy-
interpretability tradeoff surface. In the field of data mining,
emphasis has been usually placed on the interpretability of
extracted rules rather than their accuracy. In this sense, fuzzy
logic has a high potential ability to play an important role in
data mining. Fuzzy rules have been used in some studies
[16]-[20] on data mining under the name of fuzzy data
mining or linguistic data mining.

Usually a large number of fuzzy rules are extracted in a
heuristic manner using rule evaluation criteria (e.g., see [16]).
It is, however, very difficult for human users to understand
thousands of fuzzy rules. Thus the number of extracted fuzzy
rules should be significantly decreased when our task is to
present understandable knowledge to human users.

In this paper, we use genetic rule selection to decrease
the number of extracted fuzzy rules as a postprocessing
procedure in fuzzy data mining. Genetic rule selection was
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first formulated as an optimization problem for the design of
fuzzy rule-based classification systems in Ishibuchi et al. [1],
[2] where the following weighted sum fitness function was
maximized:

f(S)= wI *fj(S)- w2 f2(S), (1)

In this formulation, S is a subset of candidate fuzzy rules,
f1(S) is the number of correctly classified training patterns
by S, f2 (S) is the number of fuzzy rules in S, and w1 and
W2 are positive weights. A large number of extracted fuzzy
rules in fuzzy data mining are used as candidate fuzzy rules
in genetic rule selection in this paper.

A single-objective genetic algorithm was used in [1], [2]
to find the optimal rule set of the rule selection problem in
(1). The single-objective formulation in (1) was extended to
the case of two-objective rule selection [8] where a two-
objective genetic algorithm was used to find a number of
non-dominated rule sets with respect to fi(S) and f2(S).
The two-objective formulation in [8] was further extended to
three-objective rule selection [9] where the minimization of
the total number of antecedent conditions (i.e., the total rule
length) was introduced as the third objective function f3 (S) .

In this paper, we examine the effect of genetic rule
selection as a postprocessing procedure in fuzzy data mining
for pattern classification problems. It is shown that genetic
rule selection significantly decreases the number of extracted
fuzzy rules without severely degrading their classification
accuracy. First we explain fuzzy rule-based classification
and fuzzy rule extraction in Section II. Next we explain
genetic rule selection in Section III. Then we demonstrate
the effect of genetic rule selection through computational
experiments on some benchmark data sets from the UC
Irvine machine learning repository in Section IV. Finally
Section V concludes this paper.

II. FUZZY RULE-BASED CLASSIFICATION

A. Pattern Classification Problems
Let us assume that we have m training (i.e., labeled)

patterns xp = (xpl, ..., Xpn), p = 1,2,...,m from M classes
in the n-dimensional continuous pattern space where xpj is
the attribute value of the p-th training pattern for the i-th
attribute. For the simplicity of explanation, we assume that
all the attribute values have already been normalized into
real numbers in the unit interval [0, 1].

B. Fuzzy Rulesfor Pattern Classification Problems
For our n-dimensional pattern classification problem, we

use fuzzy rules of the following form [21]:
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Rule Rq: If x1 is Aqi and ... and x, is Aqn
then Class Cq with CFq,

c(Aq > Class Cq)
(2)

where Rq is the label of the q-th fuzzy rule, x = (x1, ..., X, )
is an n-dimensional pattern vector, Aqi is an antecedent
fuzzy set, Cq is a class label, and CFq is a rule weight (i.e.,
certainty grade). We also denote the fuzzy rule Rq in (2) as
Aq > Class Cq. The rule weight CFq has a large effect on
the accuracy of fuzzy rule-based classification systems as
shown in [22], [23]. For other types of fuzzy rules for pattern
classification problems, see [20], [24], [25].

Since we usually have no a priori information about an
appropriate granularity of the fuzzy discretization for each
attribute, we simultaneously use multiple fuzzy partitions
with different granularities as shown in Fig. 1. In addition to
the 14 fuzzy sets in Fig. 1, we also use the domain interval
[0, 1] itself as an antecedent fuzzy set in order to represent a
don 't care condition. Thus we have the 15 antecedent fuzzy
sets for each attribute in our computational experiments.

0 Attribute value 0 Attribute value

sl2 25 L

0 Attibute value1 0 Attribute value
Fig. 1. Four fuzzy partitions used in our computational experiments.

C. Fuzzy Rule Generation
Since we have the 15 antecedent fuzzy sets for each

attribute of our n-dimensional pattern classification problem,
the total number of combinations of the antecedent fuzzy
sets is 15". Each combination is used in the antecedent part
of the fuzzy rule in (2). Thus the total number of possible
fuzzy rules is also 15". The consequent class Cq and the
rule weight CFq of each fuzzy rule Rq are specified from
the given training patterns in the following heuristic manner.

First we calculate the compatibility grade of each pattern
xp with the antecedent part Aq of the fuzzy rule Rq using
the product operation as

PAq (Xp) = PAql (XplI) P- Aqn (Xpn ) (3)
where /Aqi () is the membership function of Aqi.

Next the confidence of the fuzzy rule Aq > Class h is
calculated for each class h as follows [16], [20]:

E PAq(xp)
x E Class h

c(Aq > Class h) m (4)
E PAq (Xp)
p=1

The consequent class Cq is specified by identifying the
class with the maximum confidence:

max {c(Aq = Class h)}. (5)
h=1,2,...,M

The consequent class Cq can be viewed as the dominant
class in the fuzzy subspace defined by the antecedent part
Aq. When there is no pattern in the fuzzy subspace defined
by Aq, we do not generate any fuzzy rules with Aq in the
antecedent part. This specification method of the consequent
class of fuzzy rules has been used in many studies since [21].

Different specifications of the rule weight CFq have
been proposed and examined in the literature. We use the
following specification because good results were reported
by this specification in the literature [20], [23]:

M
CFq = c(Aq > Class Cq) - c(Aq > Class h). (6)

h=1
h.Cq

D. Rule Extraction Criteria
Using the above-mentioned procedure, we can generate a

large number of fuzzy rules by specifying the consequent
class and the rule weight for each of the 15n combinations
of the antecedent fuzzy sets. It is, however, very difficult for
human users to handle such a large number of generated
fuzzy rules. It is also very difficult to intuitively understand
long fuzzy rules with many antecedent conditions. Thus we
generate short fuzzy rules with a few antecedent conditions.
It should be noted that don't care conditions can be omitted
from fuzzy rules. So the rule length means the number of
antecedent conditions excluding don't care conditions. We
examine short fuzzy rules of length Lmax or less (e.g.,
Lmax = 3). This restriction is to find a compact set of fuzzy
rules with high interpretability.

Among short fuzzy rules, we only extract fuzzy rules that
satisfy both minimum confidence and support levels. In the
field of data mining, these two rule extraction criteria have
been often used [26]-[28]. In the same manner as the fuzzy
version of confidence in (4), the support of the fuzzy rule
Aq > Class h is calculated as follows [16], [20]:

E PAq (xp)
xp E Class h

s(Aq > Class h) =C q
m

E. Fuzzy Rule-based Classification Systems
Let S be a set of fuzzy rules of the form in (2). That is,

S is a fuzzy rule-based classification system. A new pattern
xp is classified by a single winner rule R,, which is
chosen from the rule set S as follows:

A, (xp) * CFw = max{lAq (xp) CFq Rq E S}. (8)

III. GENETIC RULE SELECTION

Let us assume that N fuzzy rules have already been
extracted from numerical data using the heuristic rule
extraction procedure in Section II. We denote a subset of the
extracted N fuzzy rules by a binary string of lengthN as

S = SIS2 ...SN, (9)

where s1 = 1 and s = 0 mean the inclusion of the j-th rule

287

(7)



in S and its exclusion from S, respectively. Such a binary
string is handled as an individual in genetic rule selection.

The fitness value ofS is calculated as follows:

f(S)= wIjf1(S)- w2 f2(S)- w3 f3(S), (10)
where fi(S) is the number of correctly classified training
patterns by S, f2 (S) is the number of fuzzy rules in S,
f3(S) is the sum of the rule lengths of all fuzzy rules in S,
and w1, w2 and W3 are prespecified (i.e., user-definable)
positive weights for f1 (S), f2 (S) and f3 (S), respectively.

We use a single-objective genetic algorithm with the
(,U + A) - ES generation update mechanism to find the
optimal rule set of our rule selection problem in (10). First
an initial population is randomly generated. Then a pair of
parent strings are chosen from the current population by
binary tournament selection. An offspring string is generated
from the selected pair of parent strings by uniform crossover
and bit-flip mutation. By iterating selection, crossover and
mutation, we generate an offspring population. The next
population is constructed by choosing the best strings from
the current population and the offspring population.

As in our former studies [9], [12], we used two problem-
specific heuristics tricks: biased mutation probabilities (i.e.,
0.1 for the mutation from 1 to 0, and 0.00 1 for that from 0 to
1) and unnecessary rule removal (for details, see [9], [12]).

IV. COMPUTATIONAL EXPERIMENTS

A. Data Sets
We use seven data sets in Table I: Wisconsin breast

cancer (Breast W), diabetes (Diabetes), glass identification
(Glass), Cleveland heart disease (Heart C), iris (Iris), sonar
(Sonar), and wine recognition (Wine). These data sets are
available from the UC Irvine machine learning repository.
Data sets with missing values are marked by "*" and "**" in
the third column of Table I. All attribute values are
normalized into real numbers in the unit interval [0, 1]. For
comparison, we show in the last two columns of Table I the
reported results in [29] where six variants of C4.5 [30] were
examined. The generalization ability of each variant was
evaluated by ten independent runs of the ten-fold cross-
validation procedure (i.e., IOx1OCV) in [29]. We show the
best and worst classification rates on test patterns among the
six variants in [29] for each data set in Table I.

TABLE I
DATA SETS USED IN OUR COMPUTATIONAL EXPERIMENTS

Data set Attributes

Breast W
Diabetes
Glass

Heart C
Iris

Sonar
Wine

9
8
9

13
4

60
13

Patterns Classes C4.5 in [29]
Best Worst

683* 2 94.9 94.0
768** 2 75.0 72.8
214 6 72.7 67.8
297* 5 53.7 52.1
150 3 94.3 92.5
208 2 75.4 64.2
178 3 94.4 91.2

* Incomplete patterns with missing values are not included.
** Some suspicious patterns with attribute value "0" are included.

B. Conditions ofComputational Experiments
In heuristic extraction of fuzzy rules (i.e., in the fuzzy

data mining phase), the upper bound of the rule length is
specified as Lmax = 2 for the sonar data set with 60 attributes
and Lmax = 3 for the other data sets. We use such a different
specification because only the sonar data set involves a large
number of attributes (i.e., it has a huge number of possible
combinations of antecedent fuzzy sets).

We examine the 16 combinations of the following four
values of the minimum confidence and support levels:

Minimum confidence level: 0.6, 0.7, 0.8, 0.9,
Minimum support level: 0.01, 0.02, 0.05, 0.10.

Fuzzy rules are extracted using each of the 16 combinations
of the minimum confidence and support levels.

A standard single-objective genetic algorithm is applied
to extracted fuzzy rules as a postprocessing procedure. We
use the following parameter values in our genetic algorithm:

Weight vector: (w1, w2, W3) = (10, 1, 1),
Population size: 200,
Stopping condition: 1000 generations,
Crossover probability: 0.9 (Uniform crossover),
Mutation probability: 1/N,

where N is the number of extracted fuzzy rules.
Average classification rates on training and test patterns

are calculated over five independent runs of the two-fold
cross-validation procedure (i.e., 5 x2CV ) before and after
genetic rule selection for each data set.

C. Experimental Results
Due to the page limitation, we report only a part of

experimental results. More details will be reported at the
conference presentation.

In Figs. 2-5, we show average results on the iris data set.
The iris data set is one of the most frequently-used data sets
in the literature. Fig. 2 (a) shows the average number of
extracted fuzzy rules for each combination of the minimum
confidence and support levels. Thousands of fuzzy rules are
extracted by the heuristic rule extraction procedure. We can
see from Fig. 2 (a) that the number of extracted fuzzy rules
strongly depends on the values of the minimum confidence
and support levels. On the other hand, Fig. 2 (b) shows the
average number of selected fuzzy rules after genetic rule
selection. Four fuzzy rules are selected from thousands of
extracted rules on average in all cases in Fig. 2 (b).

Fig. 3 shows the average classification rates on training
patterns. The average classification rates on training patterns
are improved by genetic rule selection in Fig. 3 whereas the
number of fuzzy rules is significantly decreased in Fig. 2. On
the other hand, Fig. 4 shows the average classification rates
on test patterns. Almost the same generalization ability is
obtained in Fig. 4 before and after genetic rule selection.

Fig. 5 shows the average rule length of fuzzy rules. From
Fig. 5, we can see that short fuzzy rules are selected by
genetic rule selection. This is because short fuzzy rules are
compatible with many training patterns.
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In Figs. 6-8, we show average results on the diabetes
data set. The number of fuzzy rules is significantly decreased
by genetic rule selection from Fig. 6 (a) to Fig. 6 (b). The
average classification rates on training patterns are improved
by genetic rule selection in Fig. 7. An interesting observation
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(a) Before genetic rule selection. (b) After genetic rule selection.

Fig. 2. The number of fuzzy rules (Iris).
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(a) Before genetic rule selection. (b) After genetic rule selection.

Fig. 3. Average classification rates on training patterns (Iris).

(a) Before genetic rule selection. (b) After genetic rule selection.

Fig. 4. Average classification rates on test patterns (Iris).30 30.8
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(a) Before genetic rule selection. (b) After genetic rule selection.

Fig. 5. Average rule length of fuzzy rules (Iris).

is that the average classification rates on test patterns are
also improved by genetic rule selection in Fig. 8. Whereas
we do not show experimental results, the average rule length
is decreased by genetic rule selection for the diabetes data as
in Fig. 5 for the iris data.
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(a) Before genetic rule selection. (b) After genetic rule selection.

Fig. 6. The number of fuzzy rules (Diabetes).

i90)0 & 9001 0

.°80 ,, _ . 80 <

70 70
60 o.io 0 0 r 6 01 .

(a) Before genetic rule selection. (b) After genetic rule selection.

Fig. 7. Average classification rates on training patterns (Diabetes).
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Fig. 8. Average classification rates on test patterns (Diabetes).
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(a) Before genetic rule selection. (b) After genetic rule selection.

Fig. 9. The number of fuzzy rules (Glass).
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In Figs. 9-11, we show average results on the glass data
set. In Fig. 9 in the previous page, the number of fuzzy rules
is significantly decreased by genetic rule selection. The
average classification rates on training and test patterns are
improved in many cases in Fig. 10 and Fig. 11.
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Average results on the Cleveland heart disease and sonar
data sets are shown in Figs. 12-17. We can observe almost
the same effect of genetic rule selection in these figures as in
the above-mentioned results in Figs. 2-11. Its effect on the
generalization ability seems to be problem-dependent.
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(a) Before genetic rule selection. (b) After genetic rule selection.

Fig. 10. Average classification rates on training patterns (Glass).
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(a) Before genetic rule selection. (b) After genetic rule selection.

Fig. 14. Average classification rates on test patterns (Heart C).
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Fig. 11. Average classification rates on test patterns (Glass).
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(a) Before genetic rule selection. (b) After genetic rule selection.

Fig. 12. The number of fuzzy rules (Heart C).
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Fig. 15. The number of fuzzy rules (Sonar).
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Fig. 16. Average classification rates on training patterns (Sonar).
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Fig. 13. Average classification rates on training patterns (Heart C).
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Fig. 17. Average classification rates on test patterns (Sonar).
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V. CONCLUSIONS

We showed that the number of heuristically extracted
fuzzy rules in fuzzy data mining was significantly decreased
by genetic rule selection without severely degrading their
classification accuracy through computational experiments
on some benchmark data sets. That is, the understandability
of extracted knowledge was significantly improved. This
observation clearly shows potential usefulness of genetic
rule selection in fuzzy data mining as a postprocessing
procedure. Genetic rule selections is a general scheme,
which is applicable to both fuzzy and non-fuzzy rules
generated in various manners (e.g., [16], [26]-[28], [31]).

Classification rates on training patterns were improved in
almost all cases in our computational experiments by genetic
rule selection whereas its effect on the generalization ability
was problem-dependent. The main drawback of genetic rule
selection is its large computation load especially when it is
applied to large data sets. One promising trick is to divide a
data set into multiple subsets of small size. A different
subset is assigned to each individual for its fitness evaluation.
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