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Abstract  

In the paper we present Rough Set approach to reasoning in incomplete information 
systems. We propose reduction of knowledge that eliminates only that information, 
which is not essential from the point of view of classification or decision making. In 
our approach we make only one assumption about unknown values: the real value of 
a missing attribute is one from the attribute domain. However, we do not assume which 
one. We show how to find decision rules directly from such an incomplete decision table, 
which are as little non-deterministic as possible and have minimal number of condi- 
tions. © 1998 Published by Elsevier Science Inc. All rights reserved. 
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1. I n t r o d u c t i o n  

Rough Set theory [1] has been conceived as a tool to conceptualize, organize 
and analyze various types of data, in particular, to deal with inexact, uncertain 
or vague knowledge in applications related to Artificial Intelligence. 

In this paper we present Rough Set approach to incomplete information sys- 
tems, i.e. to systems in which attribute values for objects may be unknown 
(missing, null). Our main concern is devoted to finding rules from such systems. 
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Different ways were described in which null values may be handled [2-4]. 
E.g. the methodology from [2] consists in transforming an incomplete system 
to a complete system, where each object with incomplete descriptor from the 
source system is represented by a set of quasi-objects in the target system. An- 
other approach presented in [2] consists in removing objects with unknown val- 
ues from the original system. Our approach is substiantially different from 
those mentioned above since it does not require the changes in the original sys- 
tem and still is capable of  reducing dispensable knowledge efficiently. We pro- 
pose reduction of knowledge that eliminates only that information, which is 
not essential from the point of view of classification or decision making. We 
show how to find decision rules for an incomplete decision table, which are 
as little non-deterministic as possible and have minimal number of conditions. 
This type of knowledge reduction restricted to the case of complete informa- 
tion systems was discussed thoroughly in [5-9]. 

2. Incomplete information systems 

Informat&n system (IS) is a pair 5e = ((9, AT), where (9 is a non-empty finite 
set of objects and AT is a non-empty finite set of attributes, such that 
a : (9 ~ V~ for any a E AT, where Va is called the value set of a. 

Each subset of attributes A c_ AT determines a binary indiscernibility relation 
IND(A), as follows: 

IND(A) = {(x,y) E (9 x (9 Ira EA,a(x) ---- a(y)}. 

The relation IND(A),A c_ AT, constitutes a partition of (9, which we will de- 
note by (9/IND(A). 

It may happen that some of attribute values for an object are missing. To 
indicate such a situation a distinguished value, so-called null value, is usually 
asssigned to those attributes. 

If  V~ contains null value for at least one attribute a E AT then ~ is called an 
incomplete information system, otherwise it is complete. Further on, we will de- 
note null value by . .  

Let SIM(A), A c_ AT, denote binary similarity relation between objects that 
are possibly indiscernible in terms of values of attributes A (i.e. we cannot say 
with certainty that these objects are different). In general, SIM(A) could be any 
relation between objects that we want to treat as indiscernible. 

Let us define similarity relation more precisely: 

SIM(A) = {(x,y) E (9 × (91Va e A,a(x) = a(y) or a(x) -- * or a(y) = *}. 

Property 2.1. SIM(A) & a tolerance relation; 

SIM(A) = N SIM({a}). 
aEA 
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Several other properties and notions like dispensability of attributes, indis- 
pensability of attributes, core, functional dependencies between attributes may 
be introduced in the very similar way as in complete information systems 
(see [1]). 

Let SA(x) denote the object set {y c (9 [ (x,y) E SIM(A)}. SA(x) is the maxi- 
mal set of objects which are possibly indiscernible by A with x. 

Let DA(x) denote the object set {y E (9 [ (x,y) ¢~ SIM(A)}. DA(x) is the max- 
imal set of objects which are definitely discernible by A with x. 

Of course, SA (x) N DA (x) = ~ and SA (x) tO DA (x) = (9 for any x E (9. 
Let (9/SIM(A) denote classification, which is the family set {SA(x) Ix E (9}. 

Any element from (9/SIM(A) will be called a tolerance/class. Tolerance classes 
in C/SIM(A) do not constitute a partition of (9 in general. They may be sub- 
sets/supersets of each other or may overlap. Of course, UC/SIM(A) = C. 

Example 2.1. Given descriptions of several cars as in Table 1 let us try to 
classify them according to the chosen subsets of attributes. 

From Table 1 we have: (9={1 ,2 ,3 ,4 ,5 ,6} ,  AT={P,M,S,X} where 
P, M, S,X stand for Price, Mileage, Size, MaX-Speed. 

Let us note that (9/SIM(AT)={SAT(1),SAT(2),SAT(3),SAT(4),SAT(5), 
SAT(6)}, where SAT(l) = {1},SAT(2) = {2, 6},SAT(3) = {3},SAT(4) = {4, 5}, 
SAT(5)  = {4, 5, 6}, SAT(6)  = {2,  5, 6}. 

It can be also observed easily that C/SIM({P, S,X}) = (9/SIM(AT), where- 
as C/SIM({S,X}) # (9/SIM(AT)(C/SIM({S,X}) = {SA(1),SA(3),SA(4), 
SA(6)}, where A= {S,X} and SA(1)=SA(Z)= {1,Z, 6},SA(3)= {3}, 
SA(4) = S~(5) = {4,5,6},SA(6) = {1,2,4,5,6}). 

In Example 2.1 car classification by AT is the same as that by {P, S,X} and 
is different from car classification by {S,X}. Usually, we are interested in min- 
imal subsets of AT, so-called reducts, that classify in the same way as AT. 

Formally, a set A C_ AT is a reduct of IS iff 

SIM(A) = SIM(AT) and VB C A, SIM(B) # SIM(AT). 

For the information system from Example 2.1 we can find out that {P, S,X} 
is its reduct. On the other hand, one can easily notice that it suffices to know 

Table 1 

Car Price Mileage Size Max-Speed 

1 High High Full Low 
2 Low * Full Low 
3 * * Compact High 
4 High * Full High 
5 * * Full High 
6 Low High Full * 
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• values (high,low) of Price and Max-Speed of an object to classify it to 
SAT(l), 

• values (low,low) of Price and Max-Speed of an object to classify it to SAT (2), 
• value (compact) of Size of an object to classify it to SAT(3), 
• values (high,full,high) of Price, Size and Max-Speed of an object to classify it 

to SAT (4), 
• values (full,high) of Size and Max-Speed of an object to classify it to SAT (5), 
• values (low,full) of Price and Size of an object to classify it to SAT(6). 

This observation encourages us to define a notion of a reduct for an object 
that should allow to classify objects with less number of required attributes 
then the number of attributes in a reduct of IS. 

A set A C AT is a reduct of IS for x, x E (9, iff 

SA(X ) = SAT(X ) and VB C A, SB(X) ¢ SAT(X). 

3. Set approximations 

Let X c_ (9 and A c_ AT. AX is lower approximation of X, iff 

_aX = {x E (9 [ SA (x) C_ X} = {x E X I S~ (x) C_ X}. 

~X is upper approximation of X, iff 

2 x  = {x ~ (91S~(x) n x  ¢ 0} = u{gA(x) lx cx}.  
Like in complete IS, _AX is a set of objects that belong to X with certainty, while 
/,X is a set of objects that possibly belong to X. 

Property 3.1. 

VA C_ AT, VX C_ (9, 

VA,B C AT, VX c_ (9, 

VA,B C_ AT, VX C (9, 

(_Ax _cx c_2x); 

(A C B ~ AX C BX); 

(A c B ~ 7~  2 ~x). 

4. Decision tables, decision rules, knowledge reduction 

(Incomplete) decision table (DT) is an (incomplete) information system DT 
= ((9,ATU {d}), where d ,d  f[ AT and • ~ Vd, is a distinguished attribute 
called decision, and the elements of AT are called conditions. 

Let us define function OA : C ~ ~(Vd),A C_ AT,  as follows: 

OA(x) = {il i = d(y) and y E SA(x)}. 

0A will be called generalized decision in DT. 
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If  card(0AT(X)) = 1 for any x E C then D T  is consistent (deterministic, defi- 
nite), otherwise it is inconsistent (non-deterministic, nondefinite). 

Property 4.1. The relation IND(0A),A c_ AT, constitutes a partition of  C. 

Property 4.2. The equation 

X E C/IND(OA) ~ A X = X = ~ (  

does not hold for an incomplete DT (though it holds for complete DT). 

Any decision table may be regarded as a set of  (generalized) decision rules of 
the form: 

A ( c , v ) ~ V ( d , w ) ,  w h e r e c E A T ,  vE  V~, w E  Va. 

In the sequel, we will consider decision rules only in the above form. 
A(c, v) (V(d, w)) will be called condition (decision) part of the rule. 

Let X be a set of  objects of  property A(c, v) (c E AT, v E V~) and let Y be a 
set of  objects of  property V(d, w) (w EVa). 

A decision rule A(c, v) ~ V(d, w) is true in D T  iffCX c_ y, where C is the set 
of  all attributes which occur in condition part  of  the rule. 

A decision rule r : A(c, v) ~ V(d, w) (c E AT, v E Vc, w EVa) is optimal in 
DT iff it is true and no other rule constructed from a proper subset of  conjuncts 
and disjuncts occurring in r is true. 

Example 4.1. Let us consider decision table DT, constructed from information 
system presented in Table 1 and extended by decision attribute d--Acceler-  
ation as shown in Table 2. Determine the family of  decision classes C / IND(d)  
and the family of  generalized decision classes C/IND(OAx). For  each decision 
class compute its lower and upper approximations and write down true 
decision rules. 

Solution. From Table 2 we have: C / I N D ( d ) =  {Xgood,Xpoor,Yexcet.}, where 
Xgood = {1,2,4, 6},Xpoor = {3},Xexcel. = {5}. 

Table 2 

Car Price Mileage Size Max-Speed d 

1 High High Full Low Good 
2 Low * Full Low Good 
3 * * Compact High Poor 
4 High * Full High Good 
5 * * Full High Excel. 
6 Low High Full * Good 
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SO, 
ATXgood -- {1,2}; ATXgood = {1,2,4,5,6}; 

ATXpoor = {3}; ATXpoor = {3}; 

AWXexcel. -- 0; ATXexcel. = {4, 5, 6}. 

In Table 3 we place the values of generalized decisions. 
(9/IND(0AT) = {X{good},X{poor},X{good,excel .}} , where )({good} = {1,2}, 

X{poor} = {3),X{good,excel. } = {4, 5, 6}. 
Hence, 

hTX{good} = {1}; ATX{good) -- {1,2,6}; 
ATX{poor) = {3}; ATY{poor} --- {3}; 
ATX{good,excel. } = {4, 5}; ATX{good,excel.} = {2, 4, 5, 6}. 

We list true decision rules for DT: 

rl : (P, high) A (M, high) A (S, full) A (X, low) ~ (d, good); 
rz : (P, low) A (M, *) A (S, full) A (X, low) ~ (d, good); 
r3 : (P, *) A (M, *) A (S, compact) A (X, high) --+ (d, poor) 
r4 : (P, high) A (M, *) A (S, full) A (X, high) ~ (d, good) V (d, excel.); 
rs:  (P, *) A (M, *) A (S, full) A (X, high) ~ (d, good) v (d, excel.); 
r6 : (P, low) A (M, high) A (S, full) A (X, *) ~ (d, good) V (d, excel.). 

It follows from the definition of generalized decision and the definitions of 
true and optimal decision rules that the decision part of  an optimal rule for 
x,x c (9, is equal to (d, wl) V (d, w2) V. . .  V (d, wn), where {wl ,w2, . . .  ,w,}  = 
BAT (x). Thus the problem of finding optimal rules is restricted to the problem 
of reduction of condition attributes. 

Reduction of knowledge that preserves generalized decisions for all objects 
in DT is lossless from decision making standpoint. Thus, we will want to define 
a reduet A of DT as minimal subset of  AT, such that OA (x) of the reduced DT = 
((9, AT t_J {d}) is equal to BAT(X) for any x E (9. 

Formally, a set A C_ AT is a reduct of DT (relative reduet) iff 

OA ---- OAT and VB C A, OB ¢ OAT. 

Table 3 

Car OAT 

{Good} 
{Good} 
(Poor} 
(Good, Excel.} 
{ Good, Excel. } 
{Good, Excel.} 
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In order to determine decision rules with minimal number of conditions we 
may employ the notion of a reduct for an object in DT. 

A set A c_ AT is a reduct of DT for x (relative reduct for x), x E (9, in DT, iff 

OA(x) = 0AT(x); VB c A, OB(x) ¢ 0AT(X). 

Property 4.3. Let A be a relative reduct. The equations." 

X E C/IND(0AT) ~ _AX = ATX; 

X E C/IND(0AT) =~ AX = ATX. 

do not hold for incomplete DT. 

Example 4.2. Let us illustrate Property 4.3 for a relative reduct of DT described 
in Table 2. 

Solution. We can easily check that A = {Size, Max-Speed} is a reduct for DT 
from Table 2. Below we present lower and upper aproximations of classes from 
the family (9/IND(0AT) with regard to attribute set A: 

AX{good} = 0; ~good)  = {1,2,6}; 
~{poor}  = {3}; AX{poorl : {3}; 
AX{good,excel}" = {4, 5}; AN{good,excel}" = { 1,2, 4, 5, 6}. 

where X{good},X{poor} and X{good,excel.} have the same meaning as in Example 4.1. 
Comparing the above set approximations with the set approximations com- 

puted in Example 4.1, we can state for instance the following: 

AX{good} C hTX{good} ; 

AN{good . . . .  1.} D ATX{good ..... 1}. 

It can be also easily shown that {Max-Speed} is a reduct for objects 1 and 2 
from Table 2 and Size is a reduct for objects 3-6. These reducts allow us to ob- 
tain the following three optimal decision rules: 

/1 : (X, low) --* (d, good); 
/2: (S, compact) --* (d, poor) 
/3: (S, full) --~ (d, good) V (d, excel.); 

instead of six initial ones. 
Let us note that the above decision rules will remain true when all or some 

missing values in DT will be replaced by arbitrary values. 

5. Discernibility function and computing reducts 

Computing reducts of incomplete IS and incomplete DT we will exploit the 
idea of so-called discernibility functions [5-9]. Their main properties are that 
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they are monotonic Boolean functions and their prime implicants determine re- 
ducts uniquely. 

Let ~A(x,y) be a set of attributes a E A such that (x,y) ~ SIM({a}). Hence, if 
(x,y) E SIM({a}) then ~a(x,y) = 0. Let ~ ~A(x,y) be a Boolean expression 
which is equal to 1, if ~A(x,y) = ~. Otherwise, let ~ A ( x , y )  be a disjunction 
of variables corresponding to attributes contained in ~A(x,y). 

A is a discernibility function for IS iff 

4-- II Z AT(x,y/. 
(xy)ecx(~, 

A (x) is a discernibility function for object x in IS iff 

II Z  AT(x,y/. 
yEG 

A* is a discernibility function for DT iff 

A* H ~AT(X,y). 
(x,Y)Er× {ZrC I d(z)q[OAT(X)} 

A*(x) is a discernibility function for object x in DT iff 

ye{zee I d(z)VOAT(X)} 

Example 5.1. Determine all reducts for IS presented in Table 1 by computing 
prime implicants of discernibility functions A. 

Solution. To construct a discernibility function we will use Table 4, in which 
values of aAT(X,y) for any pair (x,y) of objects from (~ are placed. 

Hence we have, 

A = e ( s  v x ) X ( P  v x ) s  = reX; 
A(1) = P(S V X ) X =  PX; 
A (2) : P(S V X)(P V X)X  : PX; 
A(3) = (S VX)S  = S; 
A (4) = X(P V X)SP = PSX; 

Table 4 

x \ y  1 2 3 4 5 6 

1 P SX X X P 
2 P SX PX X 
3 SX SX S S S 
4 X PX S P 
5 X X S 
6 P S P 
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(5) = s x ;  
A(6) = PS. 

Thus, {Price, Size, Max-Speed} is a reduct for IS, {Price, Max-Speed} is a rel- 
ative reduct for objects 1 and 2 etc. 

Example 5.2. Determine all reducts for DT presented in Table 2 by computing 
prime implicants of  discernibility functions A*. 

Solution. To construct a discernibility function we build Table 5, in which 
values of  ear(x,y) for any pair (x,y) of objects, such that x E (5' and 
y E {z E (9 [d(z) ~ OAT(X)} are placed. 

Hence we have, 

A* = (S v X ) X S  = SX; 

A*(1) = (S v X ) X  = X;  
A*(2) = ( S V X ) X  = X ;  
A*(3) = ( S V X ) S  = S; 
A* (4) = S; 
A*(5) = S; 
A* (6) = S. 

Thus, {Size, Max-Speed} is a reduct for DT, {Max-Speed} is a relative re- 
duct for objects 1 and 2 etc. 

6. Other approaches to generation rules from incomplete information systems 

Our next papers [10,11] examine relationship among different kinds of  rules 
generated by different Rough Set methods directly or indirectly from an incom- 
plete information system. In particular, the method described in this paper that 
allows to generate generalized rules is compared with the replacing examples' 
method and the removing examples' method [2]. Let us report shortly the re- 
sults we obtained and proved in [10,11]. To this end let us remind the definition 

Table 5 

x \ y  1 2 3 4 5 6 

1 SX X 
2 SX X 
3 SX SX S S 
4 S 
5 S 
6 S 

S 
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of a certain rule in a complete system. A rule is certain if it is deterministic and 
set of objects satisfying the conditional part of the rule is a subset of objects 
satisfying the decision part of the rule. Now let us introduce informally the def- 
inition of a certain rule in an incomplete system. After [12], we regard rule as 
certain in an incomplete IS if it is certain in every complete extension of the 
original IS (i.e. in every complete system consistent with the original incom- 
plete IS). In [10,11] we prove that the example's replacing method allows to 
generate all rules from replaced system which are certain in original incomplete 
IS. To the contrary, the method of removing examples may cause generation of 
false certain rules, i.e. rules that are certain in modified destination system used 
for rule generation, but which are not certain in original IS. Finally, it is shown 
in [10,11] that the set of all deterministic rules generated as generalized accord- 
ing to the method presented in this paper is a subset of certain rules in original 
IS. One more interesting property of generalized deterministic rules is that the 
set of objects supporting them is the same in all extensions of the initial IS. 
Hence, they seem to constitute very important class of certain rules. 

7. Conclusion 

In the paper we have shown that Rough Set approach is suitable one to rea- 
soning in incomplete information systems. 

The proper definitions of reducts allow to define knowledge reduction that 
does not diminish the original system's abilities to classify objects or to make 
decisions. Unlike classical information systems, an incomplete IS allows to 
achieve much less number of decision rules, which is implied by the character 
of a tolerance similarity relation. 

Both reduction of dispensable knowledge and finding of optimal decision 
rules are transformable to the problem of computing prime implicants of dis- 
cernibility functions. We have shown that discernibility functions for incom- 
plete information systems may be constructed in conjunctive normal form. 
This is a particular feature of incomplete information systems, since in general, 
the formula defining the discernibility function of a tolerance information sys- 
tem is much more complex [9]. 

We believe that the type of knowledge reduction offered here will turn out to 
be useful also in other tolerance information systems, in particular in systems 
with multivalued attributes. 
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