
2848

Evolving Dispatching Rules for solving the Flexible Job-Shop Problem

Nhu Binh HO
Evolutionary and Complex Systems Lab

School of Computer Engineering
Nanyang Technological University, Singapore 639798

honhubinh(Lapmail.ntu.edu.sg

Abstract- We solve the Flexible Job-Shop Problem
(FJSP) by using dispatching rules discovered through
Genetic Programming (GP). While Simple Priority
Rules (SPR) have been widely applied in practice,
their efficacy remains poor due to lack of a global
view. Composite Dispatching Rules (CDR) have been
shown to be more effective as they are constructed
through human experience. In this paper, we employ
suitable parameter and operator spaces for evolving
CDRs using GP, with an aim towards greater
scalability and flexibility. Experimental results show
that CDRs generated by our GP framework
outperforms the SPRs and CDRs selected from
literature in 74% to 85% of FJSP problem instances.

I Introduction

In today's highly competitive marketplace, a high level of
delivery performance has become necessary to satisfy
customers. Due to market trends, product orders of low
volume - high variety types have been increasing in
demand. Hoitomt et al. [1] mentions that these products
comprise between 50 to 75 % of all manufactured
components, thereby making schedule optimization an
indispensable step in the overall manufacturing process.

The Job-Shop Scheduling Problem (JSP) is one of the
most popular manufacturing optimization model in
practice [2]. It has attracted many researchers due to its
wide applicability and inherent difficulty [3]-[6]. It is also
well known that the JSP is NP-hard [7], hence general,
deterministic methods of search are in general inefficient.
The nxm classical JSP involves n jobs and m machines.
Each job is to be processed on each machine in a pre-
defined sequence, and each machine processing only one
job at a time. In practice, the shop-floor setup typically
consists of multiple copies of the most critical machines
so that bottlenecks due to long operations or busy
machines can be reduced. Therefore, an operation may be
processed on more than one machine having the same
function. This leads to a more complex problem known as
the Flexible Job-Shop Scheduling Problem (FJSP). The
extension involves two decisions; assignment of an
operation to an appropriate machine and sequencing the
operations on each machine. In addition, for complex
manufacturing systems, a job can typically visit a machine
more than once (known as recirculation). These three
features of the FJSP significantly increase the complexity
of finding optimal solutions [81.

0-7803-9363-5/051$20.00 ©2005 IEEE.

Joc Cing TAY*
Evolutionary and Complex Systems Lab

School of Computer Engineering
Nanyang Technological University, Singapore 639798

asjctay(d7bntu.edu.sg

The classical JSP and FJSP have been solved by many
local search methods, such as Simulated Annealing [4],
Tabu Search [5][9][10], or Genetic Algorithms [1 I]-[14].
These previous results show that these techniques can find
optimal or near optimal results. However, a major
disadvantage is their huge computational cost, particularly
when the problem size increases. In practice, dispatching
rules have been applied to overcome these costs faced by
the former [15]-[17]. Although dispatching rules are
unable to fare better than the local search methods, they
are the more frequently applied heuristics due to their ease
of implementation and their low time complexity.
Whenever a machine is available, a priority-based
dispatching rule inspects the waiting jobs and selects the
job with the highest priority to be processed next.
Recently, the introduction of composite dispatching rules
(CDR) have been increasingly investigated by the some
researchers [18][19], but typically only for classical JSPs.
These rules are the heuristic combination of single
dispatching rules that aim to inherit the advantages of the
former. The results show that, with careful combination,
the composite dispatching rules do perform better than the
single ones in the quality of schedules.

In this paper, we investigate the potential use of GP for
evolving effective composite dispatching rules for solving
the FJSP with recirculation, with the objective of
minimizing total tardiness. The ultimate purpose is to find
rules that better human-made dispatching rules in solving
the same problem. We intend to use them to solve the
FJSP and the other similar problems without any
additional algorithmic improvements.

The remainder of this paper is organized as follows.
Section 2 gives the formal definition of the FJSP with
recirculation. Section 3 reviews recent related works for
solving the JSP and FJSP using dispatching rules and a
overview of GP. Section 4 describes our proposed GP
framework for evolving CDRs while Section 5 analyzes
the performance results of the CDRs obtained with GP.
Finally, Section 6 gives some concluding remarks and
directions for future work.

2 Problem Definition

Similar to the classical JSP, solving the FJSP requires the
optimal assignment of each operation of each job to a

corresponding author.

2848

2849

machine with known starting and completion times.
However, the task is more challenging than the classical
one because it requires a proper selection of a machine
from a set of machines to process each operation of each
job. Furthermore, if a job is allowed to recirculate, this
will significantly increase the complexity of the system
[20]. The FJSP with recirculation is formulated as
follows:
* Let J = {J}1<i<nS indexed i, be a set of n jobs to be

scheduled.
* Each job Ji consists of a predetermined sequence of

operations G1 = {0ijj i<j<O(i) where O,j denotes
operation j of Ji and O(i) is the total number of
operations ofjob J1.

* Let M= {Mk} 1<k.m, indexed k, be a set ofm machines.
0 Each machine can process only one operation at a

time.
* Each operation Oij can be processed without

interruption on one of a set of machines F(O,j) c M.
Therefore, we denote by 0ij,k to be operation j of J
that is processed on machine Mk and Pijk be its
processing time on machine Mk.

* Recirculation occurs when a job can visit a machine
more than once. Formally, this implies
3i, 11 : F(0° j,) n F(0i j2) . 0

* Let Ci and di be the completion time and the due date
of the job Ji, respectively. The tardiness of this job is
calculated by the following formula:

Ti=max {0,Ci-dJ}
* The objective function T of this problem is to find a

schedule that minimizes the sum of tardiness of all
jobs (total tardiness problem):

n n

T = IT = Jmax(0,C, -di)
i=1 i=l

If F(Oij) is the set of machines that operation Oij can
be processed on, then the FJSP is further classified into
two sub-problems as follows:

* Total FJSP (T-FJSP): each operation can be
processed on any one machine of set M: F(OiJ) = M.

* Partial FJSP (P-FJSP): each operation can be
processed on one machine of subset of M: F(Oij) c
M

Total tardiness is one of the major objectives in
production scheduling. A job that is late may penalize the
company's reputation and reduce customer satisfaction.
Hence, keeping the due dates ofjobs under control is one
of the most important tasks faced by companies [19].

In this paper, we shall assume-that
* All machines are available at time 0.
* Each job has its own release date and due date.
* The order of operations for each job is predefined and

cannot be modified.

3 Previous Works

Dispatching rules have received much attention from
researchers over the past decades [15]-[17]. In general,
whenever a machine is freed, a job with the highest
priority in the queue is selected to be processed on a
machine or work center. A comprehensive survey on
dispatching rules is by Panwalkar and Wafik [15] and
Blackstone et al. [16]. Depending on the specification of
each rule, it can be classified [15] into:

* Simple Priority Rules
* CDRs
* Weighted Priority Indexes
* Heuristic Scheduling Rules
Simple Priority Rules (SPR) are usually based on a

single objective function. They usually involve only one
model parameter, such as processing time, due date,
number of operations or arrival time. The Shortest
Processing Time (SPT) is an example of a SPR. It orders
the jobs on the queue in the order of increasing processing
times. When a machine is freed, the next job with the
shortest time in the queue will be removed for processing.
SPT has been found to be the best rule for minimizing the
mean flowtime and number of tardy jobs [17]. The
Earliest Due Date (EDD) is another example of a SPR
where the next job to be processed is the one with the
earliest due date. Unfortunately, no SPR performs well
across every performance measure such as tardiness or
flow time [21]. To overcome this limitation, CDRs have
been studied to combine good features from such SPRs.

There are two kinds of CDRs presented in literature;
the first type involves deploying a select number of SPRs
at different machines or work centers. Each machine or
work center employs a single rule. When a job enters a
specific machine or work center, it is processed by the
SPR that is predetermined for that machine or work
center. For instance, Barman [21] applied three different
SPRs to solve the flow shop problem corresponding to
three work centers. Experimental results show that it
obtains better results than a single SPR that is common to
all three machines. However, this approach may not be
suitable for a shop floor with large number of machines or
work centers; and the best independent use of single SPRs
is difficult to predetermine. Furthermore, it still has the
limitation of a localized view. The second type involves
applying the composition of several SPRs (otherwise
known as a CDR) to evaluate the priorities ofjobs on the
queue [17]. The latter type is executed similarly to SPRs;
when a machine is free, this CDR evaluates the queue and
then selects the job with the highest priority. For example,
Oliver and Chandrasekharan [17] present five CDRs for
solving the JSP. Their results indicate that CDRs are more
effective compared to individual SPRs. CDRs inherit the
simplicity of SPRs while achieving some scalability as the
number of machines increase. Furthermore, if well
designed, CDRs can solve realistic problems with
multiple objectives [8]. However, the challenge is to find
a good combination of SPRs to apply to all machines or
work centers.

2849

2850

Weighted priority index rules are the linear
combination of SPRs described above with computed
weights [18][19]. Depending on specific business
domains, the importance of a job determines it's weight.
For instance, considering n jobs with different weights w,
where weight wi is assigned to job Ji. The sum of the
weighted tardiness as the objective function is given as
follows:

n n

T = ZwTj = Z:w xmax(O,C1 -di)
i=l i=l

In this paper, the weighted priority rules are not
considered as they are a generalization of our current
formulation of total tardiness where we have assumed
instead that all jobs have the same weight (see Section 2).

Heuristic rules are rules that depend on the
configuration of the system. These rules are usually used
together with previous rules, such as SPRs, CDRs or
weighted priority index rules. For instance, the heuristic
rule may use the expertise of human experience, such as
inserting an operation of a job into an idle time slot by
visual inspection of a schedule [15].

The results from recent researchers [17][21] show that
CDRs outperform individual SPRs in minimizing the
performance of shop floor. In this work, we focus our
attention on finding a computational method to build
effective CDRs; one that is based on the composition of
fundamental measures rather than on the algebraic
combination of SPRs. However, this may be difficult to
enumerate manually due to the large parameter and
operator space, hence we employ a GP framework.

Genetic programming (GP) [22] belongs to a family of
evolutionary computation methods. It is based on the
Darwinian principle of reproduction and survival of the
fittest. Given a set of functions and terminals and an
initial population of randomly generated syntax trees
(representing programs), the programs are evolved
through genetic recombination and natural selection. GP
has been applied to many different problems; from
classical tasks, such as function fitting or pattern
recognition, to non-trivial tasks that are competitive with
significant human endeavours such as designing electrical
circuits [23] or antennas [24].

The most important feature that makes GP different
from the canonical GA is it's ability to vary the logical
structure and size of evolved computer programs
dynamically. It can therefore solve more challenging
problems that have eluded the canonical GA due to the
latter's requirement of a fixed-length chromosome.
However, GP has rarely been applied to manufacturing
optimization; this is due to the direct permutation property
of scheduling where jobs and/or machines can be simply
reordered (in the case of JSP) to obtain better results. For
instance, the chromosomes presented in [10]-[14] have
fixed lengths, which can be evolved easily by direct
permutation. On the other hand, GP uses a tree-based
encoding with dynamic length; making it difficult to
encode the JSP (for that matter, a FJSP) into a tree-based
chromosome. Unlike previous approaches [17]-[19], [21]
where a predefined set of SPRs were combined in
advance by human experience, we apply GP to find

superior constructions of CDRs which composed of
fundamental terminals (see Table I). These discovered
rules are then used to solve the FJSP directly; the
advantage being, the obtained CDRs can solve the FJSPs
in shorter computational time as compared to genetic
algorithms [10]-[14]. Recently, GP has been used to solve
the classical one machine tardiness problem [25].
However, the results of for this specific problem with a
smaller number of parameters cannot not be applied to
solve general scheduling problems, such as the FJSP. In
the next Section, we will present a GP framework with an
important number of parameters suited for the FJSP. The
obtained results described in Section 5 are simple and
meaningful. We believe that this GP framework could be
used to solve other problems such as the flexible flow
shop or open shop.

4 Design of the GP Framework

In GP, an individual (ie, computer program) is composed
of terminals and functions. Therefore, when applying GP
to solve a specific problem, they should be well designed
to satisfy the requirements of the current problem. After
evaluating many parameters related to the FJSP, the
terminal set and the function set that are used in our
algorithm are described as follows.

4.1 Terminal set
In job-shop scheduling, there are many parameters that
can effect the quality of results; potentially, all of them
can be considered to comprise a dispatching rule.
However, in order to create a short and meaningful
dispatching rule, only a small and sufficient number of
parameters should be evaluated properly. They also help
to reduce the search space and improve the efficiency of
the algorithm. Based upon the dispatching rules involving
due dates in [15]-[17] and our experimental works, the
terminal set proposed in this study is given in Table I.

TABLE I TERMINAL SET

Terminal Meaning
ReleaseDate Release date of a job (RD)
DueDate Due date of a job (DD)
ProcessingTime Processing time of each operation

(PT)
CurrentTime Current time (CT)
RemainingTime Remaining processing time of each

job (RT)
numOfOperations Number of operations of each job

(nOps)
avgTotalProcTime Average total processing time of each

job (aTPT)

In Table I, CurrentTime represents the time when a
particular machine is free and starts to select a job to
process on its queue. RemainingTime corresponds to the
elapsed time for the current job to finish. Some previous
dispatching rules use total processing time of each job as
one of their parameters. However, in FJSP, an operation
of each job can be processed on a set of machines (see

2850

2851

Section 2). We normalize the average processing time of
each operation with the following formula:

E: Pi,j,k
n(F(OQjj))

n(F(O1,j))
where PJ,k stands for processing time of operation Qij on
machine Mk and n(F(Oi) represents number of machines
that can process Oi.

4.2 Function set
Similar to other applications of GP [22]-[24] for solving
optimization problems, we use four basic operators:
addition, subtraction, multiplication, and division for
creating our CDR. Furthermore, we employ a well-known
Automatically Defined Function (ADF) (proposed by
Koza [26]). The ADF is sub-tree which can be used as a
function in the main tree. The size of the ADF is varied in
the same manner as the main tree. It enables GP to define
useful and reusable subroutines dynamically during its
run. The results from [26] indicate that GP using ADF
outperforms GP without ADF in solving the same
optimization problem. The more parameters that are used
in ADF, the more changes will be needed for GP to
evolve good subroutines. However, it can lead to a higher
number of generations. We limit the ADF used in our
approach to two parameters. The operators used in the
ADF are also the four basic operators mentioned above.
The operators of the function set in our approach are
given in Table II.

TABLE II FUNCTION SET

Function Meaning

+ Addition
- Subtraction
* Multiplication
/ Division

ADF(x1, x2) Automatically Defined Function

4.3 Fitness function
The obtained results from each generation of GP are a

set of computer programs modeled as trees. As mentioned
in Section 2, the objective in our study is to minimize the
total tardiness of the FJSPs. Therefore, we propose a
method to form a CDR from the tree-based result of GP.
This CDR is then combined with the least waiting time
rule [13] to evaluate the total tardiness of the FJSPs. The
FJSP is solved by applying two processes in succession.
The first one finds a suitable machine to process each
operation, and the second finds a proper order of
operations on each machine's queue. These two processes
are described in detail as follows.

To find a suitable machine (routing) to process an
operation Oij, we apply the least waiting time rule [13] on
the set of setting machines that can process Oj. This rule
is intended to reduce the workloads of the machines by
balancing operations to be assigned. It is calculated by
summing up the processing times of all the subsequent
operations in the waiting list plus the remaining
processing time on each machine and the processing time

of Oij. Therefore, it depends on the total time this
operation has to wait to be processed in the worst case,
not relying only on its own processing time.

In determining the proper order of operations on the
queue of a particular machine, we use the CDR generated
by GP. When a machine is freed, the generated rule is
applied directly to the set of operations that are waiting on
the queue of the machine. The operation with the highest
priority is then selected to be processed on the machine.
Figure 1 below gives an example of a dispatching rule tree
generated by GP:

Fig. 1. Example of a GP tree with defined fuinctions and
terminals

Figure 1 shows the overall structure of the generated
tree that gives a possible CDR. The left child of progn
shows the function-defining branch (containing the
defun). In this case, the ADF function is defined by:
ADF(xl,x2)=xI *x2. The right child gives the result-
producing branch. This CDR therefore represents the
following formula:

(DD - CT)
(DD - RD) + ADF(PR, nOps)

Since ADF(x1,x2)=xI*x2 we obtain:
(DD - CT)

(DD - RD) + (PR * nOps)
Any tree in the genomic population ofGP that contains

our defined functions and terminals can be interpreted as a
CDR in the same way.

5 Experimental results

This Section reports and analyses the empirical results for
evaluating the efficiency of our proposed algorithms. The
framework was implemented using C++ running on a 2
GHz PC with 512 MB RAM.

5.1 Test Case Generation
Various experiments were conducted. We categorized
these experiments into three classes: T-FJSP, P-FJSP with

2851

2852

50% of flexibility (P-FJSP-50), and P-FJSP with 20% of
flexibility (P-FJSP-20). The P-FJSP with c% of flexibility
means that less than c% of all machines are selected to
process an operation. Number of jobs and number of
machines range from 10 to 200 and 5 to 15, respectively.
Processing time of each operation was drawn out of
U((number of machines)/2, (number of machines)x2) (U
represents the uniform distribution function). In practice,
an operation can be processed on any of a group of
machines that constitute a work center. Deviation of these
processing times is ideally zero or usually small.
Therefore, in our test cases, we set the maximum
deviation between two operations to be 5 unit times. The
release date of each job depends on the number ofjobs in
a particular test case. If the number of jobs is larger than
50, the release date is drawn out of U[0,40], else it is
taken from U[0,20]. Baker [27] proposed a formula to
estimate the due date of a job using the TWK-method:

n-

di = ri +cx pij
j=1

where ri and di denote release and due dates of job i
respectively. pij presents the processing time of operation
Qi, and c denotes the tightness factor of the due date. The
higher the value of c, the looser is the job's due date. We
adapt this formula to generate due dates of jobs with a
replacement of the parameter piq with -iq

Depending on the tightness of the due date, we
separate the samples of each class T-FJSP, P-FJSP-50, or
P-FJSP-20 into tight, moderate, or loose due date
corresponding to values of c = 1.2, 1.5, and 2. We also
generate mixed samples where each sample contains 34%
jobs with tight due dates, 33% ofjobs with moderate due
dates, and the remaining ones with loose due dates.
Specifically, the class T-FJSP holds 9 samples of tight due
date, 9 samples of moderate due date, 9 samples of loose
due date, and 9 samples of mix due date. Similarly for P-
FJSP-50 and P-FJSP-20, with 36 samples each. Each
training set contains three classes of 108 FJSP problems
with different number of jobs, machines and different
tightness of jobs. Another five validation sets of similar
compositions were generated. The average results of the
five validation sets were then reported.

5.2 Parameter setting
Through experimentation, the set of suitable parameter
values used in our GP framework is listed in Table III.
We implemented Ramped halfand halfto generate the

initial population of GP. This method was proposed by
Koza [22] and it has been widely used by previous
researchers. It divides the initial population into two parts.
Half of the initial population contains the random
generated trees with maximum depth (in this experiment,
this value is 7). The remaining part of the initial
population contains the random generated trees with depth
values ranging from one to the maximum depth. In order
to keep the best trees that may be destroyed by GP's

TABLE III CHOICE OF PARAMETER VALUES

Parameters Value

Population Size 100
Number of Generations 200
Creation Type Ramped half and half
Maximum depth for creation 7
Maximum depth for crossover 17
Crossover Probability 100%
Swap Mutation Probability 3%
Shrink Mutation Probability 3%
Number of best rules copy to new 5
generation

5.3 Data Analysis
The best five dispatching rules that were selected from 5
runs times of GP on the training set are given in Table IV;
where possible, they were simplified algebraically. Each
GP run took 12.81 hours to complete the training set.

TABLE IV GP GENERATED DISPATCHING RULES

Rule Expression

Rule_1 aTPT * (CT +RD + PT - 3)+ (CT * PT + RD
+ nOps) - (nOps * PT + 2PT+CT+1)

Rule_2 (PT+ CT+ RD + 2) * (RT+ PT + aTPT)

Rule_3 CT * aTPT + 5nOps + 3RD

Rule_4 DD *(RD + aTPT + RT + PT)

Rule_5 (aTPT + PT) * (CT + RD) + (DD - RD)

In order to compare the efficiency of the evolved rules
to the human-made rules presented in literature, some of
frequently used single and composite dispatching rules
were selected [16]:

* FIFO (First In First Out).
* SPT (Shortest Processing Time).
* EDD (Earliest Due Date).
* MDD (Modified Due Date) = max{CT+PTi, DDi}

[18].
* SL (Slack Time) = DDi - CT - RTi [17].
The selected rules are also combined with the least

waiting time rule [13] to evaluate the total tardiness ofthe
FJSPs (see Section 4.3).

Table V below compares the results of Rule_1 and the
five selected dispatching rules for solving T-FJSP with
different due date tightness.

operators, we sorted the current population and copied
five ofthem to the next generation.

2852

2853

TABLE V COMPARING PERFORMANCE OF DISPATCHING RULES
ON T-FJSP

Rule Tight Moderate Loose Mix

FIFO 56698.04 54494.69 50991.18 54037.56
SL 57035.16 50716.69 40837.24 47317.84
SPT 45019.78 43101.13 39024.53 42762.09
MDD 41747.31 38426.49 33294.87 38362.49
EDD 30884.33 28594.82 24827.18 29111.04
Rule_1 30868.89 28588.07 24813.33 28156.51

Results from Table V show that the FIFO rule
performs poorly in comparison with the others. This is
because the due dates of jobs are ignored by FIFO, and
therefore the rule does not focus on minimizing total
tardiness. The composite dispatching rule SL can obtain
slightly better results than FIFO but its results are still
poor in comparison to the remaining rules. Table V
indicates that MDD outperforms SL. From the definition
of MDD and SL described above, we observe that
although these two composite rules contain similar
parameters (DD and CT), the gap between the results of
the two rules are quite large due to different algebraic
combinations of the parameters. This emphasizes that the
functions that combine the rules can significantly affect
the results. Blackstone et al. [16] mentioned that the SPT
seems to be the best rule when the problem does specify
due dates or have very tight due dates for a classical job
shop. When the problem specifies loose or moderate due
dates then EDD seems to be the best. However, the results
presented in Table V indicate the contrary, that EDD
outperforms SPT for all classes of tight due-dates when
solving the FJSP. EDD is the best rule among five rules
selected from literature (FIFO, SPT, EDD, MDD, SL) in
solving T-FJSP. This could be explained by the flexibility
feature of FJSPs where an operation can be processed on
one of a group of machines. When a FJSP specifies tight
due dates, each job in this problem still has alternative
routes to take through the system, not just one route as in
the classical JSP. Therefore, if the job on the queue is
selected by EDD, it has more likely to finish on time.
Although the other rules such as SL or MDD also contain
the parameter - due date (DD), EDD obtains almost 50%
better results than these rules. This again demonstrates
that if an ineffective composite dispatching rule is applied
to specific problems, it may achieve worse results than the
single ones. The best performing rule in Table V is the
generated rule - Rule_1. This rule performs slightly better
than EDD in solving problems with tight or moderate due
dates, but for the loose and mix due date loads, it is better
than EDD.

Table VI and Table VII below compares the
effectiveness of the generated rule - Rule_1 to the five
dispatching rules from literature for solving the FJSP
problems with different tightness on machine assignment.
The values in two tables show that when the shop is less
flexible, there are more tardy jobs. The observed quality
of the rules in solving these FJSP problems remain similar
to results in Table V. The EDD still outperforms the other

dispatching rules in solving the P-FJSP with 50% and
20% flexibility. Rule_1 remains the best for solving the
same problems. Table VI and Table VII also demonstrates
that when the shop is less flexible, Rule_1 is still much
better than EDD on loose and mix due date problems.

TABLE VI COMPARING PERFORMANCE OF DISPATCHING RULES
ON P-FJSP WITH 50% FLEXIBILITY

Rule Tight Moderate Loose Mix

FIFO 59984.31 58119.93 54183.93 57233.27
SL 59812.00 53131.51 43076.04 49119.18
SPT 48778.44 46326.53 42702.47 45437.40
MDD 45497.78 41904.98 36446.64 40933.71
EDD 33276.33 30891.76 27110.93 31068.89
Rule_1 33233.16 30901.20 27035.47 30090.89

TABLE VII COMPARING PERFORMANCE OF DISPATCHING
RULES ON P-FJSP WITH 20% FLEXIBILITY

Rule Tight Moderate Loose Mix

FIFO 63848.09 61366.56 56797.36 61628.31
SL 61611.89 54097.24 42499.18 51239.93
SPT 52274.91 50422.31 44913.31 49603.13
MDD 49144.64 45729.60 38990.09 45431.42
EDD 36797.33 34308.91 29692.22 35264.09
Rule_1 36358.47 33795.56 29156.11 33746.71

Table VIII summarizes and sorts the results for
average tardiness when using Rule 1 and for other rules
in solving the FJSP to minimize total tardiness. Note that
the value given in each column is the average tardiness
value for 180 different instances.
TABLE VIII COMPARING RULE_1 WITH OTHER SINGLE AND

COMPOSITE RULES

P-FJSP with P-FJSP with
Rule T-FJSP 50% 20%

flexibility flexibility
FIFO 54055.37 57380.36 60910.08
SL 48976.73 51284.68 52362.06
SPT 42476.88 45811.21 49303.42
MDD 37957.79 41195.78 44823.94
EDD 28354.34 30586.98 34015.64
Rule_1 28144.20 30315.18 33264.21

In general, the FIFO obtains the worst results among
the five selected rules from literature. The EDD emerges
to be the best among the selected rules. Its performance is
found to be significantly better than the SPT in all kinds
of due date tightness. This finding is quite interesting
because the existing literature notes that the SPT is an
efficient rule under highly loaded job-shop conditions
[17]. The best performing rule is the evolved rule -
Rule_1. The values in bold-faced identify the instances
where Rule_1 is observed to be fare better than the
remaining ones. When the flexibility of the shop is tighter,
Rule_1 still achieves better results than EDD.
We now compare the other generated rules against the

most effective rule (EDD) among the selected rules from

2853

2854

literature. Table IX shows the proportion of instances that
the EDD had fared poorer and better than the five
generated rules. The improvement by using the generated
rules was significant overall. They obtained better results
for 74% to 85% of problem instances when compared to
EDD. In addition, Rule_1 outperformed the other rules in
terms of the proportion of instances that it solved. It can
be observed that at least 85% of instances solved by
Rule_1 fared better than those solved by the most
effective human-made rule EDD. In this sense, it can be
concluded that the evolved rules produced by our GP
framework is very competitive with the human-made
rules selected from literature.
TABLE IX COMPARING FIVE EVOLVED DISPATCHING RULES WITH

THE EDD RULE

Percentage of
Rule instances EDD was

worse
Rule_1 85.19%
Rule_2 81.48%
Rule_3 77.78%
Rule_4 75.00%
Rule_5 74.07%

Percentage of
instances EDD was
better
14.81%
18.72%
22.22%
25.00%
25.93%

In order to understand why these evolved rules are
effective in solving the FJSP to minimize total tardiness,
we now take a closer look at the combination of their
parameters. While single rules consider only one
parameter of the shop, the evolved rules employ almost all
the important parameters. However, the combination of
these parameters plays an essential role to the success of
the rule. For instance, the composite rules SL and MDD
combine the parameter DD with other parameters CT, PT,
and RT but they fail to get better results than the EDD
with just one parameter DD (see Table VIII). The
parameters aTPT and RD could be important for solving
the problem. They are present in all the rules and
contribute mainly to change the priority of one operation
to be selected in a queue. For example, Rule_2 in Table
IV was constructed with two terms. The first term
operates in favor of release date RD and processing time
PT while the second term runs in favor of average total
processing time aTPT and remaining time RT. When the
release date of a job is small, this means that the job is
released early, the first term produces small results.
Similarly, when the remaining time of the job is small, the
second term produces a small result. Both parameters help
to decrease the value of the ratio and assign a high priority
to the job. It is well known that the SPT rule is effective in
minimizing the number of tardy jobs [17]. Two terms of
this rule also contains PT and aTPT that are in favor of the
SPT. Therefore, they also contribute to improve the
efficacy of the rule.

6 Conclusion and Future Works

In this paper, a GP-based approach for discovering
effective composite dispatching rules for solving the FJSP

has been presented and analyzed. CDRs have been studied
widely by previous researchers [1 5]-[17]. However, all of
them were constructed based on the experience of a
human scheduler. We employ a GP-framework to
generate a CDR based on fundamental terminals that can
effectively solve the FJSP (together with a machine
assignment rule) to minimize total tardiness. Five
composite dispatching rules were generated by GP over a
large training set. These rules are based on the
combination of parameters such as processing time,
release date, due date, current time, number of operations,
and average total processing time of each job using basic
arithmetical operators. Extensive simulations have been
carried out to evaluate the performance of the five
evolved rules over varying degrees of problem
flexibilities and due date tightness. Five other popular
rules selected from literature were also evaluated as
performance benchmarks. It was found that EDD is
significantly better than the other rules from literature.
However, all the generated rules found by GP
outperformed the EDD for 74% to 85% of the problem
instances.

Several possible extensions of this study can be
developed. Similar to other applications of GP where the
parameters are sensitive, denser terminal sets and more
varied ADRs should be investigated to improve the
generated rules. The approach of this study can be applied
to find the efficient composite dispatching rules for other
similar problems, such as a flow shop or the classical job
shop. The rules evolved from this GP framework are still
quite complex to simplify. Therefore, a simplification
algebraic simplification tool could be used to make the
formula more meaningful. Consideration could even be
given to including the number of parameters used as a
measure for minimization. Finally, the redundant
parameters in each evolved rule can be examined further
to get better results.

Acknowledgments

This research was funded in part by Nanyang
Technological University and CEI Contract
Manufacturing Limited Company, Singapore.

Bibliography

[1] D. J. Hoitomt, P. B. Luh, and K. R. Pattipati,
"Practical Approach to Job-Shop Scheduling
Problems," IEEE Transactions on Robotics and
Automation, vol. 9(1), pp. 1-13., 1993.

[2] A.S.Jain and S.Meeran, "Deterministic job-shop
scheduling: Past, present and future," European
Journal ofOperation Research, vol. 113(2), pp. 390-
434, 1998.

[3] J.Carlier and E.Pinson, "An algorithm for solving
the Job-Shop problem," Management Science, vol.
35(2) pp. 164-176, 1999.

[4] M. Kolonko, "Some New Results on Simulated
Annealing Applied to the Job Shop Scheduling
Problem," European Journal of Operational
Research, vol. 113, pp. 123-136, 1999.

2854

-

2855

[5] E. Nowicki and C. Smutnicki, "A Fast Taboo Search
Algorithm for the Job Shop Problem," Management
Science, vol. 42(6), pp. 797-813, 1996.

[6] T.Yamada, R.Nakano, "A fusion of crossover and
local search," Proc. IEEE International Conference
on Industrial Technology, pp. 426-430, 1996.

[7] M.R. Garey, D.S. Johnson, R. Sethi, "The
complexity of flow shop and job-shop scheduling,"
Mathematics of Operations Research, vol. 1(2), pp.
117-129, 1996.

[8] M. Pinedo. and X. Chao, Operations scheduling with
applications in manufacturing and services,
MCGraw-Hill, 1999, Chaper 3.

[9] P. Brandimarte, "Routing and scheduling in a
flexible job shop by tabu search," Annals of
Operations Research, vol. 22, pp. 158-183, 1993.

[10] M. Mastrolilli, L.M. Gambardella, "Effective
Neighborhood Functions for the Flexible Job Shop
Problem", Journal ofScheduling, vol. 3(1), pp. 3-20,
2000.

[11] I. Kacem, S. Hammadi, and P. Borne, "Approach by
localization and multiobjective evolutionary
optimization for flexible job-shop scheduling
problems," IEEE Transactions on Systems, Man and
Cybernetics, vol. 32(1), pp. 1-13, 2002.

[12] I. Kacem., S. Hammadi, P. Borne, "Pareto-
optimality approach for flexible job-shop scheduling
problems: hybridization of evolutionary algorithms
and fuzzy logic," Mathematics and Computers in
Simulation, vol. 60, pp. 245-276, 2002.

[13]N. B. Ho and J. C. Tay, "GENACE: An Efficient
Cultural Algorithm for Solving the Flexible Job-
Shop Problem," Proc. the Congress on Evolutionary
Computation CEC2004, pp. 1759-1766, 2004.

[14] J. C. Tay and D. Wibowo, "An Effective
Chromosome Representation for Evolving Flexible
Job-Shop Schedules," Proc. Genetic and
Evolutionary Computation GECCO2004, pp. 210-
221, 2004.

[15] S. Panwalkar and I. Wafik, "A Survey of Scheduling
Rules," Operations Research, vol. 25(1), pp. 45-61,
1977.

[16]J.H. Blackstone, D.T. Phillips, G.L. Hogg, "A state-
of-the-art survey of dispatching rules for
manufacturing job shop operations", International
Journal ofProduction Research, vol. 20(1), 1982.

[17]H. Oliver and R. Chandrasekharan, "Efficient
dispatching rules for scheduling in a job shop,"
International Journal ofProduction Economics, vol.
48(1), pp. 87-105, 1997.

[18] J.K. John, L. Xiaoming, "A Weighted Modified Due
Date Rule for Sequencing to Minimize Weighted
Tardiness", Journal of Scheduling, vol. 7(4), pp.
261-276, 2004.

[19]M. S. Jayamohan and C. Rajendran, "Development
and analysis of cost-based dispatching rules for job
shop scheduling," European Journal of Operational
Research, vol. 157(2), pp. 307-321, 2004.

[20] M. Pinedo, Scheduling theory, algorithms, and
systems, Prentice Hall, 2002, Chaper 2.

[21] S. Barman, "Simple Priority Rule Combinations: An
Approach To Improve Both Flow Time And
Tardiness," International Journal of Production
Research, vol. 35(1O),pp. 2857-2870, 1997.

[22] J. Koza, Genetic Programming: on theprogramming
of computers by means of natural selection,
Cambrige, MA: MIT Press, 1992.

[23]J.R. Koza, F.H. Bennett III, D. Andre, M.A. Keane,
F. Dunlap, "Automated Synthesis of Analog
Electrical Circuits by Means of Genetic
Programming," IEEE Transactions on Evolutionary
Computation, vol. 1(2), pp. 109-128, 1997.

[24] J. D. Lohn, G. S. Hornby, D. S. Linden, "An
Evolved Antenna for Deployment on NASA's Space
Technology 5 Mission," Proc. Genetic
Programming Theory Practice 2004 Workshop
(GPTP-2004), 2004.

[25] C. Dimopoulos, A.M.S. Zalzala, "Investigating the
use of genetic programming for a classic one-
machine scheduling problem," Advances in
Engineering Software, vol. 32 (6), pp. 489-498,
2001.

[26] J. Koza, Genetic Programming II, Automatic
Discovery of Resuable Programs, MIT Press, 1994,
Chapter 4.

[27] K.R. Baker, "Sequencing Rules and Due-date
Assignments in Job Shop," Management Science,
vol. 30, pp. 1093-1104, 1984.

2855

