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Abstract 
The class imbalance problem has been recognized 

in many practical domains and a hot topic of machine 
learning in recent years. In such a problem, almost all 
the examples are labeled as one class, while far fewer 
examples are labeled as the other class, usually the 
more important class. In this case, standard machine 
learning algorithms tend to be overwhelmed by the 
majority class and ignore the minority class since 
traditional classifiers seeking an accurate performance 
over a full range of instances. This paper reviewed 
academic activities special for the class imbalance 
problem firstly. Then investigated various remedies in 
four different levels according to learning phases. 
Following surveying evaluation metrics and some 
other related factors, this paper showed some future 
directions at last. 

 
1. Introduction 
 

Many traditional algorithms to machine learning 
and data mining problems assume that the target 
classes share similar prior probabilities. However, in 
many real world applications, such as oil-spill 
detection, network intrusion detection, fraud detection, 
this assumption is grossly violated. In such problems, 
almost all the examples are labeled as one class, while 
far fewer examples are labeled as the other class, 
usually the more important class. This situation is 
known as the problem of class imbalance. In this case, 
standard classifiers tend to be overwhelmed by the 
majority class and ignore the minority class. Its 
importance grew as more and more researchers 
realized that this imbalance causes suboptimal 
classification performance, and that most algorithms 
behave badly when the data sets are highly imbalanced. 
The class imbalance problem has been a hot topic in 
machine learning in recent years.  

Class imbalance problem has been recognized to be 
existing in lots of application domains, such as spotting 
unreliable telecommunication customers, detection of 
oil spills in satellite radar images, learning word 
pronunciations, text classification, risk management, 
information retrieval and filtering tasks, medical 
diagnosis (e.g. rare disease and rare genes mutations), 
network monitoring and intrusion detection, fraud 
detection, shuttle system failure, earthquakes and 
nuclear explosions and helicopter gear-box fault 
monitoring. From the view of applications, the nature 
of the imbalance falls in two cases: The data are 
naturally imbalanced (e.g. credit card frauds and rare 
disease) or, the data are not naturally imbalanced but it 
is too expensive to obtain data of the minority class 
(e.g. shuttle failure) for learning.  

There have been lots of researches on class 
imbalance problem. Paper [1] reviewed various 
techniques for handling imbalance dataset problems. 
Paper [2] traced some of the recent progress in the field 
of learning from imbalanced data sets, in which Sofia 
Visa et. al. argued that the poor performance of the 
classifiers produced by the standard machine learning 
algorithms on imbalanced data sets is mainly due to the 
following three factors: accuracy, class distribution and 
error costs, since they are rarely well satisfied in real 
world applications. Paper [3] discussed several issues 
related to learning with skewed class distributions, 
such as the relationship between cost-sensitive learning 
and class distributions, and the limitations of accuracy 
and error rate to measure the performance of 
classifiers. Weiss [4] presented an overview of the field 
of learning from imbalanced data. He pays particular 
attention to differences and similarities between the 
problems of rare classes and rare cases. He then 
discussed some of the common issues and their range 
of solutions in mining imbalanced data sets.  

The reminder of the paper is organized as follows. 
Section 2 reviewed academic activities including two 

Fourth International Conference on Natural Computation

978-0-7695-3304-9/08 $25.00 © 2008 IEEE

DOI 

192

Fourth International Conference on Natural Computation

978-0-7695-3304-9/08 $25.00 © 2008 IEEE

DOI 

192

Fourth International Conference on Natural Computation

978-0-7695-3304-9/08 $25.00 © 2008 IEEE

DOI 10.1109/ICNC.2008.871

192



workshops and one special issue on the problem of 
class imbalance. Sections 3 surveyed the remedies to 
the class imbalance problem from four different levels. 
Popular evaluation metrics for imbalanced data sets 
were summarized in section 4. Section 5 briefly 
analyzed some other factors related to the class 
imbalance problem, and section 6 concluded the paper 
and showed some future directions. 

 
2. Academic activities on the class 

imbalance problem 
 

As described above, recognizing class imbalance 
problem exists in extensive application domains gave 
rise to two workshops held at the top conferences in AI, 
and one special issue on dealing with the class 
imbalance problem. 

The first workshop dedicated to the class imbalance 
problem was held in conjunction with the American 
association for artificial intelligence conference 2000 
(AAAI’2000). Its main contribution includes 
observation of many application domains dealing with 
imbalanced data sets, and several important issues, 
such as how to evaluate learning algorithms, what 
evaluation measures should be used, one class learning 
versus discriminating methods, discussions over 
various re-sampling methods, discussion of the relation 
between class imbalance problem and cost-sensitive 
learning, the goal of creating classifiers that performs 
well across a range of costs and so on.  

The second workshop special for the class 
imbalance problem is part of the international 
conference on machine learning 2003 (ICML’2003), in 
which most research on the problem was guided by the 
first workshop. For example, ROC or cost curves were 
used as evaluation metrics, rather than accuracy. The 
workshop was followed by an interesting and vivid 
panel discussion. Two major directions presented in 
the research papers of the workshop: Many papers still 
reported various tuning methods applied to decision 
trees in order to perform better on imbalanced data 
sets, even though presentations in the previous 
workshop showed their shortcomings, and it was 
commonly agreed that new classifiers are needed for 
imbalanced data sets; Besides, re-sampling, under 
various aspects, was present in half of the papers and 
was the most debated issue, even though [5] shows that 
sampling has the same result as moving the decision 
threshold or adjusting the cost matrix (a result known 
since 1984 [6]). In addition, N. Japkowicz questioned 
the fact that the within class imbalance is responsible 
for the problem [7]. The idea is that within class 
imbalance leads to a severe lack of representation of 
some important aspects of the minority class. 

The sixth issue of SIGKDD Exploration was 
dedicated entirely to the class imbalance problem, in 
which Weiss [4] presented a very good review of the 
current research on learning from imbalanced data sets, 
and the other papers in the volume address mainly 
issues of sampling, feature selection and one-class 
learning, for example, [9] investigated a boosting 
method combined with various over-sampling 
techniques of the hard to classify examples. The 
method improves the prediction accuracy for both the 
classes and does not sacrifice one class for the other 
with experiments on 17 data sets.  

 
3. Remedies for the class imbalance 
problem 
 

The remedies to deal with the problem of class 
imbalance are of four different levels according to the 
phases in learning, i.e. changing class distributions 
mainly by re-sampling techniques, features selection in 
the feature level, classifiers level by manipulating 
classifiers internally and ensemble learning for final 
classification. 

 
3.1. Changing class distributions 
 

Since examples belong to the minority class are far 
fewer than those belong to the majority class in 
situations of the class imbalance problem, one direct 
way to counter the problem is to change class 
distributions. Balanced distributions can be obtained 
by under-sampling the majority class, over-sampling 
minority class, combining the both and some other 
advanced sampling ways. There are numerous 
researches on changing class distributions [10-16]. 
Weiss investigated the effect of class distributions on 
decision tree by altering class distributions in several 
ratios with accuracy and AUC as metrics in his 
doctoral dissertation [10]. All the methods falls into 
three basic techniques: heuristic and non-heuristic 
under-sampling, heuristic and non-heuristic over-
sampling and advanced sampling.  In� [11]� various�
strategies� for� learning� from� imbalanced� data� sets�
were� compared,� and� it� concluded� that� under-
sampling� and� over-sampling� are� very� effective�
methods� for� dealing� with� the� class� imbalance�
problem.�
 
3.1.1. Under-sampling. The most naivest under-
sampling method is random under-sampling [12], a 
non-heuristic method trying to balance class 
distributions through the random elimination of 
majority class examples. This leads to discarding 
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potentially useful data that could be important for 
classifiers.  

There have been several heuristic under-sampling 
methods proposed or introduced from data cleaning in 
recent years. They are based on either of two different 
noise model hypotheses. One thinks examples that are 
near to the classification boundary of the two classes 
are noise, while the other considers examples with 
more neighbors of different labels are noise. 

Condensed Nearest Neighbor Rule (CNN) [13] 
bases on the notion of a consistent subset of a sample 
set, which is a subset who can correctly classifies all of 
the remaining examples in the training set when used 
as a stored reference set for the NN rule. If the 
Bayesian risk is small, i.e., if the underlying densities 
of the various classes have small overlapping, then the 
algorithm will tend to pick out examples near the 
(perhaps fuzzy) boundary between the classes. 
Typically, points deeply imbedded within a class will 
not be transferred to “STORE”, since they will be 
correctly classified. If the Bayesian risk is high, then 
“STORE” will contain essentially all the examples in 
the original training set, and no important reduction in 
training size will have been achieved. So CNN is 
effective only binary classes are of small overlapping.  

OSS [14] randomly draws one majority class 
example and all examples from the minority class and 
then puts these examples in E΄. Afterwards, use a 1-NN 
over the examples in E΄ to classify the examples in E. 
Every misclassified example from E is moved to E΄. 
The idea behind this implementation of a consistent 
subset is to eliminate the examples from the majority 
class that are distant from the decision border, since 
these examples might be considered less relevant for 
learning. 

Wilson’s Edited Nearest Neighbor Rule (ENN) [26] 
removes any example whose class label differs from 
the class of at least two of its three nearest neighbors.  

Different from ENN, Neighborhood Cleaning Rule 
(NCL) [8] deals with majority and minority samples 
separately when cleaning the data sets. NCL uses ENN 
to remove majority examples, for each example Ei in 
the training set, its three nearest neighbors are found. If 
Ei belongs to the majority class and the classification 
given by its three nearest neighbors contradicts the 
original class of Ei, then Ei is removed. If Ei belongs to 
the minority class and its three nearest neighbors 
misclassify Ei, then the nearest neighbors that belong 
to the majority class are removed.  

Compared with above four under-sampling methods, 
Tomek links [41] consider samples near the borderline 
should be paid more attention. Given two examples Ei 
and Ej belonging to different classes, and d(Ei, Ej) is 
the distance between Ei and Ej; a (Ei, Ej) pair is called a 
Tomek link if there is not an example E1, such that d(Ei, 

E1) < d(Ei, Ej) or d(Ej , E1) < d(Ei, Ej ). If two examples 
form a Tomek link, then either one of these examples 
is noise or both examples form borderline. So, Tomek 
link can be viewed as an under-sampling method when 
examples of both classes are removed. 

It should be noted that Tomek link, ENN and NCL 
are highly time-consuming, since for any example in 
the data sets, nearest neighbors of the sample must be 
found, so it is impossible for large datasets. 

 
3.1.2. Over-sampling. Random over-sampling is a 
non-heuristic method that aims to balance class 
distributions through the random replication of 
minority class examples. Random over-sampling has 
two shortcomings. First, it will increase the likelihood 
of occurring over-fitting, since it makes exact copies of 
the minority class examples [14, 15]. Second, over-
sampling makes learning process more time-
consuming if the original data set is already fairly large 
but imbalanced. 

There are several heuristic over-sampling methods 
mainly based on SMOTE. SMOTE generates synthetic 
minority examples to over-sample the minority class 
[15]. Its main idea is to form new minority class 
examples by interpolating between several minority 
class examples that lie together. By interpolating 
instead of replication, SMOTE avoids the over-fitting 
problem and causes the decision boundaries for the 
minority class to spread further into the majority class 
space. 

Recognizing examples near the borderline of the 
classes are more important and more easily 
misclassified than those far from the borderline, 
Borderline_SMOTE [16] was proposed. It only over-
sample the borderline examples of the minority class, 
while SMOTE and random over-sampling augment the 
minority class through all the examples from the 
minority class or a random subset of the minority class. 
For the minority class, experiments show that their 
approaches achieve better TP rate and F-value than 
SMOTE and random over-sampling methods. 

 
3.1.3. Advanced sampling. Different from various 
under-sampling and over-sampling methods above, the 
following advanced sampling methods do re-sampling 
based on the results of preliminary classifications. 

Boosting is an iterative algorithm that place 
different weights on the training distributions each 
iteration. After each iteration boosting increases the 
weights associated with the incorrectly classified 
examples and decreases the weights associated with the 
correctly classified examples separately. This forces 
the learner to focus more on the incorrectly classified 
examples in the next iteration. Note that boosting 
effectively alters the distributions of the training data, 
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it can be considered to be a type of advanced sampling 
technique. 

Weiss proposed a heuristic, budget-sensitive, 
progressive-sampling algorithm [10, 17] for selecting 
training data that approximates optimum. The budget-
sensitive sampling strategy makes two additional 
assumptions. First, it assumes that the number of 
potentially available training examples from each class 
is sufficiently large so that a training set with n 
examples can be formed with any desired marginal 
class distributions. The second assumption is that the 
cost of executing the learning algorithm is negligible 
compared to the cost of procuring examples. This 
assumption permits the learning algorithm to be run 
multiple times, in order to provide guidance about 
which examples to select. He argued that though the 
heuristically determined class distributions associated 
with the final training set is not guaranteed to yield the 
best-performing classifier, the classifier induced using 
this class distributions performs well in practice. 

Han et. al. proposed an over-sampling algorithm 
based on preliminary classification (OSPC) [18]. 
Firstly, preliminary classification was made on the test 
data in order to save the useful information of the 
majority class as much as possible. Then the test data 
that were predicted to belong to minority class were 
reclassified to improve the classification performance 
of the minority class. OSPC was argued to perform 
better than under-sampling methods and SMOTE in 
terms of the classification performance of the minority 
class and majority class. 

It should be noted that all the methods of changing 
class distributions above are trying to deal with the 
problem of between-class imbalance. A cluster-based 
over-sampling [19] proposed to improve accuracy of 
minority class by dealing with the problems of between 
and within class imbalance simultaneously. 

When the data sets are severely skewed, under-
sampling and over-sampling methods are often 
combined to improve generalization of the learner [8, 
12,16,20]. Batista et. al. [20] presented a comparison 
(and combination) of various sampling strategies. They 
noted that combining focused over-sampling and 
under-sampling, such as SMOTE combining with 
Tomek link or SMOTE combining with ENN is 
applicable when the data sets are highly imbalanced or 
there are very few examples of the minority class. 

 
3.2. Feature selection 
 

The majority of work in feature selection for 
imbalanced data sets has focused on text classification 
or Web categorization domain [21][22]. A couple of 
papers in this issue look at feature selection in 

situations of imbalanced data sets, albeit in text 
classification or Web categorization. 

Zheng et. al. [23] suggested that existing measures 
used for feature selection are not very appropriate for 
imbalanced data sets. They proposed a feature 
selection framework, which selects features for 
positive and negative classes separately and then 
explicitly combines them. The authors showed simple 
ways of converting existing measures so that they 
separately consider features for negative and positive 
classes. Castillo and Serrano [24] did not particularly 
focus on feature selection, but made it a part of their 
complete framework.  

Putten and Someren [25] analyzed the COIL 2000 
data sets using the bias-variance decomposition and 
they reported that the key issue for this particular data 
set was avoiding over-fitting. They concluded that 
feature selection in such domains is even more 
important than the choice of the learning method. 

 
3.3. Classifiers level 
 
3.3.1. Manipulating classifiers internally. 
Drummond and Holte [27] reported that when using 
C4.5’s default settings, over-sampling is surprisingly 
ineffective, often producing little or no change in 
performance in response to modifications of 
misclassification costs and class distributions. 
Moreover, they noted that over-sampling prunes less 
and therefore generalizes less than under-sampling, and 
that a modification of the C4.5’s parameter settings to 
increase the influence of pruning and other over-fitting 
avoidance factors can reestablish the performance of 
over-sampling.  

Some classifiers, such as the Naive Bayes classifier 
or some Neural Networks, yield a score that represents 
the degree to which an example is a member of a class. 
Such ranking can be used to produce several 
classifiers, by varying the threshold of an example 
pertaining to a class [4]. 

For internally biasing the discrimination procedure, 
a weighted distance function was proposed in [28] to 
be used in the classification phase of kNN. The basic 
idea behind this weighted distance is to compensate for 
the imbalance in the training sample without actually 
altering the class distributions. Thus, weights are 
assigned, unlike in the usual weighted k-NN rule, to 
the respective classes and not to the individual 
prototypes. In this way, since the weighting factor is 
greater for the majority class than for the minority one, 
the distance to positive minority class prototypes 
becomes much lower than the distance to prototypes of 
the majority class. This produces a tendency for the 
new patterns to find their nearest neighbor among the 
prototypes of the minority class. 
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Another approach to dealing with imbalanced 
datasets using SVM biases the algorithm so that the 
academic hyper-plane is further away from the positive 
class. This is done in order to compensate for the skew 
associated with imbalanced datasets which pushes the 
hyper-plane closer to the positive class. This biasing 
can be accomplished in various ways. In [29] an 
algorithm is proposed by changing the kernel function 
to develop this bias. Veropoulos et. al. [30] suggested 
using different penalty constants for different classes of 
data, making errors on positive examples costlier than 
errors on negative examples. 

Kaizhu Huang et al. [31] presented Biased Minimax 
Probability Machine (BMPM) to resolve the imbalance 
problem. Given the reliable mean and covariance 
matrices of the majority and minority classes, BMPM 
can derive the decision hyper-plane by adjusting the 
lower bound of the real accuracy of the testing set. 

 
3.3.2. Cost-sensitive learning. Besides changing the 
class distributions, incorporating costs in decision-
making is another way to improve classifier’s 
performance when learning from imbalanced datasets. 
Cost model takes the form of a cost matrix, as shown 
in Fig.1, where the cost of classifying a sample from a 
true class j to class i corresponds to the matrix entry 
λij. This matrix is usually expressed in terms of 
average misclassification costs for the problem. The 
diagonal elements are usually set to zero, meaning 
correct classification has no cost. The goal in cost-
sensitive classification is to minimize the cost of 
misclassification, which can be realized by choosing 
the class with the minimum conditional risk. 
 

 Prediction 
Class i Class j 

True 
Class i 0 ijλ  

Class j jiλ  0 
Fig. 1 Cost matrix 

 
MetaCost [32] is another method to make a 

classifier cost-sensitive. The procedure begins to learn 
an internal cost-sensitive model by applying a cost-
sensitive procedure, which employs a base learning 
algorithm. Then, MetaCost procedure estimates class 
probabilities using bagging and then re-labels the 
training examples with their minimum expected cost 
classes, and finally relearns a model using the modified 
training set. 

AdaBoost’s weight-update rule has been made cost-
sensitive, so that examples belonging to rare class that 
are misclassified are assigned higher weights than 
those belonging to common class. The resulting 

system, Adacost has been empirically shown to 
produce lower cumulative misclassification costs than 
AdaBoost [33]. 

 
3.3.3. One-class learning. One-class learning is a 
recognition-based approach, which provides an 
alternative to discrimination where the model can be 
created based on the examples of the target class alone. 
Here, classification is accomplished by imposing a 
threshold on the similarity value [34] between a query 
object and the target class. Mainly, two classes of 
learners were previously studied in the context of the 
recognition-based one-class approach: SVMs [35][37] 
and auto-encoders [34][37], and they were found to be 
competitive [37].  

Besides, systems that learn only the minority class 
may still train using examples belonging to all classes. 
Brute [38], Shrink [39] and Ripper [40] are three such 
data mining systems. Brute has been used to look for 
flaws in the Boeing manufacturing process [38]. Shrink 
uses a similar approach to detect rare oil spills from 
satellite radar images [39]. Based on the assumption 
that there will be many more negative examples than 
positive examples, Shrink labels mixed regions (i.e., 
regions with positive and negative examples) with the 
positive class. Ripper [40] is a rule induction system 
that utilizes a separate-and-conquer approach to 
iteratively build rules to cover previously uncovered 
training examples. Each rule is grown by adding 
conditions until no negative examples are covered. It 
normally generates rules for each class from the most 
rare class to the most common class. So, in this view, 
Ripper can be view as a one-class learner.  

An interesting aspect of one-class (recognition-
based) learning is that, under certain conditions such as 
multi-modality of the domain space, one class 
approaches to solving the classification problem may 
in fact be superior to discriminative (two-class) 
approaches (such as decision trees or Neural Networks) 
[34]. 

Raskutti and Kowalczyk demonstrated the 
optimality of one-class SVMs over two-class ones in 
certain important imbalanced-data domains, including 
genomic data [42]. In particular, they showed that one-
class learning is particularly useful when used on 
extremely unbalanced data sets composed of a high 
dimensional noisy feature space. They argued that the 
one-class approach is related to aggressive feature 
selection methods, but is more practical since feature 
selection can often be too expensive to apply. 

 
3.4. Ensemble learning methods 
 

Ensemble learning has established its superiority in 
machine learning in recent years, of which Boosting 
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and Bagging are the most successful approaches. 
Ensemble learning methods have been extensively 
used to handle class imbalance problems. These 
methods combine the results of many classifiers. Their 
successes attribute to the fact that their base learners 
usually are of diversity in principle or induced with 
various class distributions. 

AdaBoost, introduced by Freund and Schapire [43], 
solved many of the practical difficulties of the earlier 
boosting algorithms. Initially, all weights are set 
equally, but on each round, the weights of incorrectly 
classified examples are increased so that the weak 
learner is forced to focus on the hard examples in the 
training set. 

As stated in cost-sensitive learning, by making 
AdaBoost’s weight-update rule cost-sensitive, the 
resulting system Adacost [33] has been empirically 
shown to produce lower cumulative misclassification 
costs than AdaBoost. Thus, it can be used to address 
class imbalance problem. 

Rare-Boost [44] scales false-positive examples in 
proportion to how well they are distinguished from 
true-positive examples and scales false-positive 
examples in proportion to how well they are 
distinguished from true-negative examples.  

Another algorithm that uses boosting to address the 
class imbalance problem is SMOTEBoost [45]. This 
algorithm recognizes that boosting may suffer from the 
same problems as over-sampling (e.g., overfitting). 
Instead of changing the distributions of training data by 
updating the weights associated with each example, 
SMOTEBoost alters the distributions by adding new 
examples of minority class using the SMOTE 
algorithm.  

Experiment results indicated that the mixture-of-
experts approach performs well, generally 
outperforming AdaBoost with respect to precision and 
recall on text classification problems, and doing 
especially well at covering the minority examples. 
More detailed experiments are presented in [46]. 

MetaCost [32] is another ensemble method. It 
begins to learn an internal cost-sensitive model. Then, 
estimates class probabilities using bagging and then re-
labels the training examples with their minimum 
expected cost classes, and finally relearns a model 
using the modified training set. 

Chan and Stolfo [47] run a set of preliminary 
experiments to identify a good class distributions and 
then do resampling to generate multiple training sets 
with the desired class distributions. Each training set 
typically includes all minority-class examples and a 
subset of the majority-class examples; however, each 
majority-class example is guaranteed to occur in at 
least one training set, so no data is wasted. The 
learning algorithm is applied to each training set and 

meta-learning is used to form a composite learner from 
the resulting classifiers. Since it is a wrapper method, it 
can be used with any learning method internally. The 
same basic approach for partitioning the data and 
learning multiple classifiers has been used with support 
vector machines. The resulting SVM ensembles [48] 
was shown to outperform both under-sampling and 
over-sampling. While these ensemble approaches are 
effective for dealing with the class imbalance problem, 
they assume that a good class distributions is known. 
This can be estimated using some preliminary runs, but 
it is time consuming. From the style constructing the 
training data sets, they can be viewed as a variant of 
bagging. 

Phua et. al. [49] combined bagging and stacking to 
identify the best mix of classifiers. In their insurance 
fraud detection domain, they noted that stacking-
bagging achieves the best cost-savings. 

Besides ensemble learning algorithms of boosting 
and bagging style, Kotsiantis and Pintelas [12] used 
three agents (the first learns using Naive Bayes, the 
second using C4.5 and the third using 5NN) on a 
filtered version of training data and combined their 
predictions according to a voting scheme. This 
technique attempts to achieve diversity in the errors of 
the academic models by using different learning 
algorithms. The intuition is that the models generated 
using different learning biases are more likely to make 
errors in different ways. They also used feature 
selection of the training data because in small data sets 
the amount of class imbalance affects more the 
induction and thus feature selection makes the problem 
less difficult. 

Motivated Zheng and Srihari’s work [23], Castillo 
and Serrano [24] do not particularly focus on feature 
selection, but make it a part of their complete 
framework. They use a multi-strategy classifier system 
to construct multiple learners, each doing its own 
feature selection based on genetic algorithm. Their 
proposed system also combines the predictions of each 
learner using genetic algorithms. 

 
3. Evaluation metrics 
 

Accuracy is the most common evaluation metric for 
most traditional application. But accuracy is not 
suitable to evaluate imbalanced data sets, since many 
practitioners have observed that for extremely skewed 
class distributions the recall of the minority class is 
often 0, which means that there are no classification 
rules generated for the minority class. Using 
terminology from information retrieval, the minority 
class has much lower precision and recall than the 
majority class.  
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Accuracy places more weight on the majority class 
than on minority class, which makes it difficult for a 
classifier to perform well on the minority class. For 
this reason, additional metrics are coming into 
widespread use.  

In recent years, several new metrics have been 
proposed or introduced from other domains for 
imbalanced data sets. They are precision and recall 
from information retrieval domain, ROC and AUC 
(Area Under the roc Curve) from medical domain, F-
value, maximum geometry mean (MGM) of the 
accuracy on the majority class and the minority class, 
maximum sum (MS) of the accuracy. All the metrics 
can be classified into two categories: metrics based on 
confusion matrix directly and that based on accuracy of 
binary classes or precision and recall directly. 
Accuracy, precision and recall, FP rate, TP rate, ROC 
and AUC fall into the first, while F-values and other 
more complex metrics, such as MGM of the accuracy 
on the majority class and the minority class, MS, fall 
into the other. 

Table 1 shows the confusion matrix, and a good 
understanding to confusion matrix will be helpful. 

 
Table 1. Confusion matrix 

 Prediction 
positive negative 

Real positive TP(True Positive) FN(False Negative)
negative FP(False Positive) TN(True Negative)

 
As promised at the beginning of the paper, the class 

label of the minority class is positive, and the class 
label of the majority class is negative. Fig. 1 presents 
the most well known evaluation metrics. As shown in 
Table 1, TP and TN denote the number of positive and 
negative examples that are classified correctly, while 
FN and FP denote the number of misclassified positive 
and negative examples respectively. By definition, 
Accuracy, Precision+, Recall+, FP rate, TP rate and F-
value can be represented by Equations from Eq.1 to 
Eq.6 as shown in Fig.2, where Precision+ and Recall+ 
are precision and recall of the minority class. 

FP rate denotes the percentage of the misclassified 
negative examples, and TP rate is the percentage of the 
correctly classified positive examples. The point (0, 1) 
is the ideal point of the learners. That is there is no 
positive examples were misclassified to negative class, 
and vice versa. 

F-value (or F-measure) is a popular evaluation 
metric for imbalance problem [50]. It is a kind of 
combination of recall and precision, which are 
effective metrics for information retrieval community 
where the imbalance problem exists. F-value is high 
when both recall and precision are high, and can be 

adjusted through changing the value of β, where β 
corresponds to relative importance of precision vs. 
recall, for example, F-1 counts both equally, while F-2 
counts recall twice as much.  

Perhaps the most common metric to assess overall 
classification performance is ROC analysis and the 
associated use of the area under the ROC curve (AUC) 
[51]. In detail, ROC curve is a two-dimensional graph 
in which TP rate is plotted on the y-axis and FP rate is 
plotted on the x-axis. ROC curves, like precision-recall 
curves, can also be used to assess different trade-offs 
ROC curve depicts relative trade-offs between benefits 
(TP rate) and costs (FP rate), that is the number of 
positive examples correctly classified can be increased 
at the expense of introducing additional false positives. 
A major disadvantage of ROC analysis is that it does 
not deliver a single, easy to use performance measure 
like accuracy directly. AUC does not place more 
emphasis on one class over the other, so it is not biased 
against the minority class. 
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Fig.2. Evaluation metrics based on 

confusion matrix 
Besides, minimum cost criterion, is also used to 

evaluate the performance of classifiers in learning from 
imbalanced data sets when performing cost-sensitive 
learning. 

When applying machine learning algorithms to real 
world applications, rarely would one or more of these 
assumptions hold, but to select a classifier, certain 
conditions must exist, and we may need more 
information. If one ROC curve dominates all others, 
then the best method is the one that produced the 
dominant curve, which is also the curve with the 
largest area (with maximum AUC). To select a 
classifier from the dominant curve, we need additional 
information, such as a target FP rate. On the other 
hand, if multiple curves dominate in different parts of 
the ROC space, then we can use the ROC Convex Hull 
method to select the optimal classifier [52]. 

 
4. Relations to other problems 
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However, it has also been observed that in some 
domains, for example the Sick data set, standard 
machine learning algorithms are capable of inducing 
good classifiers, even using highly imbalanced training 
sets. This shows that class imbalance is not the only 
problem responsible for the decrease in performance of 
learning algorithms. Class imbalance is not the only 
problem to contend with. Besides, the distributions 
within each class of the data, i.e. within class 
imbalance, are also relevant [53]. 

It was found that in certain cases, addressing the 
small disjuncts problem with regardless of the class 
imbalance problem was sufficient to increase 
performance.  Experiments by Jo and Japkowicz 
suggested that the problem is not directly caused by 
class imbalances, but rather, that class imbalances may 
yield small disjuncts which, in turn, will cause 
degradation [19]. A cluster-based over-sampling 
approach was proposed, whose idea is to consider not 
only the between-class imbalance but also the within-
class imbalance and to over-sample the dataset by 
rectifying these two types of imbalances 
simultaneously. 

The experiments results of  Prati et. al. [54] , using a 
discrimination-based inductive scheme, suggested that 
the problem is not solely caused by class imbalance, 
but is also related to the degree of data overlapping 
among the classes. 

It was also found that data duplication is generally 
harmful, although for classifiers such as Naive Bayes 
and Perceptrons with Margins, high degrees of 
duplication are necessary to harm classification [55]. It 
was argued that the reason why class imbalances and 
overlapping classes are related is that misclassification 
often occurs near class boundaries where overlap 
usually occurs as well. 

Weiss [10] investigated the relation between class 
imbalance and training set size. Experiments showed 
that while the position of the best class distributions 
varies somewhat with training-set size, in many cases, 
especially with error rate, the variation is small which 
gives support to the notion that there is a “best” 
marginal class distribution for a learning task. The 
results also indicated that, for any fixed class 
distribution, increasing the size of the training set 
always leads to improved classifier performance. 

 
5. Conclusion 

 
Learning from imbalanced data sets is an important 

issue in machine learning. A direct method to solve the 
imbalance problem is artificially balancing the class 
distributions, and its effectiveness has been empirically 

analyzed in [11]. However, there is some evidence that 
re-balancing the class distributions artificially does not 
have much effect on the performance of the induced 
classifier, since some learning systems are not sensitive 
to differences in class distributions. It seems that we 
still need a clearer and deeper understanding of how 
class distribution affects each phase of the learning 
process for more learners except decision trees. A 
deeper understanding of the basics will help us to 
design better methods for dealing with the problem of 
learning with skewed class distributions.  

As is stated in section 5, some data sets are immune 
to class imbalance problem. It was argued that the class 
imbalance problem is not directly caused by class 
imbalance, but rather, that class imbalance may yield 
small disjuncts which, in turn, will cause degradation. 
Though maximum specification bias in induction 
processes  and dealing with the problems of within 
class imbalance and between class imbalance have 
present their effectiveness according to minority class, 
more effective methods are needed. Current researches 
on small disjuncts are ad hoc, so standard metrics for 
the degree of small disjuncts are deadly in need. 

Since machine learning is an application-driven 
science and the class imbalance problem and some 
other related ones are of domain-specific nature, 
realizing to explore idiographic solutions for specific 
applications is very important and valuable for 
practitioners, and a better data understanding and more 
knowledge on the domain will be helpful in the process. 
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