
Parallel Tuning of Support Vector Machine

Learning Parameters for Large and Unbalanced
Data Sets

Tatjana Eitrich1 and Bruno Lang2

1 John von Neumann Institute for Computing,
Central Institute for Applied Mathematics,

Research Centre Juelich, Germany
t.eitrich@fz-juelich.de

2 Applied Computer Science and Scientific Computing Group,
Department of Mathematics,

University of Wuppertal, Germany
Bruno.Lang@math.uni-wuppertal.de

Abstract. We consider the problem of selecting and tuning learning
parameters of support vector machines, especially for the classification
of large and unbalanced data sets. We show why and how simple models
with few parameters should be refined and propose an automated ap-
proach for tuning the increased number of parameters in the extended
model. Based on a sensitive quality measure we analyze correlations be-
tween the number of parameters, the learning cost and the performance
of the trained SVM in classifying independent test data. In addition
we study the influence of the quality measure on the classification per-
formance and compare the behavior of serial and asynchronous parallel
parameter tuning on an IBM p690 cluster.

1 Introduction

Support vector machines (SVMs) are one of the well accepted machine learning
methods [1]. Numerous experiments have confirmed that the linear learning ap-
proach in combination with problem adapted implicit feature mappings leads to
highly reliable nonlinear classification functions. Much work has been done to
make SVM algorithms run very fast [2].

In recent years, however, a significant number of nontrivial problems has
surfaced in the context of SVMs. The size of the classification problems increases
rapidly, while at the same time better results are desired. The quality issue is
particularly important if the data sets are unbalanced, which means that either
the number of positive and negative data differ significantly, or the cost of a
false positive classification differs significantly from the cost of a false negative,
or both. Often, the differing costs of misclassifications have been neglected, and
the success of a particular approach has been measured only by totaling the
number of incorrectly classified test points.

M.R. Berthold et al. (Eds.): CompLife 2005, LNBI 3695, pp. 253–264, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

254 T. Eitrich and B. Lang

Support vector machine classification involves a learning phase, in which the
training data are used to adjust the classification parameters. This procedure,
which can be formulated as a quadratic programming problem, is controlled by
a—typically very small—set of learning parameters. Usually these have to be set
by the user. Quoting [3], “There is a lot of papers published about the SVM algo-
rithms and kernel methods, but very few of them address the parameters tuning
to get the high quality results usually presented [. . .] these results are difficult to
reproduce because of the influence of the parameter settings.” In addition, it is
often not clear which quality measure had been used.

In this paper we address the classification of large unbalanced data sets with
SVMs, taking the differing costs of misclassifications into account. Large data
sets feature two properties that are important for the training. On the one hand,
they allow considering models with a higher number of learning parameters, so
that nonlinearity can be captured more precisely than with models involving only
a few parameters. (For smaller data sets, the number of parameters is limited by
overfitting effects.) Finding appropriate values for many parameters, however,
can no longer be done by hand or simple grid search, but must be automated. To
this end we embed the learning in a numerical optimizer, which repeatedly trains
an SVM with different settings of the learning parameters and strives to find
parameters that optimize a suitable quality measure; see Section 3 for details.
The overall procedure for adjusting the learning parameters and classification
parameters is summarized in Figure 1. Note that evaluating the quality measure
involves validating the SVM on data different from the training data.

The negative effect of large data sets is the high computational complexity.
To reduce the overall learning time, each SVM training is done with a highly
efficient quadratic program solver, and a parallelized optimizer is used for tuning
the learning parameters; see Sections 2 and 4. In Section 5 numerical experiments
with a large, hard classification problem will show that our automated approach
is able to yield good results in a reliable manner. This is important for users from
other fields because our method requires no human interaction and no familiarity
with the underlying SVM theory to tune the SVM to a particular classification
problem.

efficient SVM
validation with
QP solver

quality
measure

parallel
numerical
optimizer

final
learning
parameters

initial
learning
parameters

updated
learning
parameters

final SVM
training

final
classification
parameters

Fig. 1. Main components of the SVM system

Parallel Tuning of Support Vector Machine Learning Parameters 255

2 Support Vector Learning

The task of support vector learning is to determine functions that can be used
to classify data points. In this paper we consider only binary problems and leave
out multi-class learning and regression. In the binary case support vector learn-
ing is the process of using so-called reference data of given input–output pairs
{(xi, yi) ∈ R

n × {−1, 1}, i = 1, . . . , l} to find an optimal separating hyper-
plane wT x + b = 0. Using assumptions of statistical learning theory the desired
classifier is then defined as h(x) = sgn(f(x)) with the linear decision function
f(x) = wT x + b; see [4,5] for details.

If the data are not linearly separable then a kernel K : IRn × IRn → IR is
used to learn a nonlinear decision function

f∗
nonlin(x) =

∑

i:0<αi

yiα
∗
i K(xi, x) + b∗.

Here the classification parameters α∗
i and b∗ are given by the unique global

solution of a suitable (dual) quadratic optimization problem [5]

min
α∈Rl

g(α) :=
1
2
αT Hα −

l∑

i=1

αi (1)

with H ∈ IRl×l, Hij = yiK(xi, xj)yj (1 ≤ i, j ≤ l), constrained to

αT y = 0, 0 ≤ α ≤ C. (2)

The kernel function K must be provided by the user.
Note that the the Hessian H is usually dense, and therefore the complexity of

evaluating the objective function g in (1) scales quadratically with the number
l of training pairs, leading to very time-consuming computations. A well-known
method for the solution of such problems is the decomposition algorithm [6]
that repeatedly selects a subset of the free variables and optimizes (1) over these
variables. Its main advantage is the flexibility concerning the size of the sub-
problems. Decomposition provides a framework for handling large SVM training
tasks but it does not define how to solve the reduced quadratic programming
problems. To obtain good overall times it is necessary to have efficient QP solvers
for the subproblems. We use our own implementation of the projection method
described in [7]. This method is suitable for large data sets. It defines problems
with diagonal matrices and solves them iteratively with a fast inner solver [8].
Thus a single optimization step of the decomposition method becomes very fast.

3 Learning Parameters and Quality Management

The constraints (2) involve learning parameters Ci, i = 1, . . . , l, which have to be
chosen before SVM training. Often a single value Ci ≡ C is used for simplicity. In
[9] the authors gave evidence that for unbalanced data sets at least two values

256 T. Eitrich and B. Lang

should be used: Ci = C+ if the ith training point is positive (yi = +1), and
Ci = C− otherwise (yi = −1). In addition to correcting different sizes of the
two classes, the (C+, C−) model can also capture different costs of false positive
and false negative classifications. Since the data set treated in Section 5 is even
more unbalanced than the example in [9], with a very small number of positive
points, we again used the (C+, C−) model.

In addition to this weighting approach we consider generalizing the kernel
function. One of the most commonly used functions is the Gaussian kernel,

KG(x, z) = exp
(
−

∑n
k=1(xk − zk)2

2σ2

)
(x, z ∈ IRn), (3)

where the standard deviation σ > 0 is chosen identically for all features of the
data. The reason is again that hand tuning of the learning parameters requires
their number to be very small.

If the learning parameters can be adjusted automatically then their number
can be increased, and in the extreme case we may assign a different standard
deviation to each feature [9]:

KG(x, z) = exp

(
−

n∑

k=1

(xk − zk)2

2σ2
k

)
. (4)

As a reasonable compromise between (3) and (4), one might divide the features
into different groups (such as “binary” and “continuous”) and assign one σ value
to each group.

Comparing SVMs trained with these extended models to SVMs trained with
the usual uniform approach confirms that the added complexity indeed leads
to better classification results. Interestingly, allowing different σ values for the
features can also yield additional information. Based on the optimized value σk

one can estimate the relevance of the corresponding feature k, and thus one gets
an implicit feature selection mechanism for free. To our knowledge, however, the
option of tuning different σ values in the context of support vector learning has
not been considered elsewhere.

We also work on other generalized kernels and on other parameters that are
relevant for the training phase. For example, the decomposition method and the
QP solver use several internal parameters, which may be tuned to enhance the
performance [6,7]. Both issues cannot be discussed here due to space limitations.

The tuning of the learning parameters can be implemented by optimizing
a certain quality measure, which is obtained in validation steps. Optimizing a
nontrivial parameter model is almost impossible if a discrete quality measure is
used, e.g., the number of validation errors. Following the ideas in [9] we use the
continuous effectiveness measure

Eβ = 1 − (β2 + 1)pr · se
β2 · pr + se

∈ [0, 1], (5)

which we have to minimize. The sensitivity se (which percentage of the positive
data have been recognized ?) and the precision pr (which percentage of the points

Parallel Tuning of Support Vector Machine Learning Parameters 257

that have been classified “positive” are indeed positive ?) are computed with a
special smooth error measure. The quantity β can be used to enforce or diminish
the influence of sensitivity. In Section 5 we will present results achieved with (5)
for different values of β and discuss the problem of defining the quality measure.

4 Automatic Parallel Parameter Optimization

Tuning a nontrivial number of parameters can be very time consuming, and
therefore it is reasonable to use parallel computing resources. There are three
ways to insert parallelism during the SVM model selection stages: parallelizing
the training of a single SVM, training several SVMs in parallel, and using a paral-
lel algorithm for parameter optimization. Concerning the first option, promising
parallelization techniques for decomposition methods exist [10], whereas parallel
SMO [2] methods are currently investigated, but seem not to be reliable yet. The
second option has also been addressed with mostly straight-forward approaches,
e.g., parallel mixture of SVMs [11], parallel training of binary SVMs for multi-
class problems [12], and parallel cross validation models [13]; see [3] for a short
overview.

Concerning parallel parameter optimization, ongoing work is on parallel grid
search techniques [14]. Grid search uses a predefined set of values for each param-
eter and determines which combination of these values yields the best results.
Thus parallel grid search is an easy and perfectly scalable method that needs no
communication at all. Unfortunately this approach scales exponentially in the
number of parameters and therefore is applicable only for very simple models.

Since we are interested in tuning complex models with larger numbers of pa-
rameters, we rely on an efficient numerical optimizer instead. We decided to use
the APPSPACK [15] software for this task because it does not require derivatives
of the objective function and because an MPI-based parallel version is available.
Parallelism is achieved by assigning evaluations of the objective function Eβ to
different processors, the so-called workers. Note that each evaluation of Eβ re-
quires a complete cross-validation, which means i) to train SVMs on different
training points for a given set of learning parameters, ii) to validate the trained
SVMs on different test points and iii) to compute the quality measure. Based on
these values, the optimizer selects new promising search directions in the param-
eter space and checks for convergence. Good load balancing is achieved by using
an asynchronous scheme. Currently we exploit only the parallelism provided by
APPSPACK ; the training of single SVMs and the validation routine have not
yet been parallelized.

Mapping of SVM Learning onto the APPSPACK Environment. The
APPSPACK software package is freely available. A configure script automat-
ically locates the commands and system files that are required for compiling
and installing the package, and automatically generates appropriate makefiles.
Due to some IBM-specific settings these makefiles could not be used directly
for building the libraries and executables for our machine, but a few additional
steps had to be done. More details on the JUMP supercomputer will be given

258 T. Eitrich and B. Lang

in Chapter 5. Once we had successfully configured APPSPACK we built the
libraries and executables by using the makefiles. All in all the installation of
the software is easy and the APPSPACK developer team gives instructions if
requested.

The second step consisted of integrating SVM learning into the APPSPACK
framework. This required only minor changes of the SVM code because the exe-
cutable just has to read a file containing values for all parameters, to evaluate the
objective function Eβ , and to provide an output file which should contain either
a single numeric entry that is the function value or an error string. APPSPACK
is able to generate the input files and to read the output without additional
instructions. Please note that the optimizer examines the function values exclu-
sively, whereas the underlying simulation is not of any interest. Thus its usage
is easy to realize for support vector learning and any other supervised machine
learning algorithm. The users’ final task is to provide an apps-file containing the
relevant solver information like

– the number of parameters,
– lower and upper bounds for them (infinite bounds are allowed), and the
– executable name.

Optionally one can set

– the initial parameter vector for a hot start,
– the maximum number of evaluations,

and many more. Some examples are provided, too. For the parallel version the
number of workers ω is deduced from the submission of the MPI job via ω =
proc − 1, where proc is the number of processors. A single CPU, the master, is
used to assign work, i.e., trial points, to the workers. APPSPACK is robust due
to the toleration of error strings. Even if a single function evaluation fails, the
optimization won’t stop. For our quality measure (5) such a situation may occur
in the case pr = se = 0, when Eβ is not defined.

In the following section we will also compare results of the serial and parallel
version to show drawbacks and advantages of both methods. To our knowledge
this is the first presentation of work on parallel numerical optimization of non-
standard SVM parameters.

5 Results and Discussion

The numerical experiments were performed with the so-called thyroid data set
available from [16]. There are 7200 instances with 15 binary and 6 continuous
attributes. The task is to determine whether a patient is hypothyroid. Therefore
one class, representing 93% of the data, has the characteristic “not hypothyroid”.
The remaining instances are considered to belong to a single class “hypothyroid”,
even if a closer inspection would allow to classify them further as either “hyper-
function” or “subnormal functioning.” This merging is usually proposed, and
sometimes the dataset is even distributed in this form with the task of finding

Parallel Tuning of Support Vector Machine Learning Parameters 259

hypothyroid persons. Note that the merging of classes is somewhat critical as we
do not know the level of similarity between them. However we try to design a
sensitive binary classifier that is able to find as many hypothyroid points as pos-
sible. In addition to grossly unequal class sizes, the data set is unbalanced with
high cost for false negative results. In [16] the data is already partitioned into a
training set of 3772 points and a test set of 3428 points. Since the percentage of
positive and negative instances in the proposed training set is compatible with
the overall distribution we didn’t change this partitioning.

The thyroid data set was used in [17] for performance analysis of multilayer
neural networks. The best net reached a classification performance of 95%. It
was also stated that due to the imbalance of the data a learning method must
perform better than 93%. This is true only for scenarios where errors have always
the same weight and are not considered separately. Unfortunately, [17] does not
give data concerning the distribution of the errors. In [18] the performance of
SVMs for the same data set is given. Standard SVMs achieved between 93% and
95% accuracy on the test set. There the SVM results were compared with results
on fuzzy SVM learning. The latter approach led to classification rates between
95% and 97%. Again, the distribution of the errors was not specified.

Our numerical experiments were performed on the Juelich Multi Processor
(JUMP) at Research Centre Juelich [19]. JUMP is a distributed shared memory
parallel computer consisting of 41 frames (nodes). Each node contains 32 IBM
Power4+ processors running at 1.7 GHz and 128 GB shared main memory. All
in all the 1312 processors have an aggregate peak performance of 8.9 TFlop/s.
Since we used a single node of JUMP for our tests, the APPSPACK manager
process could assign jobs to 31 workers.

Throughout the tests, some control parameters were kept fixed. For the de-
composition method in the SVM training we chose a working set size of 100,
and the stopping criterion was defined according to [6] with ε = 0.001. The qual-
ity measure Eβ was computed via a simple twofold cross validation. We did not
specify a starting point or a maximum number of evaluations for APPSPACK. In
contrast to some published results, we kept training data and test data strictly
separated. The former were used only for validating and training the SVMs,
and the latter were used only for assessing the quality of the final optimized
SVM.

The Influence of the Quality Measure. One of the most challenging prob-
lems for unbalanced data sets is to find a reasonable trade-off between high
sensitivity and high precision. In our quality measure Eβ the relative weight of
these two important goals is controlled by the parameter β. Since increasing
β gives more weight to sensitivity, we expect a reduction of the false negative
points, at the cost of a potential growth of false positive results. Indeed the data
obtained with a single-σ model confirm this expectation; see Table 1.

Since in our example the cost for false negative classifications is significantly
higher than for false positive, we are primarily interested in sensitivity, so a
higher value of β should be used. Small values for β led to good overall results
with increasing numbers of false negative points. Note that the 98% test per-

260 T. Eitrich and B. Lang

Table 1. Test results for different quality measures

β 0.5 0.75 1.0 1.5 2.5

trial points 125 79 75 78 62
function evaluations 101 62 58 60 46
Eβ 0.092 0.102 0.108 0.099 0.072
training errors 48 51 88 120 170
σ 91.15 52.05 28.84 25.75 64.42
C+ 100000 100000 10280 39670 100000
C− 21790 19560 1000 1000 1000
ratio C+/C− 4.6 5.1 10.3 39.7 100
false negative test points 7 5 4 3 1
false positive test points 63 68 99 134 196
test sensitivity 97% 98% 98% 99% 100%
overall test errors 70 73 103 137 197
test performance 98% 98% 97% 96% 94%

formance compares favorably with the results obtained with neural networks or
fuzzy SVMs.

Even if sensitivity is important, at some point the attempt to reduce the false
negatives further leads to so many additional false positives that the overall cost
increases again. This reflects the fact that for large and very unbalanced data
sets it is dangerous to optimize only sensitivity because this can lead to weak
classifiers. In certain situations, however, it can be important to be able to
design very sensitive classifiers, e.g., when false positive points can be located
by experiments after classification. Possibly the overall performance might also
be improved further with another quality measure or with very small values β,
but these issues have not yet been investigated.

The Optimal Ratio of C+ and C−. While unequal evaluation of slack
variables during training seems to be accepted universally in the field of support
vector learning [20], detailed descriptions of results or of the effects of this model
generalization are not available. Thus tuning of these parameters is not trivial,
if done by hand. Since the ratio of positive and negative points is about 7% the
natural weighting choice [9] would be C+/C− ≈ 14. However the data in Table 1
indicate that this ratio is not adequate for minimizing either the total number
of errors or the sensitivity. The C+/C− ratios given in the table were delivered
automatically by the numerical optimizer. One can see that the ratio increases
for larger values of β, which is exactly what one would expect.

Computational Cost. Simple tuning methods like grid search are very pop-
ular due to the predictable number of training stages. In Table 1 we show the
number of steps for automatic parameter tuning. Not all trial points gener-
ated by APPSPACK led to a new function evaluation (cross validation) because
sometimes points were regularly pruned or function values in the cache could
be reused. For optimizing 3 parameters we had to do between 46 and 101 cross
validations, which is at least one order of magnitude less than any reasonable
grid search would need.

Parallel Tuning of Support Vector Machine Learning Parameters 261

Generalized vs. Standard Kernel. In Section 3 we showed how the stan-
dard Gaussian kernel can be extended by using different standard deviations
for (groups of) the features. The thyroid data have 21 features, of which 15 are
binary and 6 are continuous. Therefore we used two kernel parameters σbin and
σcont. In Table 2 we compare the results to those for the standard kernel with
a single parameter σ. For both runs we used β = 1.5. The number of function
evaluations for optimizing the generalized model is more than twice as large as
for the 3-parameter model. On the other hand, the cost-sensitive quality mea-
sure Eβ could be reduced. This improvement could be seen in the final test, too.
Both the false negative and false positive classifications could be lowered.

Table 2. Comparison of the standard and the generalized kernel

model standard generalized

function evaluations 60 140
Eβ 0.108 0.098
σ 25.75 —
σbin — 72.16
σcont — 31.38
C+ 39670 13380
C− 1000 1000
ratio C+/C− 39.7 13.4
false negative test points 3 2
false positive test points 134 110
overall errors 137 112

From σcont < σbin we conclude that the significance of the binary features is
high in comparison to the continuous values. It is interesting to see that σ = 25.75
is not between the two new σ values.

Serial vs. Parallel Optimization. The training time for a single SVM can
vary significantly depending on the values of the learning parameters. For ex-
ample, it is known that larger values of C lead to longer training times. Asyn-
chronous parallel pattern search (APPS) is a parallel optimization approach
that is well suited to such situations since it does not synchronize the system at
the end of every single iteration. The cost for the good load balancing is some
additional function evaluations in the parallel mode.

Results in [21] indicate a small number of additional function evaluations for
multi-processor APPS. By contrast, our results in Table 3 for β = 0.75 show
that the number of function evaluations in parallel mode can be significantly
larger than in serial mode so that the efficiency is reduced. Usage of 8 processors
led to 80 function evaluations, which is 60% more than with the serial version.
However, usage of 8, 16 or 32 CPUs decreases overall running time of SVM
parameter tuning.

During the tests we observed an increasing number of workers without a job,
i.e., more and more processors did no longer receive trial points for function

262 T. Eitrich and B. Lang

Table 3. Overhead for parallel optimization

mode serial 7 workers 15 workers 31 workers

function evaluations 49 80 62 62
Eβ 0.102 0.101 0.102 0.102
training errors 50 50 51 51
σ 62.88 72.16 52.05 52.05
C+ 69060 100000 100000 100000
C− 13380 19560 19560 19560
ratio C+/C− 5.2 5.1 5.1 5.1
false negative test points 4 4 5 5
false positive test points 74 74 68 68

evaluations. This is due to caching effects and the decreasing number of new
trial points during the final steps. Thus the asynchronous scheme cannot sustain
a large degree of parallelism when the system is near convergence.

The optimization results in terms of accuracy, however, depend only slightly
on the number of processors. The number of training errors is nearly the same
for all tests. Misclassifications in the test set differ only a little bit and the values
of our quality measure are nearly equal for all tests. Note that the parallel mode
yields larger values for C+ and C−, whereas their ratio remains almost constant.
This is a very interesting detail and gives evidence to the assumption that the
ratio C+/C− should always be considered, too. The most significant differences
between serial and parallel optimization with APPSPACK can be seen in the σ
values. They differ in both directions up to 20%.

Please note that SVM training for a fixed set of parameter values can be
formulated as a global optimization problem with a single optimum, but the task
of parameter tuning might lead to a large number of local minima. Since we are
interested in robust methods for SVM parameter tuning it might be interesting
to analyze in future tests APPSPACK ’s ability to avoid local minima.

6 Conclusions and Future Directions

We have introduced an automated parameter optimization scheme for support
vector learning. Our scheme is to a wide degree portable and can be adapted
very easily. The APPSPACK software is freely available and runs on different
platforms in serial and parallel mode. While we have used our own implemen-
tation of support vector learning, using publicly available SVM software is also
possible; [14] might be a good choice. We have shown results for different quality
measures, different models with varying numbers of parameters, and serial and
parallel computing mode.

In the future we plan integrating different kernels into a single SVM model
and a hierarchical parallelization combining parallel SVM training with parallel
parameter optimization to speed up the model selection even more.

Parallel Tuning of Support Vector Machine Learning Parameters 263

Acknowledgements

We would like to thank Tamara Kolda for continuous help with APPSPACK -
related questions. We are grateful to Wolfgang Frings, Inge Gutheil, Ruth Zim-
mermann and the ZAM team at Juelich for technical support, several remarks
and careful reading. We also would like to thank the unknown referees for their
valuable comments.

References

1. Vapnik, V.N.: Statistical learning theory. Wiley & Sons, New York (1998)
2. Platt, J.: Fast training of support vector machines using sequential minimal opti-

mization. In Schölkopf, B., Burges, C.J.C., Smola, A.J., eds.: Advances in Kernel
Methods — Support Vector Learning, Cambridge, MA, MIT Press (1999) 185–208

3. Poulet, F.: Multi-way distributed SVM algorithms. In: Proc. of ECML/PKDD 2003
Int. Workshop on Parallel and Distributed Algorithms for Data Mining. (2003)

4. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and
Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge,
UK (2000)

5. Schölkopf, B., Smola, A.J.: Learning With Kernels. MIT Press, Cambridge, MA
(2002)

6. Hsu, C.W., Lin, C.J.: A simple decomposition method for support vector machines.
Machine Learning 46 (2002) 291–314

7. Serafini, T., Zanghirati, G., Zanni, L.: Gradient projection methods for quadratic
programs and applications in training support vector machines. Optimization
Methods and Software 20 (2005) 353–378

8. Pardalos, P.M., Kovoor, N.: An algorithm for a singly constrained class of quadratic
programs subject to upper and lower bounds. Mathematical Programming 46
(1990) 321–328

9. Eitrich, T., Lang, B.: Efficient optimization of support vector machine learning pa-
rameters for unbalanced datasets. Preprint BUW-SC 2005/2, University of Wup-
pertal (2005)

10. Zanghirati, G., Zanni, L.: A parallel solver for large quadratic programs in training
support vector machines. Parallel Computing 29 (2003) 535–551

11. Collobert, R., Bengio, S., Bengio, Y.: A parallel mixture of SVMs for very large
scale problems. Neural Computation 14 (2002) 1105–1114

12. Selikoff, S.: The SVM-tree algorithm (2003) http://scott.selikoff.net/papers/
CS678 - Final Report.pdf.

13. Celis, S., Musicant, D.R.: Weka-parallel: machine learning in parallel. Computer
Science Technical Report 2002b, Carleton College (2002)

14. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. (2001)
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

15. Gray, G.A., Kolda, T.G.: APPSPACK 4.0: asynchronous parallel pattern search
for derivative-free optimization. Sandia Report SAND2004-6391, Sandia National
Laboratories, Livermore, CA (2004)

16. Hettich, S., Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases.
(1998) http://www.ics.uci.edu/∼mlearn/MLRepository.html.

17. Schiffmann, W., Joost, M., Werner, R.: Synthesis and performance analysis of
multilayer neural network architectures. Technical Report 16/1992, University of
Koblenz (1992)

264 T. Eitrich and B. Lang

18. Inoue, T., Abe, S.: Fuzzy support vector machines for pattern classification. In:
Proc. Intl. Joint Conf. Neural Networks (IJCNN’01). (2001) 1449–1454

19. Detert, U.: Introduction to the JUMP architecture. (2004) http://jumpdoc.fz-
juelich.de.

20. Markowetz, F.: Support vector machines in bioinformatics. Master’s thesis, Uni-
versity of Heidelberg (2001)

21. Hough, P.D., Kolda, T.G., Torczon, V.J.: Asynchronous parallel pattern search for
nonlinear optimization. SIAM Journal on Scientific Computing 23 (2001) 134–156

	Introduction
	Support Vector Learning
	Learning Parameters and Quality Management
	Automatic Parallel Parameter Optimization
	Results and Discussion
	Conclusions and Future Directions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

