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Abstract. This paper presents the advances in subgroup discovery and
the ways to use subgroup discovery to generate actionable knowledge
for decision support. Actionable knowledge is explicit symbolic knowl-
edge, typically presented in the form of rules, that allow the decision
maker to recognize some important relations and to perform an appro-
priate action, such as planning a population screening campaign aimed
at detecting individuals with high disease risk. Two case studies from
medicine and functional genomics are used to present the lessons learned
in solving problems requiring actionable knowledge generation for deci-
sion support.

1 Introduction

Rule learning is an important form of predictive machine learning, aimed at
inducing classification and prediction rules from examples [2]. Developments
in descriptive induction have recently also gained much attention of researchers
interested in rule learning. These include mining of association rules [1], subgroup
discovery [11, 4, 6] and other approaches to non-classificatory induction.

This paper discusses actionable knowledge generation by means of subgroup
discovery. The term actionability is described in [10] as follows: “a pattern is in-
teresting to the user if the user can do something with it to his or her advantage.”
As such, actionability is a subjective measure of interestingness.

The lessons in actionable knowledge generation, described in this paper, were
learned from two applications that motivated our research in actionable knowl-
edge generation for decision support. In an ideal case, the induced knowledge
should enable the decision maker to perform an action to his or her advantage,
for instance, by appropriately selecting individuals for population screening con-
cerning high risk for coronary heart disease (CHD). Consider one rule from this
application:

CHD ← body mass index > 25 kgm−2 & age > 63 years

This rule is actionable as the general practitioner can select from his patients
the overweight patients older than 63 years.

This paper provides arguments in favor of actionable knowledge generation
through recently developed subgroup discovery approaches, where a subgroup
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discovery task is informally defined as follows [11, 4, 6]: Given a population of
individuals and a specific property of individuals that we are interested in, find
population subgroups that are statistically ‘most interesting’, e.g., are as large
as possible and have the most unusual distributional characteristics with respect
to the property of interest.

We restrict the subgroup discovery task to learning from class-labeled data,
and induce individual rules (describing individual subgroups) from labeled train-
ing examples (labeled positive if the property of interest holds, and negative
otherwise), thus targeting the process of subgroup discovery to uncovering prop-
erties of a selected target population of individuals with the given property of
interest. Despite the fact that this form of rules suggests that standard super-
vised classification rule learning could be used for solving the task, the goal of
subgroup discovery is to uncover individual rules/patterns, as opposed to the
goal of standard supervised learning, aimed at discovering rulesets/models to be
used as accurate classifiers of yet unlabeled instances [4].

In subgroup discovery, the induced patterns must be represented in explicit
symbolic form and must be relatively simple in order to be recognized as ac-
tionable for guiding a decision maker in directing some targeted campaign. We
provide arguments in favour of actionable knowledge generation through recently
developed subgroup discovery algorithms, uncovering properties of individuals
for actions like population screening and functional genomics data analysis. For
such tasks, actionable rules are characterized by the experts’ choice of the ‘ac-
tionable’ attributes to appear in induced subgroup descriptions, as well as by
high coverage (support), high sensitivity and specificity1, even if this can be
achieved only at a price of lower classification accuracy, which is the quality to
be optimized in classification and prediction tasks.

This paper is structured as follows. Two applications that have motivated our
research in actionable knowledge generation are described in Section 2. Section 3
introduces the ROC and the TP/FP space needed for better understanding of
the task and results of subgroup discovery. Section 6 introduces the functional
genomics domain in more detail, where the task is to distinguish between differ-
ent cancer types.

2 Two Case Studies

The motivation for this work comes from practical data mining problems in a
medical and a functional genomics domain.

1 Sensitivity measures the fraction of positive cases that are classified as positive,
whereas specificity measures the fraction of negative cases classified as negative. If
TP denotes true positives, TN true negatives, FP false positives, FN false negatives,
Pos all positives, and Neg all negatives, then Sensitivity = TPr = TP

TP+FN
= TP

Pos
,

and Specificity = TN
TN+FP

= TN
Neg

, and FalseAlarm = FPr = 1 − Specificity =
FP

TN+FP
= FP

Neg
. Quality measures in association rule learning are support and confi-

dence: Support = TP
Pos+Neg

and Confidence = TP
TP+FP

.



The medical problem domain is first outlined: the problem of the detection
and description of Coronary Heart Disease (CHD) risk groups [4]. Typical data
collected in general screening include anamnestic information and physical ex-
amination results, laboratory tests, and ECG at-rest test results. In many cases
with significantly pathological test values (especially, for example, left ventricular
hypertrophy, increased LDL cholesterol, decreased HDL cholesterol, hyperten-
sion, and intolerance glucose) the decision is not difficult. However, the hard
problem in CHD prevention is to find endangered individuals with slightly ab-
normal values of risk factors and in cases when combinations of different risk
factors occur. The results in the form of risk group models should help gen-
eral practitioners to recognize CHD and/or to detect the illness even before
the first symptoms actually occur. Expert-guided subgroup discovery discovery
is aimed at easier detection of important risk factors and risk groups in the
population.

In functional genomics, gene expression monitoring by DNA microarrays
(gene chips) provides an important source of information that can help in under-
standing many biological processes. The database we analyze consists of a set of
gene expression measurements (examples), each corresponding to a large num-
ber of measured expression values of a predefined family of genes (attributes).
Each measurement in the database was extracted from a tissue of a patient with
a specific disease; this disease is the class for the given example. The domain,
described in [9, 5] and used in our experiments, is a typical scientific discovery
domain characterised by a large number of attributes compared to the number
of available examples. As such, this domain is especially prone to overfitting, as
it is a domain with 14 different cancer classes and only 144 training examples in
total, where the examples are described by 16063 attributes presenting gene ex-
pression values. While the standard goal of machine learning is to start from the
labeled examples and construct models/classifiers that can successfully classify
new, previously unseen examples, our main goal is to uncover interesting pat-
terns/rules that can help to better understand the dependencies between classes
(diseases) and attributes (gene expressions values).

3 Background: The ROC and the TP/FP Space

A point in the ROC space (ROC: Receiver Operating Characteristic) [8] shows
classifier performance in terms of false alarm or false positive rate FPr =

|FP |
|TN |+|FP | = |FP |

|N | (plotted on the X-axis), and sensitivity or true positive rate

TPr = |TP |
|TP |+|FN | = |TP |

|P | (plotted on the Y -axis).
A point (FPr, TPr) depicting rule R in the ROC space is determined by

the covering properties of the rule. The ROC space is appropriate for measur-
ing the success of subgroup discovery, since rules/subgroups whose TPr/FPr
tradeoff is close to the diagonal can be discarded as insignificant; the reason
is that the rules with TPr/FPr on the diagonal have the same distribution
of covered positives and negatives as the distribution in the training set. Con-

4 N. Lavrač
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Fig. 1. The left-hand side figure shows the ROC space with a convex hull formed of
seven rules that are optimal under varying TPr/FPr tradeoffs, and two suboptimal
rules B1 and B2. The right-hand side presents the positions of the same rules in the
corresponding TP/FP space

versely, significant rules/subgroups are those sufficiently distant from the di-
agonal. Subgroups that are optimal under varying TPr/FPr tradeoffs form a
convex hull called the ROC curve. Figure 1 presents seven rules on the convex
hull (marked by circles), including X1 and X2, while two rules B1 and B2 below
the convex hull (marked by +) are of lower quality in terms of their TPr/FPr
tradeoff.

It was shown in [6] that for rule R, the vertical distance from the (FPr, TPr)
point to the ROC diagonal is proportional to the significance of the rule. Hence,
the goal of a subgroup discovery algorithm is to find subgroups in the upper-
left corner area of the ROC space, where the most significant rule would lie in
point (0, 1) representing a rule covering only positive and none of the negative
examples (FPr = 0 and TPr = 1).

An alternative to the ROC space is the so-called TP/FP space (see the right-
hand side of Figure 1), where FPr on the X-axis is replaced by |FP | and TPr
on the Y -axis by |TP |.2 The TP/FP space is equivalent to the ROC space when
comparing the quality of subgroups induced in a single domain. The reminder
of this paper considers only this simpler TP/FP space representation.

4 Constraint-Based Subgroup Discovery

Subgroup discovery is a form of supervised inductive learning of subgroup de-
scriptions of the target class. As in all inductive rule learning tasks, the language
bias is determined by the syntactic restrictions of the pattern language and the
vocabulary of terms in the language. In this work the hypothesis language is
restricted to simple if-then rules of the form Class ← Cond, where Class is the
target class and Cond is a conjunction of features. Features are logical condi-

2 The TP/FP space can be turned into the ROC space by simply normalizing the TP
and FP axes to the [0,1]x[0,1] scale.



tions that have values true or false, depending on the values of attributes which
describe the examples in the problem domain: subgroup discovery rule learning
is a form of two-class propositional inductive rule learning, where multi-class
problems are solved through a series of two-class learning problems, so that each
class is once selected as the target class while examples of all other classes are
treated as non-target class examples.

This section briefly outlines a recently developed approach to subgroup dis-
covery that can be applied to actionable knowledge generation.

4.1 Constraint-Based Subgroup Discovery with the SD Algorithm

In this paper, subgroup discovery is performed by SD, an iterative beam search
rule learning algorithm [4]. The input to SD consists of a set of examples E
and a set of features F that can be constructed for the given example set. The
output of the SD algorithm is a set of rules with optimal covering properties on
the given example set. The SD algorithm is implemented in the on-line Data
Mining Server (DMS), publicly available at http://dms.irb.hr.3

In a constraint-based data mining framework [3], a formal definition of sub-
group discovery involves a set of constraints that induced subgroup descriptions
have to satisfy. The following constraints are used to formalize the SD constraint-
based subgroup discovery task.

Language Constraints

– Individual subgroup descriptions have the form of rules Class ← Cond,
where Class is the property of interest (the target class), and Cond is a
conjunction of features (conditions based on attribute value pairs) defined
by the language describing the training examples.

– For discrete (categorical) attributes, features have the form Attribute =
value or Attribute �= value, for continuous (numerical) attributes they have
the form Attribute > value or Attribute ≤ value. Note that features can
have values true and false only, that every feature has its logical complement
(for feature f1 being A1 = v1 its logical complement f1 is A1 �= v1, for A2 >
v2 its logical complement is A2 ≤ v2), and that features are different from
binary valued attributes because for every attribute at least two different
features are constructed.

– To simplify rule interpretation and increase rule actionability, subgroup dis-
covery is aimed at finding short rules. This is formalized by a language
constraint that every induced rule R has to satisfy: rule size (i.e., the num-
ber of features in Cond) has to be below a user-defined threshold: size(R) ≤
MaxRuleLength.

3 The publicly available Data Mining Server and its constituent subgroup discovery
algorithm SD can be tested on user submitted domains with up to 250 examples and
50 attributes. The variant of the SD algorithm used in gene expression data analysis
was not limited by these restrictions.
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Evaluation/Optimization Constraints

– To ensure that induced subgroups are sufficiently large, each induced rule R
must have high support, i.e., sup(R) ≥ MinSup, where MinSup is a user-
defined threshold, and sup(R) is the relative frequency of correctly covered
examples of the target class in examples set E:

sup(R) = p(Class · Cond) =
n(Class · Cond)

|E| =
|TP |
|E|

– Other evaluation/optimization constraints have to ensure that the induced
subgroups are highly significant (ensuring that the class distribution of ex-
amples covered by the subgroup description will be statistically significantly
different from the distribution in the training set). This could be achieved in
a straight-forward way by imposing a significance constraint on rules, e.g., by
requiring that rule significance is above a user-defined threshold. Instead, in
the SD subgroup discovery algorithm [4] the following rule quality measure
assuring rule significance, implemented as a heuristic in rule construction, is
used:

qg(R) =
|TP |

|FP | + g
(1)

In Equation 1, TP are true positives (target class examples covered by rule
R), FP are false positives (non-target class examples covered by rule R),
and g is a user defined generalization parameter. High quality rules will
cover many target class examples and a low number of non-target examples.
The number of tolerated non-target class cases, relative to the number of
covered target class cases, is determined by parameter g. It was shown in
[4] that by using this optimization constraint (choose the rule with best
qg(R) value in beam search of best rule conditions), rules with a significantly
different distribution of covered positives and negatives, compared to the
prior distribution in the training set, are induced.

5 Experiments in Patient CHD Risk Group Detection

Early detection of artherosclerotic coronary heart disease (CHD) is an impor-
tant and difficult medical problem. CHD risk factors include artherosclerotic
attributes, living habits, hemostatic factors, blood pressure, and metabolic fac-
tors. Their screening is performed in general practice by data collection in three
different stages.

A Collecting anamnestic information and physical examination results, includ-
ing risk factors like age, positive family history, weight, height, cigarette
smoking, alcohol consumption, blood pressure, and previous heart and vas-
cular diseases.

B Collecting results of laboratory tests, including information about risk factors
like lipid profile, glucose tolerance, and thrombogenic factors.



C Collecting ECG at rest test results, including measurements of heart rate,
left ventricular hypertrophy, ST segment depression, cardiac arrhythmias
and conduction disturbances.

In this application, the goal was to construct at least one relevant and interesting
CHD risk group for each of the stages A, B, and C, respectively.

A database with 238 patients representing typical medical practice in CHD
diagnosis, collected at the Institute for Cardiovascular Prevention and Rehabil-
itation, Zagreb, Croatia, was used for subgroup discovery [4]. The database is
in no respect a good epidemiological CHD database reflecting actual CHD oc-
currence in a general population, since about 50% of gathered patient records
represent CHD patients. Nevertheless, the database is very valuable since it in-
cludes records of different types of the disease. Moreover, the included negative
cases (patients who do not have CHD) are not randomly selected persons but
individuals considered by general practitioners as potential CHD patients, and
hence sent for further investigations to the Institute. This biased dataset is ap-
propriate for CHD risk group discovery, but it is inappropriate for measuring
the success of CHD risk detection and for subgroup performance estimation in
general medical practice.

5.1 Results of Subgroup Discovery

The process of expert-guided subgroup discovery was performed as follows. For
every data stage A, B and C, the SD algorithm was run for values g in the range
0.5 to 100 (values 0.5, 1, 2, 4, 6, ...), and a fixed number of selected output rules
equal to 3. The rules induced in this iterative process were shown to the ex-
pert for selection and interpretation. The inspection of 15–20 rules for each data
stage triggered further experiments, following the suggestions of the medical ex-
pert to limit the number of features in the rule body and avoid the generation
of rules whose features would involve expensive and/or unreliable laboratory
tests.

In the iterative process of rule generation and selection, the expert has se-
lected five most interesting CHD risk groups. Table 1 shows the induced sub-
group descriptions. The features appearing in the conditions of rules describing
the subgroups are called the principal factors. The described iterative process
was successful for data at stages B and C, but it turned out that medical history
data on its own (stage A data) is not informative enough for inducing subgroups,
i.e., it failed to fulfil the expert’s subjective criteria of interestingness. Only af-
ter engineering the domain, by separating male and female patients, interesting
subgroups A1 and A2 have actually been discovered.

Separately for each data stage A, B and C, we have investigated which of
the induced rules are the best in terms of the TP/FP tradeoff, i.e., which of
them are used to define the convex hull in the TP/FP space. At stage B, for
instance, seven rules (marked by +) are on the convex hull of the TP/FP space
shown in Figure 1. Notice that the expert-selected subgroups B1 and B2 are
significant, but are not among those lying on the convex hull in Figure 1. The
reason for selecting exactly those two rules at stage B are their simplicity (con-

8 N. Lavrač
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Table 1. Induced subgroups in the form of rules. Rule conditions are conjunctions of
principal factors. Subgroup A1 is for male patients, subgroup A2 for female patients,
while subgroups B1, B2, and C1 are for both male and female patients. The subgroups
are induced from different attribute subsets (A, B and C, respectively) with different
g parameter values (14, 8, 10, 12 and 10, respectively)

Expert Selected Subgroups

A1 CHD ← positive family history &
age over 46 year

A2 CHD ← body mass index over 25 kgm−2 &
age over 63 years

B1 CHD ← total cholesterol over 6.1 mmolL−1 &
age over 53 years &
body mass index below 30 kgm−2

B2 CHD ← total cholesterol over 5.6 mmolL−1 &
fibrinogen over 3.7 gL−1 &
body mass index below 30 kgm−2

C1 CHD ← left ventricular hypertrophy

sisting of three features only), their generality (covering relatively many posi-
tive cases) and the fact that the used features are, from the medical point of
view, inexpensive laboratory tests. Additionally, rules B1 and B2 are interesting
because of the feature body mass index below 30 kgm−2, which is intuitively
in contradiction with the expert knowledge that both increased body weight
as well as increased total cholesterol values are CHD risk factors. It is known
that increased body weight typically results in increased total cholesterol val-
ues while subgroups B1 and B2 actually point out the importance of increased
total cholesterol when it is not caused by obesity as a relevant disease risk
factor.

5.2 Statistical Characterization of Subgroups

The next step in the proposed subgroup discovery process starts from the discov-
ered subgroups. In this step, statistical differences in distributions are computed
for two populations, the target and the reference population. The target popu-
lation consists of true positive cases (CHD patients included into the analyzed
subgroup), whereas the reference population are all available non-target class
examples (all the healthy subjects). Statistical differences in distributions for all
the descriptors (attributes) between these two populations are tested using the
χ2 test with 95% confidence level (p = 0.05).

To enable testing of statistical significance, numerical attributes have been
partitioned in up to 30 intervals so that in every interval there are at least 5
instances. Among the attributes with significantly different value distributions
there are always those that form the features describing the subgroups (the
principal factors), but usually there are also other attributes with statistically
significantly different value distributions. These attributes are called supporting



Table 2. Statistical characterizations of induced subgroup descriptions (supporting
factors)

Supporting Factors

A1 psychosocial stress, cigarette smoking, hypertension, overweight

A2 positive family history, hypertension, slightly increased LDL cholesterol,
normal but decreased HDL cholesterol

B1 increased triglycerides value

B2 positive family history

C1 positive family history, hypertension, diabetes mellitus

attributes, and the features formed of their values that are characteristic for the
discovered subgroups are called supporting factors.

Supporting factors are very important for subgroup descriptions to become
more complete and acceptable for medical practice. Medical experts dislike long
conjunctive rules which are difficult to interpret. On the other hand, they also
dislike short rules providing insufficient supportive evidence. In this work, we
found an appropriate tradeoff between rule simplicity and the amount of sup-
portive evidence by enabling the expert to inspect all the statistically significant
supporting factors, whereas the decision whether they indeed increase the user’s
confidence in the subgroup description is left to the expert. In the CHD ap-
plication the expert has decided whether the proposed supporting factors are
meaningful, interesting and actionable, how reliable they are and how easily
they can be measured in practice. Table 2 lists the expert selected supporting
factors.

6 Experiments in Functional Genomics

The gene expression domain, described in [9, 5] is a domain with 14 differ-
ent cancer classes and 144 training examples in total. Eleven classes have 8
examples each, two classes have 16 examples and only one has 24 examples.
The examples are described by 16063 attributes presenting gene expression val-
ues. In all the experiments we have used gene presence call values (A, P , and
M) to describe the training examples. The domain can be downloaded from
http://www-genome.wi.mit.edu/cgi-bin/cancer/datasets.cgi. There is also an in-
dependent test set with 54 examples. The standard goal of machine learning is to
start from such labeled examples and construct classifiers that can successfully
classify new, previously unseen examples. Such classifiers are important because
they can be used for diagnostic purposes in medicine and because they can help
to understand the dependencies between classes (diseases) and attributes (gene
expressions values).

10 N. Lavrač
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6.1 Choice of the Description Language of Features

Gene expression scanners measure signal intensity as continuous values which
form an appropriate input for data analysis. The problem is that for contin-
uous valued attributes there can be potentially many boundary values sepa-
rating the classes, resulting in many different features for a single attribute.
There is also a possibility to use presence call (signal specificity) values com-
puted from measured signal intensity values by the Affymetrix GENECHIP
software. The presence call has discrete values A (absent), P (present), and
M (marginal). Subgroup discovery as well as filtering based on feature and rule
relevancy are applicable both for signal intensity and/or the presence call at-
tribute values. Typically, signal intensity values are used [7] because they impose
less restrictions on the classifier construction process and because the results do
not depend on the GENECHIP software presence call computation. For sub-
group discovery we prefer the later approach based on presence call values. The
reason is that features presented by conditions like Gene = P is true (mean-
ing that Gene is present, i.e., expressed) or Gene = A is true (meaning that
Gene is absent, i.e., not expressed) are very natural for human interpretation
and that the approach can help in avoiding overfitting, as the feature space is
very strongly restricted, especially if the marginal value M is encoded as value
unknown.

In our approach, the M value is handled as an unknown value, as we do
not want to increase the relevance of features generated from attributes with
M values. The M values are therefore handled as unknown values as follows:
unknown values in positive examples are replaced by value false, while unknown
values in negative examples are replaced by value true. As for the other two
values, A and P , it holds that two features for gene X, X = A and X �= P , are
identical. Consequently, for every gene X there are only two distinct features
X = A and X = P .

6.2 The Experiments

The experiments were performed separately for each cancer class so that a two-
class learning problem was formulated where the selected cancer class was the
target class and the examples of all other classes formed non-target class exam-
ples. In this way the domain was transformed into 14 inductive learning prob-
lems, each with the total of 144 training examples and between 8 and 24 target
class examples. For each of these tasks a complete procedure consisting of fea-
ture construction, elimination of irrelevant features, and induction of subgroup
descriptions in the form of rules was repeated. Finally, using the SD subgroup
discovery algorithm [4], for each class a single rule with maximal qg value was
selected, for qg = |TP |

|FP |+g being the heuristic of the SD algorithm and g = 5 the
generalization parameter default value. The rules for all 14 tasks consisted of
2–4 features. The procedure was repeated for all 14 tasks with the same default
parameter values. The induced rules were tested on the independent example
set.



Table 3. Covering properties on the training and on the independent test set for rules
induced for three classes with 16 and 24 examples. Sensitivity is |TP |

|P | , specificity is
|TN|
|N| , while precision is defined as |TP |

|TP |+|FP |

Cancer Training set Test set
Sens. Spec. Prec. Sens. Spec. Prec.

lymphoma 16/16 128/128 100% 5/6 48/48 100%
leukemia 23/24 120/120 100% 4/6 47/48 80%
CNS 16/16 128/128 100% 3/4 50/50 100%

There are very large differences among the results on the test sets for vari-
ous classes (diseases) and the precision higher than 50% was obtained for only
5 out of 14 classes. There are only three classes (lymphoma, leukemia, and
CNS) with more than 8 training cases and all of them are among those with
high precision on the test set, while for only two out of eleven classes with
8 training cases (colorectal and mesothelioma) high precision was achieved.
The classification properties of rules induced for classes with 16 and 24 tar-
get class examples (lymphoma, leukemia and CNS) are comparable to those
reported in [9] (see Table 3), while the results on eight small example sets
with 8 target examples were poor. An obvious conclusion is that the use of
the subgroup discovery algorithm is not appropriate for problems with a very
small number of examples because overfitting can not be avoided in spite of
the heuristics used in the SD algorithm and the additional domain-specific tech-
niques used to restrict the hypothesis search space. But for larger training sets
the subgroup discovery methodology enabled effective construction of relevant
rules.

6.3 Examples of Induced Rules

For three classes (lymphoma, leukemia, and CNS) with more than 8 training
cases the following rules were induced by the constraint-based subgroup dis-
covery approach involving relevancy filtering and handling of unknown values
described in this chapter.

Lymphoma class:
(CD20 receptor EXPRESSED) AND
(phosphatidylinositol 3 kinase regulatory alpha subunit NOT EXPRESSED)
Leukemia class:
(KIAA0128 gene EXPRESSED) AND
(prostaglandin d2 synthase gene NOT EXPRESSED)
CNS class:
(fetus brain mRNA for membrane glycoprotein M6 EXPRESSED) AND
(CRMP1 collapsin response mediator protein 1 EXPRESSED)

12 N. Lavrač
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The expert interpretation of the results yields several biological observations:
two rules (for the lymphoma and leukemia classes) are judged as reassuring and
one (the CNS class) has a plausible, albeit partially speculative explanation.
Namely, the best-scoring rule for the lymphoma class in the multi-class cancer
recognition problem contains a feature corresponding to a gene routinely used
as a marker in diagnosis of lymphomas (CD20), while the other part of the
conjunction (phosphatidylinositol, the PI3K gene) seems to be a plausible bi-
ological co-factor. The best-scoring rule for the leukemia class contains a gene
whose relation to the disease is directly explicable (KIAA0128, Septin 6). Both
M6 and CRMP1 appear to have multifunctional roles in shaping neuronal net-
works, and their function as survival (M6) and proliferation (CRMP1) signals
may be relevant to growth promotion and CNS malignancy.

Both good prediction results on an independent test set as well as expert
interpretation of induced rules prove the effectiveness of described methods for
avoiding overfitting in scientific discovery tasks.

Acknowledgments

The paper describes joint work with Dragan Gamberger from Rudjer Bošković
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